Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential

Abstract

Single-stranded guanine-rich DNA sequences can fold into four-stranded DNA structures called G-quadruplexes (G4s) that arise from the self-stacking of two or more guanine quartets. There has been considerable recent progress in the detection and mapping of G4 structures in the human genome and in biologically relevant contexts. These advancements, many of which align with predictions made previously in computational studies, provide important new insights into the functions of G4 structures in, for example, the regulation of transcription and genome stability, and uncover their potential relevance for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: G-quadruplex structures.
Figure 2: Visualization and mapping of G-quadruplex structures.
Figure 3: Therapeutic opportunities.

Similar content being viewed by others

References

  1. Davis, J. T. G-Quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed. 43, 668–698 (2004).

    Article  CAS  Google Scholar 

  2. Rhodes, D. & Lipps, H. J. G-Quadruplexes and their regulatory roles in biology. Nucleic Acid. Res. 43, 8627–8637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bochman, M. L., Paeschke, K. & Zakian, V. A. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet. 11, 770–780 (2012).

    Article  CAS  Google Scholar 

  4. Huppert, J. L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acid. Res. 33, 2908–2916 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Todd, A. K., Johnston, M. & Neidle, S. Highly prevalent putative quadruplex sequence motif in human DNA. Nucleic Acid. Res. 33, 2901–2907 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bedrat, A., Lacroix, L. & Mergny, J.-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acid. Res. 44, 1746–1759 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schaffitzel, C. et al. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl Acad. Sci. USA 98, 8572–8577 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paeschke, K. et al. Telomerase recruitment by the telomere end binding protein-β facilitates G-quadruplex DNA unfolding in ciliates. Nat. Struct. Mol. Biol. 15, 598–604 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Henderson, A. et al. Detection of G-quadruplex DNA in mammalian cells. Nucleic Acid. Res. 42, 860–869 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Moye, A. L. et al. Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat. Commun. 6, 7643 (2015).

    Article  PubMed  Google Scholar 

  12. Zahler, A. M. Williamson, J. R. Cech, T. R. & Prescott, D. M. Inhibition of telomerase by G-quartet DNA structures. Nature 350, 718–720 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Rodriguez, R. et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 8, 301–310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang, W. C. et al. Direct evidence of mitochondrial G-quadruplex DNA by using fluorescent anti-cancer agents. Nucleic Acid. Res. 43, 10102–10113 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shivalingam, A. et al. The interactions between a small molecule and G-quadruplexes are visualized by fluorescence lifetime imaging microscopy. Nat. Commun. 6, 8178 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Granotier, C. et al. Preferential binding of a G-quadruplex ligand to human chromosome ends. Nucleic Acid. Res. 33, 4182–4190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hänsel-Hertsch, R. et al. G-Quadruplex structures mark human regulatory chromatin. Nat. Genet. 48, 1267–1272 (2016).

    Article  PubMed  CAS  Google Scholar 

  18. Chambers, V. S. et al. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 33, 877–881 (2015).

    Article  PubMed  Google Scholar 

  19. Gray, L. T., Vallur, A. C., Eddy, J. & Maizels, N. G-Quadruplexes are genomewide targets of transcriptional helicases XPB and XPD. Nat. Chem. Biol. 10, 313–318 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Law, M. J. et al. ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell 143, 335–336 (2010).

    Article  CAS  Google Scholar 

  21. Paeschke, K., Capra, J. A. & Zakian, V. A. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145, 678–691 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kanoh, Y. et al. Rif1 binds to G-quadruplexes and suppresses replication over long distances. Nat. Struct. Mol. Biol. 22, 889–897 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Siddiqui-Jain, A., Grand, C. L., Bearss, D. J. & Hurley, L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl Acad. Sci. USA 99, 11593–11598 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cogoi, S. & Xodo, L. E. G-Quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acid. Res. 34, 2536–2549 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. David, A. P. et al. G-Quadruplexes as novel cis-elements controlling transcription during embryonic development. Nucleic Acid. Res. 43, 4163–4173 (2015).

    Article  CAS  Google Scholar 

  26. Johnson, J. E., Cao, K., Ryvkin, P., Wang, L. S. & Johnson, F. B. Altered gene expression in the Werner and Bloom syndromes is associated with sequences having G-quadruplex forming potential. Nucleic Acid. Res. 38, 1114–1122 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen, G. H. et al. Regulation of gene expression by the BLM helicase correlates with the presence of G-quadruplex DNA motifs. Proc. Natl Acad. Sci. USA 111, 9905–9910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang, W. et al. The Werner syndrome RECQ helicase targets G4 DNA in human cells to modulate transcription. Hum. Mol. Genet. 25, 2060–2069 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoffmann, R. F. et al. Guanine quadruplex structures localize to heterochromatin. Nucleic Acid. Res. 43, 152–163 (2015).

    Article  CAS  Google Scholar 

  30. Eckdahl, T. T. & Anderson, J. N. Conserved DNA structures in origins of replication. Nucleic Acid. Res. 18, 1609–1612 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Besnard, E. et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol. 19, 837–844 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Hoshina, S. et al. Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J. Biol. Chem. 288, 30161–30171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ribeyre, C. et al. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet. 5, e1000475 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Paeschke, K. et al. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497, 458–462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vannier, J. B., Pavicic-Kaltenbrunner, V., Petalcorin, M. I., Ding, H. & Boulton, S. J. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149, 795–806 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Mendoza, O., Bourdoncle, A., Boulé, J. B., Brosh, R. M. Jr & Mergny, J.-L. G-Quadruplexes and helicases. Nucleic Acid. Res. 44, 1989–2006 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sarkies, P., Reams, C., Simpson, L. J. & Sale, J. E. Epigenetic instability due to defective replication of structured DNA. Mol. Cell 40, 703–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schiavone, D. et al. Determinants of G quadruplex-induced epigenetic instability in REV1-deficient cells. EMBO J. 33, 2507–25020 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Piazza, A. et al. Genetic instability triggered by G-quadruplex interacting Phen-DC compounds in Saccharomyces cerevisiae. Nucleic Acid. Res. 38, 4337–4348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Piazza, A. et al. Short loop length and high thermal stability determine genomic instability induced by G-quadruplex forming minisatellites. EMBO J. 34, 1718–1734 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Biffi, G., Tannahill, D., Miller, J., Howat, W. J. & Balasubramanian, S. Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues. PLoS ONE 9, e102711 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ohnmacht, S. A. et al. A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic cancer. Sci. Rep. 5, 11385 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Salvati, E. et al. PARP1 is activated at telomeres upon G4 stabilization: possible target for telomere-based therapy. Oncogene 29, 6280–6293 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Aggarwal, M., Sommers, J. A., Shoemaker, R. H. & Brosh, R. M. Jr. Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress. Proc. Natl Acad. Sci. USA 108, 1525–1530 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McLuckie, K. I. et al. G-Quadruplex DNA as a molecular target for induced synthetic lethality in cancer cells. J. Am. Chem. Soc. 135, 9640–9642 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zimmer, J. et al. Targeting BRCA1 and BRCA2 deficiencies with G-quadruplex-interacting compounds. Mol. Cell 61, 449–460 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Balasubramanian laboratory is core-funded by Cancer Research UK (C14303/A17197) and further supported by a Cancer Research UK programme grant (C9681/A18618). S.B. is a Wellcome Trust Senior Investigator (099232/Z/12/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Balasubramanian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hänsel-Hertsch, R., Di Antonio, M. & Balasubramanian, S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol 18, 279–284 (2017). https://doi.org/10.1038/nrm.2017.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer