Key Points
-
Cellular membranes are laterally heterogeneous and consist of transient and dynamic domains with varying properties, which prominently include ordered lipid-driven domains that are referred to as lipid (or membrane) rafts.
-
Membrane domains can be induced and regulated by a variety of interactions, which include specific lipid–lipid and lipid–protein interactions, bulk membrane properties, and interactions between membrane components and the underlying cytoskeleton.
-
Advanced microscopy and biochemistry techniques facilitate the study of membrane domains; however, these domains still elude direct in vivo visualization. The multiplicity of possible organizational states and their context-dependent nature most likely account for experimental inconsistencies.
-
Membrane rafts potentially have crucial physiological roles across cell types that range from immune cells to cancer cells.
-
Membrane domains are conserved throughout the domains of life, which supports their functional importance in biological systems.
Abstract
Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large number of studies have focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed (or ordered) membrane domains that selectively recruit certain lipids and proteins. Recent studies have yielded new insights into this mechanism and its relevance in vivo, owing primarily to the development of improved biochemical and biophysical technologies.
Access options
Subscribe to Journal
Get full journal access for 1 year
$259.00
only $21.58 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.





References
- 1
Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).
- 2
Yu, J., Fischman, D. A. & Steck, T. L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J. Supramol. Struct. 1, 233–248 (1973).
- 3
Bagatolli, L. & Mouritsen, O. Is the fluid mosaic (and the accompanying raft hypothesis) a suitable model to describe fundamental features of biological membranes? What may be missing? Front. Plant Sci. 4, 457 (2013).
- 4
Ahmed, S. N., Brown, D. A. & London, E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36, 10944–10953 (1997).
- 5
Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992).
- 6
Vanmeer, G., Stelzer, E. H. K., Wijnaendts- van-Resandt, R. W. & Simons, K. Sorting of sphingolipids in epithelial (Madin–Darby canine kidney) cells. J. Cell Biol. 105, 1623–1635 (1987).
- 7
Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998). First evidence for nanoscopic domains of GPI-anchored proteins in living cells.
- 8
Pralle, A., Keller, P., Florin, E. L., Simons, K. & Horber, J. K. Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1008 (2000).
- 9
Friedrichson, T. & Kurzchalia, T. V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805 (1998).
- 10
Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997). First work to highlight the lipid raft hypothesis and its potential functional relevance.
- 11
Simons, K. & Vaz, W. L. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004).
- 12
Pike, L. J. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid Res. 47, 1597–1598 (2006). An editorial article that summarizes the 2006 Keystone symposium on lipid rafts.
- 13
Kiessling, V., Wan, C. & Tamm, L. K. Domain coupling in asymmetric lipid bilayers. Biochim. Biophys. Acta 1788, 64–71 (2009).
- 14
Raghupathy, R. et al. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161, 581–594 (2015). Explains the transbilayer coupling between dynamic actin organization on the intracellular side of the plasma membrane and lipid domains in the extracellular leaflet via raft-based interactions of anionic lipids.
- 15
Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).
- 16
Klotzsch, E. & Schuetz, G. J. A critical survey of methods to detect plasma membrane rafts. Phil. Trans. R. Soc. B 368, 20120033 (2013).
- 17
Hanada, K., Nishijima, M., Akamatsu, Y. & Pagano, R. E. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J. Biol. Chem. 270, 6254–6260 (1995).
- 18
Schroeder, R., London, E. & Brown, D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl Acad. Sci. USA 91, 12130–12134 (1994).
- 19
Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A. & Simons, K. Resistance of cell membranes to different detergents. Proc. Natl Acad. Sci. USA 100, 5795–5800 (2003).
- 20
Mayor, S. & Maxfield, F. R. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol. Biol. Cell 6, 929–944 (1995).
- 21
Levental, I. et al. Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochem. J. 424, 163–167 (2009).
- 22
Komura, N. et al. Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat. Chem. Biol. 12, 402–410 (2016). Combines DRM assays, SPT and GPMVs to confirm domain-mediated interactions between GPI-anchored proteins and gangliosides.
- 23
Lichtenberg, D., Goni, F. M. & Heerklotz, H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430–436 (2005).
- 24
Sezgin, E. & Schwille, P. Model membrane platforms to study protein–membrane interactions. Mol. Membr. Biol. 29, 144–154 (2012).
- 25
Ipsen, J. H., Karlstrom, G., Mouritsen, O. G., Wennerstrom, H. & Zuckermann, M. J. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta 905, 162–172 (1987).
- 26
Veatch, S. L. & Keller, S. L. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074–3083 (2003).
- 27
Kaiser, H. J. et al. Order of lipid phases in model and plasma membranes. Proc. Natl Acad. Sci. USA 106, 16645–16650 (2009).
- 28
McConnell, H. M., Tamm, L. K. & Weis, R. M. Periodic structures in lipid monolayer phase transitions. Proc. Natl Acad. Sci. USA 81, 3249–3253 (1984).
- 29
Tamm, L. K. & McConnell, H. M. Supported phospholipid-bilayers. Biophys. J. 47, 105–113 (1985).
- 30
Feigenson, G. W. & Buboltz, J. T. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J. 80, 2775–2788 (2001).
- 31
Korlach, J., Schwille, P., Webb, W. W. & Feigenson, G. W. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl Acad. Sci. USA 96, 8461–8466 (1999).
- 32
Bagatolli, L. A., Sanchez, S. A., Hazlett, T. & Gratton, E. Giant vesicles, Laurdan, and two-photon fluorescence microscopy: evidence of lipid lateral separation in bilayers. Methods Enzymol. 360, 481–500 (2003).
- 33
Kahya, N., Brown, D. A. & Schwille, P. Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 44, 7479–7489 (2005).
- 34
Stachowiak, J. C. et al. Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proc. Natl Acad. Sci. USA 105, 4697–4702 (2008).
- 35
Dupuy, A. D. & Engelman, D. M. Protein area occupancy at the center of the red blood cell membrane. Proc. Natl Acad. Sci. USA 105, 2848–2852 (2008).
- 36
Sezgin, E. et al. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim. Biophys. Acta 1818, 1777–1784 (2012).
- 37
Sezgin, E. et al. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 7, 1042–1051 (2012).
- 38
Baumgart, T. et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl Acad. Sci. USA 104, 3165–3170 (2007).
- 39
Fridriksson, E. K. et al. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 38, 8056–8063 (1999).
- 40
Scott, R. E., Perkins, R. G., Zschunke, M. A., Hoerl, B. J. & Maercklein, P. B. Plasma membrane vesiculation in 3T3 and SV3T3 cells. I. Morphological and biochemical characterization. J. Cell Sci. 35, 229–243 (1979).
- 41
Keller, H., Lorizate, M. & Schwille, P. PI(4,5)P2 degradation promotes the formation of cytoskeleton-free model membrane systems. Chemphyschem 10, 2805–2812 (2009).
- 42
Levental, K. R. & Levental, I. Giant plasma membrane vesicles: models for understanding membrane organization. Curr. Top. Membr. 75, 25–57 (2015).
- 43
Levental, I., Lingwood, D., Grzybek, M., Coskun, U. & Simons, K. Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc. Natl Acad. Sci. USA 107, 22050–22054 (2010). Quantitative investigation of the role of palmitoylation in protein partitioning to raft domains in GPMVs.
- 44
Gupta, N. & DeFranco, A. L. Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol. Biol. Cell 14, 432–444 (2003).
- 45
Sezgin, E. & Schwille, P. Fluorescence techniques to study lipid dynamics. Cold Spring Harb. Perspect. Biol. 3, a009803 (2011).
- 46
Eggeling, C. Super-resolution optical microscopy of lipid plasma membrane dynamics. Essays Biochem. 57, 69–80 (2015).
- 47
Owen, D. M., Williamson, D. J., Magenau, A. & Gaus, K. Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat. Commun. 3, 1256 (2012).
- 48
Sengupta, P. et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods 8, 969–975 (2011).
- 49
van Zanten, T. S. et al. Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. Proc. Natl Acad. Sci. USA 106, 18557–18562 (2009).
- 50
Saka, S. K. et al. Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat. Commun. 5, 4509 (2014).
- 51
Suzuki, K. G. Single-molecule imaging of signal transduction via GPI-anchored receptors. Methods Mol. Biol. 1376, 229–238 (2016).
- 52
Moertelmaier, M., Brameshuber, M., Linimeier, M., Schütz, G. J. & Stockinger, H. Thinning out clusters while conserving stoichiometry of labeling. Appl. Phys. Lett. 87, 263903 (2005).
- 53
Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005).
- 54
Ortega-Arroyo, J. & Kukura, P. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys. Chem. Chem. Phys. 14, 15625–15636 (2012).
- 55
Wu, H. M., Lin, Y. H., Yen, T. C. & Hsieh, C. L. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking. Sci. Rep. 6, 20542 (2016).
- 56
Spillane, K. M. et al. High-speed single-particle tracking of GM1 in model membranes reveals anomalous diffusion due to interleaflet coupling and molecular pinning. Nano Lett. 14, 5390–5397 (2014).
- 57
Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P. F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89, 4029–4042 (2005).
- 58
Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009). Reports differential diffusion behaviour of phospholipids and sphingolipids in the plasma membrane of live cells using super-resolution STED microscopy combined with FCS.
- 59
Honigmann, A. et al. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat. Commun. 5, 5412–5412 (2014).
- 60
Saha, S., Raghupathy, R. & Mayor, S. Homo-FRET imaging highlights the nanoscale organization of cell surface molecules. Methods Mol. Biol. 1251, 151–173 (2015).
- 61
Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).
- 62
Pathak, P. & London, E. The effect of membrane lipid composition on the formation of lipid ultrananodomains. Biophys. J. 109, 1630–1638 (2015).
- 63
Engel, S. et al. FLIM-FRET and FRAP reveal association of influenza virus haemagglutinin with membrane rafts. Biochem. J. 425, 567–573 (2010).
- 64
Heberle, F. A., Wu, J., Goh, S. L., Petruzielo, R. S. & Feigenson, G. W. Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys. J. 99, 3309–3318 (2010).
- 65
Barrera, N. P., Zhou, M. & Robinson, C. V. The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol. 23, 1–8 (2013).
- 66
Ogiso, H., Taniguchi, M. & Okazaki, T. Analysis of lipid-composition changes in plasma membrane microdomains. J. Lipid Res. 56, 1594–1605 (2015).
- 67
Levental, K. R. et al. Polyunsaturated lipids regulate membrane domain stability by tuning membrane order. Biophys. J. 110, 1800–1810 (2016).
- 68
Gerl, M. J. et al. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J. Cell Biol. 196, 213–221 (2012). Using lipidomics, this study shows that the influenza virus envelope is enriched in sphingolipids and cholesterol compared with the apical plasma membrane from which the virus buds, which reveals raft lipid selectivity during virus budding.
- 69
Lozano, M. M., Hovis, J. S., Moss, F. R. III & Boxer, S. G. Dynamic reorganization and correlation among lipid raft components. J. Am. Chem. Soc. 138, 9996–10001 (2016). Shows that cholesterol and sphingomyelin reorganize with ganglioside, demonstrating that there is an attractive interaction between these raft constituents.
- 70
Lozano, M. M. et al. Colocalization of the ganglioside GM1 and cholesterol detected by secondary ion mass spectrometry. J. Am. Chem. Soc. 135, 5620–5630 (2013).
- 71
Frisz, J. F. et al. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol. J. Biol. Chem. 288, 16855–16861 (2013).
- 72
de Wit, G., Danial, J. S., Kukura, P. & Wallace, M. I. Dynamic label-free imaging of lipid nanodomains. Proc. Natl Acad. Sci. USA 112, 12299–12303 (2015). Presents a label-free technique to study lipid domains in model membranes.
- 73
Ando, J. et al. Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy. Proc. Natl Acad. Sci. USA 112, 4558–4563 (2015).
- 74
Pencer, J., Mills, T. T., Kucerka, N., Nieh, M. P. & Katsaras, J. Small-angle neutron scattering to detect rafts and lipid domains. Methods Mol. Biol. 398, 231–244 (2007).
- 75
Heberle, F. A. et al. Hybrid and nonhybrid lipids exert common effects on membrane raft size and morphology. J. Am. Chem. Soc. 135, 14932–14935 (2013).
- 76
Prior, I. A., Muncke, C., Parton, R. G. & Hancock, J. F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 (2003).
- 77
Baumgart, T., Hunt, G., Farkas, E. R., Webb, W. W. & Feigenson, G. W. Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochim. Biophys. Acta 1768, 2182–2194 (2007).
- 78
Klymchenko, A. S. & Kreder, R. Fluorescent probes for lipid rafts: from model membranes to living cells. Chem. Biol. 21, 97–113 (2014).
- 79
Juhasz, J., Davis, J. H. & Sharom, F. J. Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures. Biochem. J. 430, 415–423 (2010).
- 80
Pourmousa, M. et al. Dehydroergosterol as an analogue for cholesterol: why it mimics cholesterol so well — or does it? J. Phys. Chem. B 118, 7345–7357 (2014).
- 81
Robalo, J. R., Martins do Canto, A. M. T., Palace Carvalho, A. J., Prates Ramalho, J. P. & Loura, L. M. S. Behavior of fluorescent cholesterol analogues dehydroergosterol and cholestatrienol in lipid bilayers: a molecular dynamics study. J. Phys. Chem. B 117, 5806–5819 (2013).
- 82
Sezgin, E. et al. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. J. Lipid Res. 57, 299–309 (2016).
- 83
Crane, J. M. & Tamm, L. K. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Biophys. J. 86, 2965–2979 (2004).
- 84
Momin, N. et al. Designing lipids for selective partitioning into liquid ordered membrane domains. Soft Matter 11, 3241–3250 (2015).
- 85
Lopes, S. C., Goormaghtigh, E., Cabral, B. J. & Castanho, M. A. Filipin orientation revealed by linear dichroism. Implication for a model of action. J. Am. Chem. Soc. 126, 5396–5402 (2004).
- 86
Palmer, M. The family of thiol-activated, cholesterol-binding cytolysins. Toxicon 39, 1681–1689 (2001).
- 87
Skocaj, M. et al. Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein. PLoS ONE 9, e92783 (2014).
- 88
Yamaji, A. et al. Lysenin, a novel sphingomyelin-specific binding protein. J. Biol. Chem. 273, 5300–5306 (1998).
- 89
Bhat, H. B. et al. Binding of a pleurotolysin ortholog from Pleurotus eryngii to sphingomyelin and cholesterol-rich membrane domains. J. Lipid Res. 54, 2933–2943 (2013).
- 90
Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942 (1998).
- 91
Dietrich, C. et al. Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001).
- 92
Sezgin, E. et al. Adaptive lipid packing and bioactivity in membrane domains. PLoS ONE 10, e0123930 (2015).
- 93
Gray, E. M., Diaz-Vazquez, G. & Veatch, S. L. Growth conditions and cell cycle phase modulate phase transition temperatures in RBL-2H3 derived plasma membrane vesicles. PLoS ONE 10, e0137741 (2015).
- 94
Sezgin, E., Sadowski, T. & Simons, K. Measuring lipid packing of model and cellular membranes with environment sensitive probes. Langmuir 30, 8160–8166 (2014).
- 95
Sezgin, E., Waithe, D., Bernardino de la Serna, J. & Eggeling, C. Spectral imaging to measure heterogeneity in membrane lipid packing. Chemphyschem 16, 1387–1394 (2015).
- 96
Parasassi, T., Krasnowska, E. K., Bagatolli, L. & Gratton, E. Laurdan and Prodan as polarity-sensitive fluorescent membrane probes. J. Fluoresc. 8, 365–373 (1998).
- 97
Parasassi, T., De Stasio, G., Ravagnan, G., Rusch, R. M. & Gratton, E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys. J. 60, 179–189 (1991).
- 98
Sanchez, S. A., Tricerri, M. A. & Gratton, E. Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc. Natl Acad. Sci. USA 109, 7314–7319 (2012). Together with reference 27 and 92, suggests that the cell membrane contains domains with a range of properties.
- 99
Golfetto, O., Hinde, E. & Gratton, E. Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys. J. 104, 1238–1247 (2013).
- 100
Kreder, R. et al. Solvatochromic Nile Red probes with FRET quencher reveal lipid order heterogeneity in living and apoptotic cells. ACS Chem. Biol. 10, 1435–1442 (2015).
- 101
Mahammad, S. & Parmryd, I. Cholesterol depletion using methyl-beta-cyclodextrin. Methods Mol. Biol. 1232, 91–102 (2015).
- 102
Pottosin, I. I., Valencia-Cruz, G., Bonales-Alatorre, E., Shabala, S. N. & Dobrovinskaya, O. R. Methyl-beta-cyclodextrin reversibly alters the gating of lipid rafts-associated Kv1.3 channels in Jurkat T lymphocytes. Pflugers Arch. 454, 235–244 (2007).
- 103
Mahammad, S., Dinic, J., Adler, J. & Parmryd, I. Limited cholesterol depletion causes aggregation of plasma membrane lipid rafts inducing T cell activation. Biochim. Biophys. Acta 1801, 625–634 (2010).
- 104
Sanchez, S. A., Gunther, G., Tricerri, M. A. & Gratton, E. Methyl-beta-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles. J. Membr. Biol. 241, 1–10 (2011).
- 105
Hillyard, D. Z. et al. Statins inhibit NK cell cytotoxicity by membrane raft depletion rather than inhibition of isoprenylation. Atherosclerosis 191, 319–325 (2007).
- 106
Amin, D. et al. RPR 107393, a potent squalene synthase inhibitor and orally effective cholesterol-lowering agent: comparison with inhibitors of HMG-CoA reductase. J. Pharmacol. Exp. Ther. 281, 746–752 (1997).
- 107
Ahn, K. W. & Sampson, N. S. Cholesterol oxidase senses subtle changes in lipid bilayer structure. Biochemistry 43, 827–836 (2004).
- 108
Merrill, A. H. Jr, van Echten, G., Wang, E. & Sandhoff, K. Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ. J. Biol. Chem. 268, 27299–27306 (1993).
- 109
Zhao, Y. et al. ABCB4 exports phosphatidylcholine in a sphingomyelin-dependent manner. J. Lipid Res. 56, 644–652 (2015).
- 110
Miller, H. et al. Lipid raft-dependent plasma membrane repair interferes with the activation of B lymphocytes. J. Cell Biol. 211, 1193–1205 (2015).
- 111
Eggeling, C. & Honigmann, A. Closing the gap: the approach of optical and computational microscopy to uncover biomembrane organization. Biochim. Biophys. Acta 1858, 2558–2568 (2016).
- 112
Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H. & Shaw, D. E. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012).
- 113
Lane, T. J., Shukla, D., Beauchamp, K. A. & Pande, V. S. To milliseconds and beyond: challenges in the simulation of protein folding. Curr. Opin. Struct. Biol. 23, 58–65 (2013).
- 114
Saunders, M. G. & Voth, G. A. Coarse-graining methods for computational biology. Annu. Rev. Biophys. 42, 73–93 (2013).
- 115
Vattulainen, I. & Rog, T. Lipid simulations: a perspective on lipids in action. Cold Spring Harb. Perspect. Biol. 3, a004655 (2011).
- 116
Stansfeld, P. J. & Sansom, M. S. Molecular simulation approaches to membrane proteins. Structure 19, 1562–1572 (2011).
- 117
Ingolfsson, H. I. et al. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559 (2014).
- 118
Niemela, P. S., Ollila, S., Hyvonen, M. T., Karttunen, M. & Vattulainen, I. Assessing the nature of lipid raft membranes. PLoS Comput. Biol. 3, e34 (2007).
- 119
Barua, D. & Goldstein, B. A mechanistic model of early FcepsilonRI signaling: lipid rafts and the question of protection from dephosphorylation. PLoS ONE 7, e51669 (2012).
- 120
Levental, I., Grzybek, M. & Simons, K. Raft domains of variable properties and compositions in plasma membrane vesicles. Proc. Natl Acad. Sci. USA 108, 11411–11416 (2011).
- 121
Schutz, G. J., Kada, G., Pastushenko, V. P. & Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901 (2000).
- 122
Wang, T. Y. & Silvius, J. R. Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophys. J. 84, 367–378 (2003).
- 123
Sodt, A. J., Pastor, R. W. & Lyman, E. Hexagonal substructure and hydrogen bonding in liquid-ordered phases containing palmitoyl sphingomyelin. Biophys. J. 109, 948–955 (2015).
- 124
Ramstedt, B. & Slotte, J. P. Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length. Biophys. J. 76, 908–915 (1999).
- 125
Sodt, A. J., Sandar, M. L., Gawrisch, K., Pastor, R. W. & Lyman, E. The molecular structure of the liquid-ordered phase of lipid bilayers. J. Am. Chem. Soc. 136, 725–732 (2014).
- 126
Levental, I., Grzybek, M. & Simons, K. Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49, 6305–6316 (2010).
- 127
Ozhan, G. et al. Lypd6 enhances Wnt/beta-catenin signaling by promoting Lrp6 phosphorylation in raft plasma membrane domains. Dev. Cell 26, 331–345 (2013).
- 128
Brameshuber, M. et al. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane. J. Biol. Chem. 285, 41765–41771 (2010).
- 129
Goswami, D. et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135, 1085–1097 (2008).
- 130
Sevcsik, E. et al. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat. Commun. 6, 6969 (2015).
- 131
Shi, D. et al. Smoothened oligomerization/higher order clustering in lipid rafts is essential for high Hedgehog activity transduction. J. Biol. Chem. 288, 12605–12614 (2013).
- 132
Shah, A. et al. RaftProt: mammalian lipid raft proteome database. Nucleic Acids Res. 43, D335–D338 (2015).
- 133
Lorent, J. H. & Levental, I. Structural determinants of protein partitioning into ordered membrane domains and lipid rafts. Chem. Phys. Lipids 192, 23–32 (2015).
- 134
Diaz-Rohrer, B. B., Levental, K. R., Simons, K. & Levental, I. Membrane raft association is a determinant of plasma membrane localization. Proc. Natl Acad. Sci. USA 111, 8500–8505 (2014). Relates the membrane raft association of several proteins to their localization at the cell surface by showing that both properties are determined by the length of the TMD of a protein.
- 135
Veatch, S. L. et al. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293 (2008). Shows critical fluctuation behaviour in GPMVs, which suggests that the cell membrane is near a miscibility critical point that could be modulated by temperature.
- 136
Lingwood, D., Ries, J., Schwille, P. & Simons, K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl Acad. Sci. USA 105, 10005–10010 (2008).
- 137
Zhou, Y. et al. Bile acids modulate signaling by functional perturbation of plasma membrane domains. J. Biol. Chem. 288, 35660–35670 (2013).
- 138
Coskun, U., Grzybek, M., Drechsel, D. & Simons, K. Regulation of human EGF receptor by lipids. Proc. Natl Acad. Sci. USA 108, 9044–9048 (2010).
- 139
Levental, I. & Veatch, S. L. The continuing mystery of lipid rafts. J. Mol. Biol. 428, 4749–4764 (2016).
- 140
Tisza, M. J. et al. Motility and stem cell properties induced by the epithelial–mesenchymal transition require destabilization of lipid rafts. Oncotarget 7, 51553–51568 (2016).
- 141
Schwarzer, R. et al. The cholesterol-binding motif of the HIV-1 glycoprotein gp41 regulates lateral sorting and oligomerization. Cell. Microbiol. 16, 1565–1581 (2014).
- 142
Contreras, F. X. et al. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 481, 525–529 (2012). Shows direct specific interactions between the single-pass TMD of the coat protein I (COPI)-machinery protein p24 and a single sphingomyelin species.
- 143
Tulodziecka, K. et al. Remodeling of the postsynaptic plasma membrane during neural development. Mol. Biol. Cell 27, 3480–3489 (2016).
- 144
Lach, A. et al. Palmitoylation of MPP1 (membrane-palmitoylated protein 1)/p55 is crucial for lateral membrane organization in erythroid cells. J. Biol. Chem. 287, 18974–18984 (2012).
- 145
Podkalicka, J., Biernatowska, A., Majkowski, M., Grzybek, M. & Sikorski, A. F. MPP1 as a factor regulating phase separation in giant plasma membrane-derived vesicles. Biophys. J. 108, 2201–2211 (2015).
- 146
Heberle, F. A. et al. Bilayer thickness mismatch controls domain size in model membranes. J. Am. Chem. Soc. 135, 6853–6859 (2013).
- 147
Jensen, M. O. & Mouritsen, O. G. Lipids do influence protein function — the hydrophobic matching hypothesis revisited. Biochim. Biophys. Acta 1666, 205–226 (2004).
- 148
Kaiser, H.-J. et al. Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc. Natl Acad. Sci. USA 108, 16628–16633 (2011).
- 149
Koster, D. V. & Mayor, S. Cortical actin and the plasma membrane: inextricably intertwined. Curr. Opin. Cell Biol. 38, 81–89 (2016).
- 150
Fritzsche, M., Erlenkamper, C., Moeendarbary, E., Charras, G. & Kruse, K. Actin kinetics shapes cortical network structure and mechanics. Sci. Adv. 2, e1501337 (2016).
- 151
Fujiwara, T. K. et al. Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane. Mol. Biol. Cell 27, 1101–1119 (2016).
- 152
Saha, S. et al. Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin. Mol. Biol. Cell 26, 4033–4045 (2015).
- 153
Honigmann, A. et al. A lipid bound actin meshwork organizes liquid phase separation in model membranes. eLife 3, e01671 (2014).
- 154
Mueller, V. et al. STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys. J. 101, 1651–1660 (2011).
- 155
Ehrig, J., Petrov, E. P. & Schwille, P. Near-critical fluctuations and cytoskeleton-assisted phase separation lead to subdiffusion in cell membranes. Biophys. J. 100, 80–89 (2011).
- 156
Machta, B. B., Papanikolaou, S., Sethna, J. P. & Veatch, S. L. Minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality. Biophys. J. 100, 1668–1677 (2011).
- 157
Liu, A. P. & Fletcher, D. A. Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys. J. 91, 4064–4070 (2006).
- 158
Gowrishankar, K. et al. Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149, 1353–1367 (2012). Provides a compelling theoretical framework to understand how actomyosin-driven activity can create non-equilibrium clusters of membrane proteins.
- 159
Fritzsche, M. et al. Self-organizing actin patterns shape membrane architecture but not cell mechanics. Nat. Commun. 8, 14347 (2017).
- 160
Koster, D. V. et al. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer. Proc. Natl Acad. Sci. USA 113, E1645–E1654 (2016).
- 161
Rao, M. & Mayor, S. Active organization of membrane constituents in living cells. Curr. Opin. Cell Biol. 29, 126–132 (2014).
- 162
Lingwood, D. et al. Cholesterol modulates glycolipid conformation and receptor activity. Nat. Chem. Biol. 7, 260–262 (2011).
- 163
Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175 (2014).
- 164
Filipp, D., Leung, B. L., Zhang, J., Veillette, A. & Julius, M. Enrichment of lck in lipid rafts regulates colocalized fyn activation and the initiation of proximal signals through TCR alpha beta. J. Immunol. 172, 4266–4274 (2004).
- 165
Zhang, M. et al. CD45 signals outside of lipid rafts to promote ERK activation, synaptic raft clustering, and IL-2 production. J. Immunol. 174, 1479–1490 (2005).
- 166
Field, K. A., Holowka, D. & Baird, B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl Acad. Sci. USA 92, 9201–9205 (1995).
- 167
Varshney, P., Yadav, V. & Saini, N. Lipid rafts in immune signaling: current progress and future perspective. Immunology 149, 13–24 (2016).
- 168
Dinic, J., Riehl, A., Adler, J. & Parmryd, I. The T cell receptor resides in ordered plasma membrane nanodomains that aggregate upon patching of the receptor. Sci. Rep. 5, 10082 (2015).
- 169
Beck-Garcia, K. et al. Nanoclusters of the resting T cell antigen receptor (TCR) localize to non-raft domains. Biochim. Biophys. Acta 1853, 802–809 (2015).
- 170
Sproul, T. W., Malapati, S., Kim, J. & Pierce, S. K. Cutting edge: B cell antigen receptor signaling occurs outside lipid rafts in immature B cells. J. Immunol. 165, 6020–6023 (2000).
- 171
Stone, M. B., Shelby, S. A., Nunez, M. F., Wisser, K. & Veatch, S. L. Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. eLife 6, e19891 (2017).
- 172
Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J. & Mathison, J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).
- 173
Beissert, S. et al. Impaired cutaneous immune responses in Thy-1-deficient mice. J. Immunol. 161, 5296–5302 (1998).
- 174
Lorizate, M. et al. Comparative lipidomics analysis of HIV-1 particles and their producer cell membrane in different cell lines. Cell. Microbiol. 15, 292–304 (2013).
- 175
Farnoud, A. M., Toledo, A. M., Konopka, J. B., Del Poeta, M. & London, E. Raft-like membrane domains in pathogenic microorganisms. Curr. Top. Membr. 75, 233–268 (2015).
- 176
Iwabuchi, K. Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses. Front. Biosci. (Landmark Ed.) 20, 325–334 (2015).
- 177
Teissier, E. & Pecheur, E. I. Lipids as modulators of membrane fusion mediated by viral fusion proteins. Eur. Biophys. J. 36, 887–899 (2007).
- 178
Dick, R. A., Goh, S. L., Feigenson, G. W. & Vogt, V. M. HIV-1 Gag protein can sense the cholesterol and acyl chain environment in model membranes. Proc. Natl Acad. Sci. USA 109, 18761–18766 (2012).
- 179
Staubach, S., Razawi, H. & Hanisch, F. G. Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7. Proteomics 9, 2820–2835 (2009).
- 180
Raghu, H. et al. Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells. BMC Cancer 10, 647 (2010).
- 181
Larsen, J. B. et al. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nat. Chem. Biol. 11, 192–194 (2015).
- 182
Cuesta-Marban, A. et al. Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast. J. Biol. Chem. 288, 8405–8418 (2013).
- 183
Gajate, C. & Mollinedo, F. Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109, 711–719 (2007).
- 184
Shashkin, P., Dragulev, B. & Ley, K. Macrophage differentiation to foam cells. Curr. Pharm. Des. 11, 3061–3072 (2005).
- 185
Rios, F. J. et al. Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts. PLoS ONE 8, e76893 (2013).
- 186
Maguy, A., Hebert, T. E. & Nattel, S. Involvement of lipid rafts and caveolae in cardiac ion channel function. Cardiovasc. Res. 69, 798–807 (2006).
- 187
van Zanten, T. S. & Mayor, S. Current approaches to studying membrane organization. F1000Res. 4, 1380 (2015).
- 188
Toulmay, A. & Prinz, W. A. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J. Cell Biol. 202, 35–44 (2013). The first demonstration of microscopic raft-like domain formation in the vacuoles of live yeast cells.
- 189
Kahya, N., Scherfeld, D., Bacia, K. & Schwille, P. Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy. J. Struct. Biol. 147, 77–89 (2004).
- 190
Shogomori, H. et al. Palmitoylation and intracellular domain interactions both contribute to raft targeting of linker for activation of T cells. J. Biol. Chem. 280, 18931–18942 (2005).
Acknowledgements
C.E. and E.S. are supported by the UK Wolfson Foundation, the UK Medical Research Council (MRC; grant number MC_UU_12010/unit programmes G0902418 and MC_UU_12025), MRC/BBSRC/ESPRC (grant number MR/K01577X/1) and the UK Wellcome Trust (grant Ref. 104924/14/Z/14). E.S. is also supported by an EMBO Long Term Fellowship (ALTF 636–2013) and a Marie Curie Intra-European Fellowship (MEMBRANE DYNAMICS). S.M. is supported by a JC Bose fellowship from the Department of Science and Technology, Ministry of Science and Technology, Government of India, New Delhi, and a Margadarshi fellowship (DBT-Wellcome Trust Alliance grant Ref. IA/M/15/1/502018). I.L. is supported by the Cancer Prevention and Research Institute of Texas (R1215) and the US National Institutes of Health (grant 1R01GM114282).
Author information
Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information S1 (box)
Rafts in the tree of life (PDF 162 kb)
Supplementary information S2 (box)
Diffraction limit and super-resolution microscopy (PDF 421 kb)
Glossary
- Liquid–liquid phase separation
-
The coexistence of two phases with distinct compositions and biophysical properties. The components of both phases can diffuse and rearrange rapidly.
- Sphingolipid
-
A class of lipids that comprise a long-chain sphingosine base coupled to a fatty acid chain and often a large polar head group.
- Glycosylphosphatidylinositol (GPI)-anchored proteins
-
Cell surface proteins that are post-translationally modified to carry a GPI moiety as an anchor to the membrane.
- Cholera toxin
-
Proteinaceous toxin secreted by Vibrio cholerae that binds to glycolipids on the cell surface and is responsible for the symptoms of cholera infection.
- Single-particle tracking
-
(SPT). A single-molecule technique in which the motion of individual molecules is tracked with high temporal resolution over relatively long timescales (seconds); these tracks can be used to determine the diffusion properties of a molecule.
- Confined diffusion
-
A mode of diffusion in which the motion of the molecule is transiently arrested by molecular obstacles such as immobile clusters. It is also known as trapped diffusion.
- Hop diffusion
-
A mode of diffusion in which molecules diffuse freely in the membrane except when they encounter a barrier (such as a structure (or structures) associated with actin filaments), the crossing of which hinders diffusion.
- Interferometric scattering microscopy
-
(iSCAT). A microscopy technique to enhance contrast by using the interference from coherent light scattering in the focal plane and of the microscope cover glass.
- Fluorescence correlation spectroscopy
-
(FCS). A single-molecule-based technique in which fluorescence intensity fluctuations from a microscopic observation spot are used to obtain information about molecular diffusion.
- Förster resonance energy transfer
-
(FRET). A fluorescence spectroscopy and imaging technique that is based on the distance-dependent transfer of the excited state energy of a fluorescent donor molecule to a fluorescent acceptor molecule; efficient and widely used to measure intermolecular distances in the range of 1–10 nm.
- Amphiphilic properties
-
Displaying both hydrophilic and hydrophobic character, such as for lipids with hydrophobic acyl chains and hydrophilic head groups.
- Raman spectroscopy
-
A spectroscopy technique whereby vibrational energy of the molecules is used as their 'fingerprint'.
- Ganglioside lipid
-
A class of glycosphingolipids with sialic acid moieties on the head group.
- Ceramides
-
A class of lipids composed of sphingosine and a fatty acid.
- Coarse-grained simulations
-
Simulations that rely on simplified representations of the simulated components.
- Hydrogen bonding
-
Non-covalent chemical bonds between a hydrogen covalently bound to an electronegative atom (as in the -NH group of sphingolipids) and another electronegative atom (such as the oxygen in the -OH group of cholesterol).
- Epithelial–mesenchymal transition
-
A developmental transcriptional programme that imparts mesenchymal characteristics (for example, motility) to epithelial cells.
- Viral envelope
-
The lipid membrane that covers the viral capsid and is derived from the plasma membrane of the host cell.
- Caveolae
-
Specialized invaginations in the plasma membrane that are enriched in caveolin, sphingolipids and cholesterol.
Rights and permissions
About this article
Cite this article
Sezgin, E., Levental, I., Mayor, S. et al. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18, 361–374 (2017). https://doi.org/10.1038/nrm.2017.16
Published:
Issue Date:
Further reading
-
AIBP, Angiogenesis, Hematopoiesis, and Atherogenesis
Current Atherosclerosis Reports (2021)
-
Modified Glutamatergic Postsynapse in Neurodegenerative Disorders
Neuroscience (2021)
-
Signaling Microdomains in the Spotlight: Visualizing Compartmentalized Signaling Using Genetically Encoded Fluorescent Biosensors
Annual Review of Pharmacology and Toxicology (2021)
-
Membrane nanodomains homeostasis during propofol anesthesia as function of dosage and temperature
Biochimica et Biophysica Acta (BBA) - Biomembranes (2021)
-
Effect of tertiary amine local anesthetics on G protein-coupled receptor lateral diffusion and actin cytoskeletal reorganization
Biochimica et Biophysica Acta (BBA) - Biomembranes (2021)