Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Physiological functions of programmed DNA breaks in signal-induced transcription

Abstract

The idea that signal-dependent transcription might involve the generation of transient DNA nicks or even breaks in the regulatory regions of genes, accompanied by activation of DNA damage repair pathways, would seem to be counterintuitive, as DNA damage is usually considered harmful to cellular integrity. However, recent studies have generated a substantial body of evidence that now argues that programmed DNA single- or double-strand breaks can, at least in specific cases, have a role in transcription regulation. Here, we discuss the emerging functions of DNA breaks in the relief of DNA torsional stress and in promoter and enhancer activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcription regulation by DNA topoisomerases 1 and 2.
Figure 2: 'Programmed' DNA damage.

Similar content being viewed by others

References

  1. Wang, J. C. Untangling the Double Helix: DNA Entanglement and the Action of DNA Topoisomerases (Cold Spring Harbor Laboratory Press, 2009).

    Google Scholar 

  2. Pommier, Y., Leo, E., Zhang, H. & Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421–433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, L. F. & Wang, J. C. Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA 84, 7024–7027 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma, J. & Wang, M. Interplay between DNA supercoiling and transcription elongation. Transcription 5, e28636 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kouzine, F. et al. Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat. Struct. Mol. Biol. 20, 396–403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nelson, P. Transport of torsional stress in DNA. Proc. Natl Acad. Sci. USA 96, 14342–14347 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dunaway, M. & Ostrander, E. A. Local domains of supercoiling activate a eukaryotic promoter in vivo. Nature 361, 746–748 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Parvin, J. D. & Sharp, P. A. DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 73, 533–540 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. El Hage, A., French, S. L., Beyer, A. L. & Tollervey, D. Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24, 1546–1558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, J. C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3, 430–440 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Champoux, J. J. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Gale, K. C. & Osheroff, N. Intrinsic intermolecular DNA ligation activity of eukaryotic topoisomerase II. Potential roles in recombination. J. Biol. Chem. 267, 12090–12097 (1992).

    CAS  PubMed  Google Scholar 

  13. Pommier, Y., Pourquier, P., Fan, Y. & Strumberg, D. Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim. Biophys. Acta 1400, 83–105 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Pommier, Y., Sun, Y., Huang, S. N. & Nitiss, J. L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 17, 703–721 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Vos, S. M., Tretter, E. M., Schmidt, B. H. & Berger, J. M. All tangled up: how cells direct, manage and exploit topoisomerase function. Nat. Rev. Mol. Cell Biol. 12, 827–841 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dykhuizen, E. C. et al. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature 497, 624–627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Salceda, J., Fernandez, X. & Roca, J. Topoisomerase II, not topoisomerase I, is the proficient relaxase of nucleosomal DNA. EMBO J. 25, 2575–2583 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pedersen, J. M. et al. DNA topoisomerases maintain promoters in a state competent for transcriptional activation in Saccharomyces cerevisiae. PLoS Genet. 8, e1003128 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim, T.-K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Corless, S. & Gilbert, N. Effects of DNA supercoiling on chromatin architecture. Biophys. Rev. 8, 245–258 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herendeen, D. R., Kassavetis, G. A. & Geiduschek, E. P. A transcriptional enhancer whose function imposes a requirement that proteins track along DNA. Science 256, 1298–1303 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Roy, D., Zhang, Z., Lu, Z., Hsieh, C. L. & Lieber, M. R. Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site. Mol. Cell. Biol. 30, 146–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Belotserkovskii, B. P. et al. Transcription blockage by homopurine DNA sequences: role of sequence composition and single-strand breaks. Nucleic Acids Res. 41, 1817–1828 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Kuzminov, A. Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc. Natl Acad. Sci. USA 98, 8241–8246 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wimberly, H. et al. R-Loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat. Commun. 4, 2115 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Ju, B. G. et al. A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Williamson, L. M. & Lees-Miller, S. P. Estrogen receptor α-mediated transcription induces cell cycle-dependent DNA double-strand breaks. Carcinogenesis 32, 279–285 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Haffner, M. C. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. 42, 668–675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lisby, M., Krogh, B. O., Boege, F., Westergaard, O. & Knudsen, B. R. Camptothecins inhibit the utilization of hydrogen peroxide in the ligation step of topoisomerase I catalysis. Biochemistry 37, 10815–10827 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Ashour, M. E., Atteya, R. & El-Khamisy, S. F. Topoisomerase-mediated chromosomal break repair: an emerging player in many games. Nat. Rev. Cancer 15, 137–151 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Perillo, B. et al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science 319, 202–206 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Trotter, K. W., King, H. A. & Archer, T. K. Glucocorticoid receptor transcriptional activation via the BRG1-dependent recruitment of TOP2β and Ku70/86. Mol. Cell. Biol. 35, 2799–2817 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bunch, H. et al. Transcriptional elongation requires DNA break-induced signalling. Nat. Commun. 6, 10191 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Baranello, L. et al. RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription. Cell 165, 357–371 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Madabhushi, R. et al. Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161, 1592–1605 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwer, B. et al. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells. Proc. Natl Acad. Sci. USA 113, 2258–2263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wei, P. C. et al. Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells. Cell 164, 644–655 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. King, I. F. et al. Topoisomerases facilitate transcription of long genes linked to autism. Nature 501, 58–62 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tiwari, V. K. et al. Target genes of topoisomerase IIβ regulate neuronal survival and are defined by their chromatin state. Proc. Natl Acad. Sci. USA 109, E934–E943 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rialdi, A. et al. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science 352, aad7993 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Puc, J. et al. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 160, 367–380 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bowen, C. et al. NKX3.1 homeodomain protein binds to topoisomerase I and enhances its activity. Cancer Res. 67, 455–464 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Bowen, C. & Gelmann, E. P. NKX3.1 activates cellular response to DNA damage. Cancer Res. 70, 3089–3097 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Erbaykent-Tepedelen, B. et al. NKX3.1 contributes to S phase entry and regulates DNA damage response (DDR) in prostate cancer cell lines. Biochem. Biophys. Res. Commun. 414, 123–128 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Mayeur, G. L. et al. Ku is a novel transcriptional recycling coactivator of the androgen receptor in prostate cancer cells. J. Biol. Chem. 280, 10827–10833 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Maldonado, E. et al. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381, 86–89 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Stracker, T. H. & Petrini, J. H. The MRE11 complex: starting from the ends. Nat. Rev. Mol. Cell Biol. 12, 90–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Price, B. D. & D'Andrea, A. D. Chromatin remodeling at DNA double-strand breaks. Cell 152, 1344–1354 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hartsuiker, E., Neale, M. J. & Carr, A. M. Distinct requirements for the Rad32(Mre11) nuclease and Ctp1(CtIP) in the removal of covalently bound topoisomerase I and II from DNA. Mol. Cell 33, 117–123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hamilton, N. K. & Maizels, N. MRE11 function in response to topoisomerase poisons is independent of its function in double-strand break repair in Saccharomyces cerevisiae. PLoS ONE 5, e15387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sacho, E. J. & Maizels, N. DNA repair factor MRE11/RAD50 cleaves 3′-phosphotyrosyl bonds and resects DNA to repair damage caused by topoisomerase 1 poisons. J. Biol. Chem. 286, 44945–44951 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoa, N. N. et al. Mre11 is essential for the removal of lethal topoisomerase 2 covalent cleavage complexes. Mol. Cell 64, 580–592 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Mani, R. S. et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science 326, 1230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin, C. et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139, 1069–1083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bansal, K., Yoshida, H., Benoist, C. & Mathis, D. The transcriptional regulator Aire binds to and activates super-enhancers. Nat. Immunol. 18, 263–273 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Periyasamy, M. et al. APOBEC3B-mediated cytidine deamination is required for estrogen receptor action in breast cancer. Cell Rep. 13, 108–121 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qian, J. et al. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 159, 1524–1537 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pefanis, E. et al. Noncoding RNA transcription targets AID to divergently transcribed loci in B cells. Nature 514, 389–393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maul, R. W., Saribasak, H., Cao, Z. & Gearhart, P. J. Topoisomerase I deficiency causes RNA polymerase II accumulation and increases AID abundance in immunoglobulin variable genes. DNA Repair (Amst.) 30, 46–52 (2015).

    Article  CAS  Google Scholar 

  60. Larsen, B. D. et al. Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks. Proc. Natl Acad. Sci. USA 107, 4230–4235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Al-Khalaf, M. H. et al. Temporal activation of XRCC1-mediated DNA repair is essential for muscle differentiation. Cell Discov. 2, 15041 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Polkinghorn, W. R. et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 3, 1245–1253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goodwin, J. F. et al. A hormone-DNA repair circuit governs the response to genotoxic insult. Cancer Discov. 3, 1254–1271 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Schiewer, M. J. et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov. 2, 1134–1149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Krishnakumar, R. & Kraus, W. L. PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol. Cell 39, 736–749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, Y. et al. Nucleation of DNA repair factors by FOXA1 links DNA demethylation to transcriptional pioneering. Nat. Genet. 48, 1003–1013 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, F. et al. Poly(ADP-ribose) polymerase 1 is a key regulator of estrogen receptor α-dependent gene transcription. J. Biol. Chem. 288, 11348–11357 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smith, G. C. & Jackson, S. P. The DNA-dependent protein kinase. Genes Dev. 13, 916–934 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Li, H., Marple, T. & Hasty, P. Ku80-deleted cells are defective at base excision repair. Mutat. Res. 745–746, 16–25 (2013).

  70. Choi, Y. J. et al. Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair. PLoS ONE 9, e86358 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ruscetti, T. et al. Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J. Biol. Chem. 273, 14461–14467 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Medunjanin, S. et al. Transcriptional activation of DNA-dependent protein kinase catalytic subunit gene expression by oestrogen receptor-α. EMBO Rep. 11, 208–213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, Z. et al. Enhancer activation requires trans-recruitment of a mega transcription factor complex. Cell 159, 358–373 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Compe, E. & Egly, J. M. TFIIH: when transcription met DNA repair. Nat. Rev. Mol. Cell Biol. 13, 343–354 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Le May, N., Fradin, D., Iltis, I., Bougneres, P. & Egly, J. M. XPG and XPF endonucleases trigger chromatin looping and DNA demethylation for accurate expression of activated genes. Mol. Cell 47, 622–632 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Fong, Y. W. et al. A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells. Cell 147, 120–131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to all researchers whose important contributions could not be acknowledged owing to space limitations. The authors thank members of the Rosenfeld laboratory for their comments on the work, and are particularly grateful to P. Cortes and E.P. Geiduschek for discussions. This work was supported by DK 018477, DK 039949, and CA17390. M.G.R. is an Investigator with the Howard Hughes Medical Institute (HHMI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Rosenfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puc, J., Aggarwal, A. & Rosenfeld, M. Physiological functions of programmed DNA breaks in signal-induced transcription. Nat Rev Mol Cell Biol 18, 471–476 (2017). https://doi.org/10.1038/nrm.2017.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing