The mystery of membrane organization: composition, regulation and roles of lipid rafts

Key Points

  • Cellular membranes are laterally heterogeneous and consist of transient and dynamic domains with varying properties, which prominently include ordered lipid-driven domains that are referred to as lipid (or membrane) rafts.

  • Membrane domains can be induced and regulated by a variety of interactions, which include specific lipid–lipid and lipid–protein interactions, bulk membrane properties, and interactions between membrane components and the underlying cytoskeleton.

  • Advanced microscopy and biochemistry techniques facilitate the study of membrane domains; however, these domains still elude direct in vivo visualization. The multiplicity of possible organizational states and their context-dependent nature most likely account for experimental inconsistencies.

  • Membrane rafts potentially have crucial physiological roles across cell types that range from immune cells to cancer cells.

  • Membrane domains are conserved throughout the domains of life, which supports their functional importance in biological systems.


Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large number of studies have focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed (or ordered) membrane domains that selectively recruit certain lipids and proteins. Recent studies have yielded new insights into this mechanism and its relevance in vivo, owing primarily to the development of improved biochemical and biophysical technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: General overview of lateral heterogeneity in the plasma membrane.
Figure 2: Tools to study membrane domain organization, composition and function.
Figure 3: Area coverage of membrane domains and domain size.
Figure 4: Regulation of membrane domains.
Figure 5: Cellular functions of lipid rafts.


  1. 1

    Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).

    CAS  PubMed  Google Scholar 

  2. 2

    Yu, J., Fischman, D. A. & Steck, T. L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J. Supramol. Struct. 1, 233–248 (1973).

    CAS  PubMed  Google Scholar 

  3. 3

    Bagatolli, L. & Mouritsen, O. Is the fluid mosaic (and the accompanying raft hypothesis) a suitable model to describe fundamental features of biological membranes? What may be missing? Front. Plant Sci. 4, 457 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. 4

    Ahmed, S. N., Brown, D. A. & London, E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36, 10944–10953 (1997).

    CAS  PubMed  Google Scholar 

  5. 5

    Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992).

    CAS  PubMed  Google Scholar 

  6. 6

    Vanmeer, G., Stelzer, E. H. K., Wijnaendts- van-Resandt, R. W. & Simons, K. Sorting of sphingolipids in epithelial (Madin–Darby canine kidney) cells. J. Cell Biol. 105, 1623–1635 (1987).

    CAS  Google Scholar 

  7. 7

    Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998). First evidence for nanoscopic domains of GPI-anchored proteins in living cells.

    CAS  PubMed  Google Scholar 

  8. 8

    Pralle, A., Keller, P., Florin, E. L., Simons, K. & Horber, J. K. Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1008 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Friedrichson, T. & Kurzchalia, T. V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805 (1998).

    CAS  PubMed  Google Scholar 

  10. 10

    Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997). First work to highlight the lipid raft hypothesis and its potential functional relevance.

    CAS  Google Scholar 

  11. 11

    Simons, K. & Vaz, W. L. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004).

    CAS  PubMed  Google Scholar 

  12. 12

    Pike, L. J. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid Res. 47, 1597–1598 (2006). An editorial article that summarizes the 2006 Keystone symposium on lipid rafts.

    CAS  PubMed  Google Scholar 

  13. 13

    Kiessling, V., Wan, C. & Tamm, L. K. Domain coupling in asymmetric lipid bilayers. Biochim. Biophys. Acta 1788, 64–71 (2009).

    CAS  PubMed  Google Scholar 

  14. 14

    Raghupathy, R. et al. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161, 581–594 (2015). Explains the transbilayer coupling between dynamic actin organization on the intracellular side of the plasma membrane and lipid domains in the extracellular leaflet via raft-based interactions of anionic lipids.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Klotzsch, E. & Schuetz, G. J. A critical survey of methods to detect plasma membrane rafts. Phil. Trans. R. Soc. B 368, 20120033 (2013).

    PubMed  Google Scholar 

  17. 17

    Hanada, K., Nishijima, M., Akamatsu, Y. & Pagano, R. E. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J. Biol. Chem. 270, 6254–6260 (1995).

    CAS  PubMed  Google Scholar 

  18. 18

    Schroeder, R., London, E. & Brown, D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl Acad. Sci. USA 91, 12130–12134 (1994).

    CAS  PubMed  Google Scholar 

  19. 19

    Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A. & Simons, K. Resistance of cell membranes to different detergents. Proc. Natl Acad. Sci. USA 100, 5795–5800 (2003).

    CAS  PubMed  Google Scholar 

  20. 20

    Mayor, S. & Maxfield, F. R. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol. Biol. Cell 6, 929–944 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Levental, I. et al. Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochem. J. 424, 163–167 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Komura, N. et al. Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat. Chem. Biol. 12, 402–410 (2016). Combines DRM assays, SPT and GPMVs to confirm domain-mediated interactions between GPI-anchored proteins and gangliosides.

    CAS  PubMed  Google Scholar 

  23. 23

    Lichtenberg, D., Goni, F. M. & Heerklotz, H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430–436 (2005).

    CAS  PubMed  Google Scholar 

  24. 24

    Sezgin, E. & Schwille, P. Model membrane platforms to study protein–membrane interactions. Mol. Membr. Biol. 29, 144–154 (2012).

    CAS  PubMed  Google Scholar 

  25. 25

    Ipsen, J. H., Karlstrom, G., Mouritsen, O. G., Wennerstrom, H. & Zuckermann, M. J. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta 905, 162–172 (1987).

    CAS  PubMed  Google Scholar 

  26. 26

    Veatch, S. L. & Keller, S. L. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074–3083 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Kaiser, H. J. et al. Order of lipid phases in model and plasma membranes. Proc. Natl Acad. Sci. USA 106, 16645–16650 (2009).

    CAS  PubMed  Google Scholar 

  28. 28

    McConnell, H. M., Tamm, L. K. & Weis, R. M. Periodic structures in lipid monolayer phase transitions. Proc. Natl Acad. Sci. USA 81, 3249–3253 (1984).

    CAS  PubMed  Google Scholar 

  29. 29

    Tamm, L. K. & McConnell, H. M. Supported phospholipid-bilayers. Biophys. J. 47, 105–113 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Feigenson, G. W. & Buboltz, J. T. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J. 80, 2775–2788 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Korlach, J., Schwille, P., Webb, W. W. & Feigenson, G. W. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl Acad. Sci. USA 96, 8461–8466 (1999).

    CAS  PubMed  Google Scholar 

  32. 32

    Bagatolli, L. A., Sanchez, S. A., Hazlett, T. & Gratton, E. Giant vesicles, Laurdan, and two-photon fluorescence microscopy: evidence of lipid lateral separation in bilayers. Methods Enzymol. 360, 481–500 (2003).

    CAS  PubMed  Google Scholar 

  33. 33

    Kahya, N., Brown, D. A. & Schwille, P. Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 44, 7479–7489 (2005).

    CAS  PubMed  Google Scholar 

  34. 34

    Stachowiak, J. C. et al. Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proc. Natl Acad. Sci. USA 105, 4697–4702 (2008).

    CAS  PubMed  Google Scholar 

  35. 35

    Dupuy, A. D. & Engelman, D. M. Protein area occupancy at the center of the red blood cell membrane. Proc. Natl Acad. Sci. USA 105, 2848–2852 (2008).

    CAS  PubMed  Google Scholar 

  36. 36

    Sezgin, E. et al. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim. Biophys. Acta 1818, 1777–1784 (2012).

    CAS  PubMed  Google Scholar 

  37. 37

    Sezgin, E. et al. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 7, 1042–1051 (2012).

    CAS  PubMed  Google Scholar 

  38. 38

    Baumgart, T. et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl Acad. Sci. USA 104, 3165–3170 (2007).

    CAS  PubMed  Google Scholar 

  39. 39

    Fridriksson, E. K. et al. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 38, 8056–8063 (1999).

    CAS  PubMed  Google Scholar 

  40. 40

    Scott, R. E., Perkins, R. G., Zschunke, M. A., Hoerl, B. J. & Maercklein, P. B. Plasma membrane vesiculation in 3T3 and SV3T3 cells. I. Morphological and biochemical characterization. J. Cell Sci. 35, 229–243 (1979).

    CAS  PubMed  Google Scholar 

  41. 41

    Keller, H., Lorizate, M. & Schwille, P. PI(4,5)P2 degradation promotes the formation of cytoskeleton-free model membrane systems. Chemphyschem 10, 2805–2812 (2009).

    CAS  PubMed  Google Scholar 

  42. 42

    Levental, K. R. & Levental, I. Giant plasma membrane vesicles: models for understanding membrane organization. Curr. Top. Membr. 75, 25–57 (2015).

    PubMed  Google Scholar 

  43. 43

    Levental, I., Lingwood, D., Grzybek, M., Coskun, U. & Simons, K. Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc. Natl Acad. Sci. USA 107, 22050–22054 (2010). Quantitative investigation of the role of palmitoylation in protein partitioning to raft domains in GPMVs.

    CAS  PubMed  Google Scholar 

  44. 44

    Gupta, N. & DeFranco, A. L. Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol. Biol. Cell 14, 432–444 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Sezgin, E. & Schwille, P. Fluorescence techniques to study lipid dynamics. Cold Spring Harb. Perspect. Biol. 3, a009803 (2011).

    PubMed  PubMed Central  Google Scholar 

  46. 46

    Eggeling, C. Super-resolution optical microscopy of lipid plasma membrane dynamics. Essays Biochem. 57, 69–80 (2015).

    PubMed  Google Scholar 

  47. 47

    Owen, D. M., Williamson, D. J., Magenau, A. & Gaus, K. Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat. Commun. 3, 1256 (2012).

    PubMed  Google Scholar 

  48. 48

    Sengupta, P. et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods 8, 969–975 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    van Zanten, T. S. et al. Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. Proc. Natl Acad. Sci. USA 106, 18557–18562 (2009).

    CAS  PubMed  Google Scholar 

  50. 50

    Saka, S. K. et al. Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat. Commun. 5, 4509 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Suzuki, K. G. Single-molecule imaging of signal transduction via GPI-anchored receptors. Methods Mol. Biol. 1376, 229–238 (2016).

    CAS  PubMed  Google Scholar 

  52. 52

    Moertelmaier, M., Brameshuber, M., Linimeier, M., Schütz, G. J. & Stockinger, H. Thinning out clusters while conserving stoichiometry of labeling. Appl. Phys. Lett. 87, 263903 (2005).

    Google Scholar 

  53. 53

    Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005).

    CAS  PubMed  Google Scholar 

  54. 54

    Ortega-Arroyo, J. & Kukura, P. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys. Chem. Chem. Phys. 14, 15625–15636 (2012).

    CAS  PubMed  Google Scholar 

  55. 55

    Wu, H. M., Lin, Y. H., Yen, T. C. & Hsieh, C. L. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking. Sci. Rep. 6, 20542 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Spillane, K. M. et al. High-speed single-particle tracking of GM1 in model membranes reveals anomalous diffusion due to interleaflet coupling and molecular pinning. Nano Lett. 14, 5390–5397 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P. F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89, 4029–4042 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009). Reports differential diffusion behaviour of phospholipids and sphingolipids in the plasma membrane of live cells using super-resolution STED microscopy combined with FCS.

    CAS  PubMed  Google Scholar 

  59. 59

    Honigmann, A. et al. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat. Commun. 5, 5412–5412 (2014).

    CAS  PubMed  Google Scholar 

  60. 60

    Saha, S., Raghupathy, R. & Mayor, S. Homo-FRET imaging highlights the nanoscale organization of cell surface molecules. Methods Mol. Biol. 1251, 151–173 (2015).

    CAS  PubMed  Google Scholar 

  61. 61

    Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).

    CAS  PubMed  Google Scholar 

  62. 62

    Pathak, P. & London, E. The effect of membrane lipid composition on the formation of lipid ultrananodomains. Biophys. J. 109, 1630–1638 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Engel, S. et al. FLIM-FRET and FRAP reveal association of influenza virus haemagglutinin with membrane rafts. Biochem. J. 425, 567–573 (2010).

    CAS  PubMed  Google Scholar 

  64. 64

    Heberle, F. A., Wu, J., Goh, S. L., Petruzielo, R. S. & Feigenson, G. W. Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys. J. 99, 3309–3318 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Barrera, N. P., Zhou, M. & Robinson, C. V. The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol. 23, 1–8 (2013).

    CAS  PubMed  Google Scholar 

  66. 66

    Ogiso, H., Taniguchi, M. & Okazaki, T. Analysis of lipid-composition changes in plasma membrane microdomains. J. Lipid Res. 56, 1594–1605 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Levental, K. R. et al. Polyunsaturated lipids regulate membrane domain stability by tuning membrane order. Biophys. J. 110, 1800–1810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Gerl, M. J. et al. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J. Cell Biol. 196, 213–221 (2012). Using lipidomics, this study shows that the influenza virus envelope is enriched in sphingolipids and cholesterol compared with the apical plasma membrane from which the virus buds, which reveals raft lipid selectivity during virus budding.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Lozano, M. M., Hovis, J. S., Moss, F. R. III & Boxer, S. G. Dynamic reorganization and correlation among lipid raft components. J. Am. Chem. Soc. 138, 9996–10001 (2016). Shows that cholesterol and sphingomyelin reorganize with ganglioside, demonstrating that there is an attractive interaction between these raft constituents.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Lozano, M. M. et al. Colocalization of the ganglioside GM1 and cholesterol detected by secondary ion mass spectrometry. J. Am. Chem. Soc. 135, 5620–5630 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Frisz, J. F. et al. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol. J. Biol. Chem. 288, 16855–16861 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    de Wit, G., Danial, J. S., Kukura, P. & Wallace, M. I. Dynamic label-free imaging of lipid nanodomains. Proc. Natl Acad. Sci. USA 112, 12299–12303 (2015). Presents a label-free technique to study lipid domains in model membranes.

    CAS  PubMed  Google Scholar 

  73. 73

    Ando, J. et al. Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy. Proc. Natl Acad. Sci. USA 112, 4558–4563 (2015).

    CAS  PubMed  Google Scholar 

  74. 74

    Pencer, J., Mills, T. T., Kucerka, N., Nieh, M. P. & Katsaras, J. Small-angle neutron scattering to detect rafts and lipid domains. Methods Mol. Biol. 398, 231–244 (2007).

    CAS  PubMed  Google Scholar 

  75. 75

    Heberle, F. A. et al. Hybrid and nonhybrid lipids exert common effects on membrane raft size and morphology. J. Am. Chem. Soc. 135, 14932–14935 (2013).

    CAS  PubMed  Google Scholar 

  76. 76

    Prior, I. A., Muncke, C., Parton, R. G. & Hancock, J. F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Baumgart, T., Hunt, G., Farkas, E. R., Webb, W. W. & Feigenson, G. W. Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochim. Biophys. Acta 1768, 2182–2194 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Klymchenko, A. S. & Kreder, R. Fluorescent probes for lipid rafts: from model membranes to living cells. Chem. Biol. 21, 97–113 (2014).

    CAS  PubMed  Google Scholar 

  79. 79

    Juhasz, J., Davis, J. H. & Sharom, F. J. Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures. Biochem. J. 430, 415–423 (2010).

    CAS  PubMed  Google Scholar 

  80. 80

    Pourmousa, M. et al. Dehydroergosterol as an analogue for cholesterol: why it mimics cholesterol so well — or does it? J. Phys. Chem. B 118, 7345–7357 (2014).

    CAS  PubMed  Google Scholar 

  81. 81

    Robalo, J. R., Martins do Canto, A. M. T., Palace Carvalho, A. J., Prates Ramalho, J. P. & Loura, L. M. S. Behavior of fluorescent cholesterol analogues dehydroergosterol and cholestatrienol in lipid bilayers: a molecular dynamics study. J. Phys. Chem. B 117, 5806–5819 (2013).

    CAS  PubMed  Google Scholar 

  82. 82

    Sezgin, E. et al. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. J. Lipid Res. 57, 299–309 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Crane, J. M. & Tamm, L. K. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Biophys. J. 86, 2965–2979 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Momin, N. et al. Designing lipids for selective partitioning into liquid ordered membrane domains. Soft Matter 11, 3241–3250 (2015).

    CAS  PubMed  Google Scholar 

  85. 85

    Lopes, S. C., Goormaghtigh, E., Cabral, B. J. & Castanho, M. A. Filipin orientation revealed by linear dichroism. Implication for a model of action. J. Am. Chem. Soc. 126, 5396–5402 (2004).

    CAS  PubMed  Google Scholar 

  86. 86

    Palmer, M. The family of thiol-activated, cholesterol-binding cytolysins. Toxicon 39, 1681–1689 (2001).

    CAS  PubMed  Google Scholar 

  87. 87

    Skocaj, M. et al. Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein. PLoS ONE 9, e92783 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. 88

    Yamaji, A. et al. Lysenin, a novel sphingomyelin-specific binding protein. J. Biol. Chem. 273, 5300–5306 (1998).

    CAS  PubMed  Google Scholar 

  89. 89

    Bhat, H. B. et al. Binding of a pleurotolysin ortholog from Pleurotus eryngii to sphingomyelin and cholesterol-rich membrane domains. J. Lipid Res. 54, 2933–2943 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Dietrich, C. et al. Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Sezgin, E. et al. Adaptive lipid packing and bioactivity in membrane domains. PLoS ONE 10, e0123930 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. 93

    Gray, E. M., Diaz-Vazquez, G. & Veatch, S. L. Growth conditions and cell cycle phase modulate phase transition temperatures in RBL-2H3 derived plasma membrane vesicles. PLoS ONE 10, e0137741 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Sezgin, E., Sadowski, T. & Simons, K. Measuring lipid packing of model and cellular membranes with environment sensitive probes. Langmuir 30, 8160–8166 (2014).

    CAS  PubMed  Google Scholar 

  95. 95

    Sezgin, E., Waithe, D., Bernardino de la Serna, J. & Eggeling, C. Spectral imaging to measure heterogeneity in membrane lipid packing. Chemphyschem 16, 1387–1394 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Parasassi, T., Krasnowska, E. K., Bagatolli, L. & Gratton, E. Laurdan and Prodan as polarity-sensitive fluorescent membrane probes. J. Fluoresc. 8, 365–373 (1998).

    CAS  Google Scholar 

  97. 97

    Parasassi, T., De Stasio, G., Ravagnan, G., Rusch, R. M. & Gratton, E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys. J. 60, 179–189 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Sanchez, S. A., Tricerri, M. A. & Gratton, E. Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc. Natl Acad. Sci. USA 109, 7314–7319 (2012). Together with reference 27 and 92, suggests that the cell membrane contains domains with a range of properties.

    CAS  PubMed  Google Scholar 

  99. 99

    Golfetto, O., Hinde, E. & Gratton, E. Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys. J. 104, 1238–1247 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Kreder, R. et al. Solvatochromic Nile Red probes with FRET quencher reveal lipid order heterogeneity in living and apoptotic cells. ACS Chem. Biol. 10, 1435–1442 (2015).

    CAS  PubMed  Google Scholar 

  101. 101

    Mahammad, S. & Parmryd, I. Cholesterol depletion using methyl-beta-cyclodextrin. Methods Mol. Biol. 1232, 91–102 (2015).

    CAS  PubMed  Google Scholar 

  102. 102

    Pottosin, I. I., Valencia-Cruz, G., Bonales-Alatorre, E., Shabala, S. N. & Dobrovinskaya, O. R. Methyl-beta-cyclodextrin reversibly alters the gating of lipid rafts-associated Kv1.3 channels in Jurkat T lymphocytes. Pflugers Arch. 454, 235–244 (2007).

    CAS  PubMed  Google Scholar 

  103. 103

    Mahammad, S., Dinic, J., Adler, J. & Parmryd, I. Limited cholesterol depletion causes aggregation of plasma membrane lipid rafts inducing T cell activation. Biochim. Biophys. Acta 1801, 625–634 (2010).

    CAS  PubMed  Google Scholar 

  104. 104

    Sanchez, S. A., Gunther, G., Tricerri, M. A. & Gratton, E. Methyl-beta-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles. J. Membr. Biol. 241, 1–10 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Hillyard, D. Z. et al. Statins inhibit NK cell cytotoxicity by membrane raft depletion rather than inhibition of isoprenylation. Atherosclerosis 191, 319–325 (2007).

    CAS  PubMed  Google Scholar 

  106. 106

    Amin, D. et al. RPR 107393, a potent squalene synthase inhibitor and orally effective cholesterol-lowering agent: comparison with inhibitors of HMG-CoA reductase. J. Pharmacol. Exp. Ther. 281, 746–752 (1997).

    CAS  PubMed  Google Scholar 

  107. 107

    Ahn, K. W. & Sampson, N. S. Cholesterol oxidase senses subtle changes in lipid bilayer structure. Biochemistry 43, 827–836 (2004).

    CAS  PubMed  Google Scholar 

  108. 108

    Merrill, A. H. Jr, van Echten, G., Wang, E. & Sandhoff, K. Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ. J. Biol. Chem. 268, 27299–27306 (1993).

    CAS  PubMed  Google Scholar 

  109. 109

    Zhao, Y. et al. ABCB4 exports phosphatidylcholine in a sphingomyelin-dependent manner. J. Lipid Res. 56, 644–652 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Miller, H. et al. Lipid raft-dependent plasma membrane repair interferes with the activation of B lymphocytes. J. Cell Biol. 211, 1193–1205 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Eggeling, C. & Honigmann, A. Closing the gap: the approach of optical and computational microscopy to uncover biomembrane organization. Biochim. Biophys. Acta 1858, 2558–2568 (2016).

    CAS  PubMed  Google Scholar 

  112. 112

    Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H. & Shaw, D. E. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012).

    CAS  PubMed  Google Scholar 

  113. 113

    Lane, T. J., Shukla, D., Beauchamp, K. A. & Pande, V. S. To milliseconds and beyond: challenges in the simulation of protein folding. Curr. Opin. Struct. Biol. 23, 58–65 (2013).

    CAS  PubMed  Google Scholar 

  114. 114

    Saunders, M. G. & Voth, G. A. Coarse-graining methods for computational biology. Annu. Rev. Biophys. 42, 73–93 (2013).

    CAS  PubMed  Google Scholar 

  115. 115

    Vattulainen, I. & Rog, T. Lipid simulations: a perspective on lipids in action. Cold Spring Harb. Perspect. Biol. 3, a004655 (2011).

    PubMed  PubMed Central  Google Scholar 

  116. 116

    Stansfeld, P. J. & Sansom, M. S. Molecular simulation approaches to membrane proteins. Structure 19, 1562–1572 (2011).

    CAS  PubMed  Google Scholar 

  117. 117

    Ingolfsson, H. I. et al. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559 (2014).

    CAS  PubMed  Google Scholar 

  118. 118

    Niemela, P. S., Ollila, S., Hyvonen, M. T., Karttunen, M. & Vattulainen, I. Assessing the nature of lipid raft membranes. PLoS Comput. Biol. 3, e34 (2007).

    PubMed  PubMed Central  Google Scholar 

  119. 119

    Barua, D. & Goldstein, B. A mechanistic model of early FcepsilonRI signaling: lipid rafts and the question of protection from dephosphorylation. PLoS ONE 7, e51669 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Levental, I., Grzybek, M. & Simons, K. Raft domains of variable properties and compositions in plasma membrane vesicles. Proc. Natl Acad. Sci. USA 108, 11411–11416 (2011).

    CAS  PubMed  Google Scholar 

  121. 121

    Schutz, G. J., Kada, G., Pastushenko, V. P. & Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Wang, T. Y. & Silvius, J. R. Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophys. J. 84, 367–378 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Sodt, A. J., Pastor, R. W. & Lyman, E. Hexagonal substructure and hydrogen bonding in liquid-ordered phases containing palmitoyl sphingomyelin. Biophys. J. 109, 948–955 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Ramstedt, B. & Slotte, J. P. Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length. Biophys. J. 76, 908–915 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Sodt, A. J., Sandar, M. L., Gawrisch, K., Pastor, R. W. & Lyman, E. The molecular structure of the liquid-ordered phase of lipid bilayers. J. Am. Chem. Soc. 136, 725–732 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Levental, I., Grzybek, M. & Simons, K. Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49, 6305–6316 (2010).

    CAS  PubMed  Google Scholar 

  127. 127

    Ozhan, G. et al. Lypd6 enhances Wnt/beta-catenin signaling by promoting Lrp6 phosphorylation in raft plasma membrane domains. Dev. Cell 26, 331–345 (2013).

    PubMed  Google Scholar 

  128. 128

    Brameshuber, M. et al. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane. J. Biol. Chem. 285, 41765–41771 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Goswami, D. et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135, 1085–1097 (2008).

    CAS  PubMed  Google Scholar 

  130. 130

    Sevcsik, E. et al. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat. Commun. 6, 6969 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Shi, D. et al. Smoothened oligomerization/higher order clustering in lipid rafts is essential for high Hedgehog activity transduction. J. Biol. Chem. 288, 12605–12614 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Shah, A. et al. RaftProt: mammalian lipid raft proteome database. Nucleic Acids Res. 43, D335–D338 (2015).

    CAS  PubMed  Google Scholar 

  133. 133

    Lorent, J. H. & Levental, I. Structural determinants of protein partitioning into ordered membrane domains and lipid rafts. Chem. Phys. Lipids 192, 23–32 (2015).

    CAS  PubMed  Google Scholar 

  134. 134

    Diaz-Rohrer, B. B., Levental, K. R., Simons, K. & Levental, I. Membrane raft association is a determinant of plasma membrane localization. Proc. Natl Acad. Sci. USA 111, 8500–8505 (2014). Relates the membrane raft association of several proteins to their localization at the cell surface by showing that both properties are determined by the length of the TMD of a protein.

    CAS  PubMed  Google Scholar 

  135. 135

    Veatch, S. L. et al. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293 (2008). Shows critical fluctuation behaviour in GPMVs, which suggests that the cell membrane is near a miscibility critical point that could be modulated by temperature.

    CAS  PubMed  Google Scholar 

  136. 136

    Lingwood, D., Ries, J., Schwille, P. & Simons, K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl Acad. Sci. USA 105, 10005–10010 (2008).

    CAS  PubMed  Google Scholar 

  137. 137

    Zhou, Y. et al. Bile acids modulate signaling by functional perturbation of plasma membrane domains. J. Biol. Chem. 288, 35660–35670 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Coskun, U., Grzybek, M., Drechsel, D. & Simons, K. Regulation of human EGF receptor by lipids. Proc. Natl Acad. Sci. USA 108, 9044–9048 (2010).

    Google Scholar 

  139. 139

    Levental, I. & Veatch, S. L. The continuing mystery of lipid rafts. J. Mol. Biol. 428, 4749–4764 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Tisza, M. J. et al. Motility and stem cell properties induced by the epithelial–mesenchymal transition require destabilization of lipid rafts. Oncotarget 7, 51553–51568 (2016).

    PubMed  PubMed Central  Google Scholar 

  141. 141

    Schwarzer, R. et al. The cholesterol-binding motif of the HIV-1 glycoprotein gp41 regulates lateral sorting and oligomerization. Cell. Microbiol. 16, 1565–1581 (2014).

    CAS  PubMed  Google Scholar 

  142. 142

    Contreras, F. X. et al. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 481, 525–529 (2012). Shows direct specific interactions between the single-pass TMD of the coat protein I (COPI)-machinery protein p24 and a single sphingomyelin species.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Tulodziecka, K. et al. Remodeling of the postsynaptic plasma membrane during neural development. Mol. Biol. Cell 27, 3480–3489 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Lach, A. et al. Palmitoylation of MPP1 (membrane-palmitoylated protein 1)/p55 is crucial for lateral membrane organization in erythroid cells. J. Biol. Chem. 287, 18974–18984 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Podkalicka, J., Biernatowska, A., Majkowski, M., Grzybek, M. & Sikorski, A. F. MPP1 as a factor regulating phase separation in giant plasma membrane-derived vesicles. Biophys. J. 108, 2201–2211 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Heberle, F. A. et al. Bilayer thickness mismatch controls domain size in model membranes. J. Am. Chem. Soc. 135, 6853–6859 (2013).

    CAS  PubMed  Google Scholar 

  147. 147

    Jensen, M. O. & Mouritsen, O. G. Lipids do influence protein function — the hydrophobic matching hypothesis revisited. Biochim. Biophys. Acta 1666, 205–226 (2004).

    CAS  PubMed  Google Scholar 

  148. 148

    Kaiser, H.-J. et al. Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc. Natl Acad. Sci. USA 108, 16628–16633 (2011).

    CAS  PubMed  Google Scholar 

  149. 149

    Koster, D. V. & Mayor, S. Cortical actin and the plasma membrane: inextricably intertwined. Curr. Opin. Cell Biol. 38, 81–89 (2016).

    CAS  PubMed  Google Scholar 

  150. 150

    Fritzsche, M., Erlenkamper, C., Moeendarbary, E., Charras, G. & Kruse, K. Actin kinetics shapes cortical network structure and mechanics. Sci. Adv. 2, e1501337 (2016).

    PubMed  PubMed Central  Google Scholar 

  151. 151

    Fujiwara, T. K. et al. Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane. Mol. Biol. Cell 27, 1101–1119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Saha, S. et al. Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin. Mol. Biol. Cell 26, 4033–4045 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Honigmann, A. et al. A lipid bound actin meshwork organizes liquid phase separation in model membranes. eLife 3, e01671 (2014).

    PubMed  PubMed Central  Google Scholar 

  154. 154

    Mueller, V. et al. STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys. J. 101, 1651–1660 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Ehrig, J., Petrov, E. P. & Schwille, P. Near-critical fluctuations and cytoskeleton-assisted phase separation lead to subdiffusion in cell membranes. Biophys. J. 100, 80–89 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Machta, B. B., Papanikolaou, S., Sethna, J. P. & Veatch, S. L. Minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality. Biophys. J. 100, 1668–1677 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Liu, A. P. & Fletcher, D. A. Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys. J. 91, 4064–4070 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Gowrishankar, K. et al. Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149, 1353–1367 (2012). Provides a compelling theoretical framework to understand how actomyosin-driven activity can create non-equilibrium clusters of membrane proteins.

    CAS  PubMed  Google Scholar 

  159. 159

    Fritzsche, M. et al. Self-organizing actin patterns shape membrane architecture but not cell mechanics. Nat. Commun. 8, 14347 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Koster, D. V. et al. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer. Proc. Natl Acad. Sci. USA 113, E1645–E1654 (2016).

    CAS  PubMed  Google Scholar 

  161. 161

    Rao, M. & Mayor, S. Active organization of membrane constituents in living cells. Curr. Opin. Cell Biol. 29, 126–132 (2014).

    CAS  PubMed  Google Scholar 

  162. 162

    Lingwood, D. et al. Cholesterol modulates glycolipid conformation and receptor activity. Nat. Chem. Biol. 7, 260–262 (2011).

    CAS  PubMed  Google Scholar 

  163. 163

    Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Filipp, D., Leung, B. L., Zhang, J., Veillette, A. & Julius, M. Enrichment of lck in lipid rafts regulates colocalized fyn activation and the initiation of proximal signals through TCR alpha beta. J. Immunol. 172, 4266–4274 (2004).

    CAS  PubMed  Google Scholar 

  165. 165

    Zhang, M. et al. CD45 signals outside of lipid rafts to promote ERK activation, synaptic raft clustering, and IL-2 production. J. Immunol. 174, 1479–1490 (2005).

    CAS  PubMed  Google Scholar 

  166. 166

    Field, K. A., Holowka, D. & Baird, B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl Acad. Sci. USA 92, 9201–9205 (1995).

    CAS  PubMed  Google Scholar 

  167. 167

    Varshney, P., Yadav, V. & Saini, N. Lipid rafts in immune signaling: current progress and future perspective. Immunology 149, 13–24 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168

    Dinic, J., Riehl, A., Adler, J. & Parmryd, I. The T cell receptor resides in ordered plasma membrane nanodomains that aggregate upon patching of the receptor. Sci. Rep. 5, 10082 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Beck-Garcia, K. et al. Nanoclusters of the resting T cell antigen receptor (TCR) localize to non-raft domains. Biochim. Biophys. Acta 1853, 802–809 (2015).

    CAS  PubMed  Google Scholar 

  170. 170

    Sproul, T. W., Malapati, S., Kim, J. & Pierce, S. K. Cutting edge: B cell antigen receptor signaling occurs outside lipid rafts in immature B cells. J. Immunol. 165, 6020–6023 (2000).

    CAS  PubMed  Google Scholar 

  171. 171

    Stone, M. B., Shelby, S. A., Nunez, M. F., Wisser, K. & Veatch, S. L. Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. eLife 6, e19891 (2017).

    PubMed  PubMed Central  Google Scholar 

  172. 172

    Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J. & Mathison, J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Beissert, S. et al. Impaired cutaneous immune responses in Thy-1-deficient mice. J. Immunol. 161, 5296–5302 (1998).

    CAS  PubMed  Google Scholar 

  174. 174

    Lorizate, M. et al. Comparative lipidomics analysis of HIV-1 particles and their producer cell membrane in different cell lines. Cell. Microbiol. 15, 292–304 (2013).

    CAS  PubMed  Google Scholar 

  175. 175

    Farnoud, A. M., Toledo, A. M., Konopka, J. B., Del Poeta, M. & London, E. Raft-like membrane domains in pathogenic microorganisms. Curr. Top. Membr. 75, 233–268 (2015).

    PubMed  PubMed Central  Google Scholar 

  176. 176

    Iwabuchi, K. Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses. Front. Biosci. (Landmark Ed.) 20, 325–334 (2015).

    CAS  Google Scholar 

  177. 177

    Teissier, E. & Pecheur, E. I. Lipids as modulators of membrane fusion mediated by viral fusion proteins. Eur. Biophys. J. 36, 887–899 (2007).

    CAS  PubMed  Google Scholar 

  178. 178

    Dick, R. A., Goh, S. L., Feigenson, G. W. & Vogt, V. M. HIV-1 Gag protein can sense the cholesterol and acyl chain environment in model membranes. Proc. Natl Acad. Sci. USA 109, 18761–18766 (2012).

    CAS  PubMed  Google Scholar 

  179. 179

    Staubach, S., Razawi, H. & Hanisch, F. G. Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7. Proteomics 9, 2820–2835 (2009).

    CAS  PubMed  Google Scholar 

  180. 180

    Raghu, H. et al. Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells. BMC Cancer 10, 647 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181

    Larsen, J. B. et al. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nat. Chem. Biol. 11, 192–194 (2015).

    CAS  PubMed  Google Scholar 

  182. 182

    Cuesta-Marban, A. et al. Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast. J. Biol. Chem. 288, 8405–8418 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183

    Gajate, C. & Mollinedo, F. Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109, 711–719 (2007).

    CAS  PubMed  Google Scholar 

  184. 184

    Shashkin, P., Dragulev, B. & Ley, K. Macrophage differentiation to foam cells. Curr. Pharm. Des. 11, 3061–3072 (2005).

    CAS  PubMed  Google Scholar 

  185. 185

    Rios, F. J. et al. Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts. PLoS ONE 8, e76893 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186

    Maguy, A., Hebert, T. E. & Nattel, S. Involvement of lipid rafts and caveolae in cardiac ion channel function. Cardiovasc. Res. 69, 798–807 (2006).

    CAS  PubMed  Google Scholar 

  187. 187

    van Zanten, T. S. & Mayor, S. Current approaches to studying membrane organization. F1000Res. 4, 1380 (2015).

    Google Scholar 

  188. 188

    Toulmay, A. & Prinz, W. A. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J. Cell Biol. 202, 35–44 (2013). The first demonstration of microscopic raft-like domain formation in the vacuoles of live yeast cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189

    Kahya, N., Scherfeld, D., Bacia, K. & Schwille, P. Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy. J. Struct. Biol. 147, 77–89 (2004).

    CAS  PubMed  Google Scholar 

  190. 190

    Shogomori, H. et al. Palmitoylation and intracellular domain interactions both contribute to raft targeting of linker for activation of T cells. J. Biol. Chem. 280, 18931–18942 (2005).

    CAS  PubMed  Google Scholar 

Download references


C.E. and E.S. are supported by the UK Wolfson Foundation, the UK Medical Research Council (MRC; grant number MC_UU_12010/unit programmes G0902418 and MC_UU_12025), MRC/BBSRC/ESPRC (grant number MR/K01577X/1) and the UK Wellcome Trust (grant Ref. 104924/14/Z/14). E.S. is also supported by an EMBO Long Term Fellowship (ALTF 636–2013) and a Marie Curie Intra-European Fellowship (MEMBRANE DYNAMICS). S.M. is supported by a JC Bose fellowship from the Department of Science and Technology, Ministry of Science and Technology, Government of India, New Delhi, and a Margadarshi fellowship (DBT-Wellcome Trust Alliance grant Ref. IA/M/15/1/502018). I.L. is supported by the Cancer Prevention and Research Institute of Texas (R1215) and the US National Institutes of Health (grant 1R01GM114282).

Author information



Corresponding authors

Correspondence to Satyajit Mayor or Christian Eggeling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Rafts in the tree of life (PDF 162 kb)

Supplementary information S2 (box)

Diffraction limit and super-resolution microscopy (PDF 421 kb)

PowerPoint slides


Liquid–liquid phase separation

The coexistence of two phases with distinct compositions and biophysical properties. The components of both phases can diffuse and rearrange rapidly.


A class of lipids that comprise a long-chain sphingosine base coupled to a fatty acid chain and often a large polar head group.

Glycosylphosphatidylinositol (GPI)-anchored proteins

Cell surface proteins that are post-translationally modified to carry a GPI moiety as an anchor to the membrane.

Cholera toxin

Proteinaceous toxin secreted by Vibrio cholerae that binds to glycolipids on the cell surface and is responsible for the symptoms of cholera infection.

Single-particle tracking

(SPT). A single-molecule technique in which the motion of individual molecules is tracked with high temporal resolution over relatively long timescales (seconds); these tracks can be used to determine the diffusion properties of a molecule.

Confined diffusion

A mode of diffusion in which the motion of the molecule is transiently arrested by molecular obstacles such as immobile clusters. It is also known as trapped diffusion.

Hop diffusion

A mode of diffusion in which molecules diffuse freely in the membrane except when they encounter a barrier (such as a structure (or structures) associated with actin filaments), the crossing of which hinders diffusion.

Interferometric scattering microscopy

(iSCAT). A microscopy technique to enhance contrast by using the interference from coherent light scattering in the focal plane and of the microscope cover glass.

Fluorescence correlation spectroscopy

(FCS). A single-molecule-based technique in which fluorescence intensity fluctuations from a microscopic observation spot are used to obtain information about molecular diffusion.

Förster resonance energy transfer

(FRET). A fluorescence spectroscopy and imaging technique that is based on the distance-dependent transfer of the excited state energy of a fluorescent donor molecule to a fluorescent acceptor molecule; efficient and widely used to measure intermolecular distances in the range of 1–10 nm.

Amphiphilic properties

Displaying both hydrophilic and hydrophobic character, such as for lipids with hydrophobic acyl chains and hydrophilic head groups.

Raman spectroscopy

A spectroscopy technique whereby vibrational energy of the molecules is used as their 'fingerprint'.

Ganglioside lipid

A class of glycosphingolipids with sialic acid moieties on the head group.


A class of lipids composed of sphingosine and a fatty acid.

Coarse-grained simulations

Simulations that rely on simplified representations of the simulated components.

Hydrogen bonding

Non-covalent chemical bonds between a hydrogen covalently bound to an electronegative atom (as in the -NH group of sphingolipids) and another electronegative atom (such as the oxygen in the -OH group of cholesterol).

Epithelial–mesenchymal transition

A developmental transcriptional programme that imparts mesenchymal characteristics (for example, motility) to epithelial cells.

Viral envelope

The lipid membrane that covers the viral capsid and is derived from the plasma membrane of the host cell.


Specialized invaginations in the plasma membrane that are enriched in caveolin, sphingolipids and cholesterol.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sezgin, E., Levental, I., Mayor, S. et al. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18, 361–374 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing