Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Understanding the diversity of membrane lipid composition

An Author Correction to this article was published on 05 September 2019

Key Points

  • Lipids are the main component of cellular membranes. They are highly diverse in structure, and the distribution of different lipids and their species (membrane lipid composition) varies at the organism, cell type, organelle, membrane, bilayer-leaflet and membrane subdomain level. Understanding the biological relevance of this diversity and why there are so many lipid-related genetic diseases represent a fundamental challenge in biology.

  • The enzymes carrying out the vast majority of lipid metabolic pathways have now been identified, enabling the use of genetics to modify experimental lipid composition. However, detailed analyses of enzyme functions and results from genetic modification experiments reveal that most lipid levels are regulated by a complex contribution from various pathways, making the functional analysis of genetic defects challenging.

  • Lipid composition affects membrane physical properties, the biological relevance of which is becoming clearer. For example, polyunsaturated fatty acids in glycerophospholipids reduce membrane rigidity and affect processes that accompany membrane deformation.

  • Lipid composition affects membrane protein functions, such as ion channels. However, the mechanisms by which lipids affect protein conformation and activity are still not fully understood.

  • Chemical biology tools enable proteome-wide identification of lipid-interacting proteins, potentially revolutionizing our understanding of lipid functions. However, further breakthroughs will be required to understand how proteins are functionally affected by lipid composition.

  • A few examples of mechanisms that cells use to sense lipid composition have now been discovered. Sensing is important not only for maintaining lipid homeostasis but also for sensing cellular metabolic status and coordinating it with various cell functions, such as cell growth.

Abstract

Cellular membranes are formed from a chemically diverse set of lipids present in various amounts and proportions. A high lipid diversity is universal in eukaryotes and is seen from the scale of a membrane leaflet to that of a whole organism, highlighting its importance and suggesting that membrane lipids fulfil many functions. Indeed, alterations of membrane lipid homeostasis are linked to various diseases. While many of their functions remain unknown, interdisciplinary approaches have begun to reveal novel functions of lipids and their interactions. We are beginning to understand why even small changes in lipid structures and in composition can have profound effects on crucial biological functions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Chemical diversity of membrane lipids in mammals.
Figure 2: Metabolism of membrane lipids in mammals.
Figure 3: Lipids regulate biological processes through membrane properties.
Figure 4: Lipids regulate protein-mediated biological processes.
Figure 5: Sensing lipid composition to maintain homeostasis.

References

  1. 1

    Kuivenhoven, J. A. & Hegele, R. A. Mining the genome for lipid genes. Biochim. Biophys. Acta 1842, 1993–2009 (2014).

    CAS  PubMed  Google Scholar 

  2. 2

    Lamari, F., Mochel, F., Sedel, F. & Saudubray, J. M. Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: toward a new category of inherited metabolic diseases. J. Inherit. Metab. Dis. 36, 411–425 (2013).

    CAS  PubMed  Google Scholar 

  3. 3

    van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell. Biol. 9, 112–124 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Nakamura, M. T., Yudell, B. E. & Loor, J. J. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 53, 124–144 (2014).

    CAS  PubMed  Google Scholar 

  5. 5

    Shimizu, T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 49, 123–150 (2009).

    CAS  PubMed  Google Scholar 

  6. 6

    Saliba, A. E., Vonkova, I. & Gavin, A. C. The systematic analysis of protein-lipid interactions comes of age. Nat. Rev. Mol. Cell. Biol. 16, 753–761 (2015).

    CAS  PubMed  Google Scholar 

  7. 7

    Resh, M. D. Fatty acylation of proteins: the long and the short of it. Prog. Lipid Res. 63, 120–131 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Hannich, J. T., Umebayashi, K. & Riezman, H. Distribution and functions of sterols and sphingolipids. Cold Spring Harb. Perspect. Biol. 3, a004762 (2011).

    PubMed  PubMed Central  Google Scholar 

  9. 9

    Yamashita, A. et al. Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog. Lipid Res. 53, 18–81 (2014).

    CAS  PubMed  Google Scholar 

  10. 10

    Hannich, J. T., Mellal, D., Feng, S., Zumbuehl, A. & Riezman, H. Structure and conserved function of iso-branched sphingoid bases from the nematode Caenorhabditis elegans. Chem. Sci. 8, 3676–3686 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Grosch, S., Schiffmann, S. & Geisslinger, G. Chain length-specific properties of ceramides. Prog. Lipid Res. 51, 50–62 (2012).

    PubMed  Google Scholar 

  12. 12

    Harayama, T. et al. Lysophospholipid acyltransferases mediate phosphatidylcholine diversification to achieve the physical properties required in vivo. Cell Metab. 20, 295–305 (2014). This study provides details about the regulation of PtdCho acyl-chain composition and uses this knowledge to analyse the function of saturated PtdCho species in vivo , showing the importance of a basic understanding of lipid metabolism.

    CAS  PubMed  Google Scholar 

  13. 13

    Antonny, B., Vanni, S., Shindou, H. & Ferreira, T. From zero to six double bonds: phospholipid unsaturation and organelle function. Trends Cell Biol. 25, 427–436 (2015).

    CAS  PubMed  Google Scholar 

  14. 14

    Sezgin, E., Levental, I., Mayor, S. & Eggeling, C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell. Biol. 18, 361–374 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Hishikawa, D., Hashidate, T., Shimizu, T. & Shindou, H. Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J. Lipid Res. 55, 799–807 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    da Silveira dos Santos, A. X. et al. Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis. Mol. Biol. Cell 25, 3234–3246 (2014). The authors performed a comprehensive lipidomics analysis of yeast kinase and phosphatase mutants that not only provides novel insights into how lipid homeostasis is maintained, but also provides a comprehensive dataset potentially containing information about still unknown regulatory pathways.

    PubMed  PubMed Central  Google Scholar 

  17. 17

    Contreras, F. X. et al. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 481, 525–529 (2012). This seminal paper describes a specific interaction between C18-sphingomyelin and the transmembrane protein p24, by which protein dimerization and vesicle trafficking are affected.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Hashidate-Yoshida, T. et al. Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport. eLife http://dx.doi.org/10.7554/eLife.06328 (2015). This study combines genetics, lipidomics, and biophysical approaches to uncover the role of arachidonic acid in membrane GPLs, which is required for local triglyceride clustering, transport, and incorporation into intestinal or hepatic lipoproteins.

  19. 19

    Park, J.-W. et al. Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered detergent-resistant membranes. Hepatology 57, 525–532 (2013).

    CAS  PubMed  Google Scholar 

  20. 20

    Pinot, M. et al. Lipid cell biology. Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science 345, 693–697 (2014). This study reveals the importance of polyunsaturated phospholipids in membrane deformation during endocytosis through a combination of cell biology, biophysics, and molecular dynamics simulations, which is a prime example of the interdisciplinary approaches required for a detailed understanding of lipid functions.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Caires, R. et al. Omega-3 fatty acids modulate TRPV4 function through plasma membrane remodeling. Cell Rep. 21, 246–258 (2017). Using genetically-modified C. elegans as a host to express the human TRPV4 channel, the authors elegantly demonstrate the importance of membrane composition for the function of this channel, which also sheds light on the importance of oxygen-modified fatty acids in the membrane.

    CAS  PubMed  Google Scholar 

  22. 22

    Vasquez, V., Krieg, M., Lockhead, D. & Goodman, M. B. Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. Cell Rep. 6, 70–80 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Atilla-Gokcumen, G. E. et al. Dividing cells regulate their lipid composition and localization. Cell 156, 428–439 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Köberlin, Marielle, S. et al. A conserved circular network of coregulated lipids modulates innate immune responses. Cell 162, 170–183 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Berchtold, D. et al. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat. Cell Biol. 14, 542–547 (2012). This paper provides insights into how TORC2 senses sphingolipid levels through their effects on membrane properties and then uses this information to regulate sphingolipid metabolism through a protein kinase cascade.

    CAS  PubMed  Google Scholar 

  26. 26

    Roelants, F. M., Breslow, D. K., Muir, A., Weissman, J. S. & Thorner, J. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 108, 19222–19227 (2011).

    CAS  PubMed  Google Scholar 

  27. 27

    Chiapparino, A., Maeda, K., Turei, D., Saez-Rodriguez, J. & Gavin, A. C. The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling. Prog. Lipid Res. 61, 30–39 (2016).

    CAS  PubMed  Google Scholar 

  28. 28

    Zhang, H. & Hu, J. Shaping the endoplasmic reticulum into a social network. Trends Cell Biol. 26, 934–943 (2016).

    CAS  PubMed  Google Scholar 

  29. 29

    Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell. Biol. 9, 139–150 (2008).

    CAS  PubMed  Google Scholar 

  30. 30

    Barneda, D. & Christian, M. Lipid droplet growth: regulation of a dynamic organelle. Curr. Opin. Cell Biol. 47, 9–15 (2017).

    CAS  PubMed  Google Scholar 

  31. 31

    Thiam, A. R., Farese, R. V. Jr & Walther, T. C. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell. Biol. 14, 775–786 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Hicks, A. M., DeLong, C. J., Thomas, M. J., Samuel, M. & Cui, Z. Unique molecular signatures of glycerophospholipid species in different rat tissues analyzed by tandem mass spectrometry. Biochim. Biophys. Acta 1761, 1022–1029 (2006).

    CAS  PubMed  Google Scholar 

  33. 33

    De Craene, J.-O., Bertazzi, D., Bär, S. & Friant, S. Phosphoinositides, major actors in membrane trafficking and lipid signaling pathways. Int. J. Mol. Sci. 18, 634 (2017).

    PubMed Central  Google Scholar 

  34. 34

    Russo, D., Parashuraman, S. & D'Angelo, G. Glycosphingolipid-protein interaction in signal transduction. Int. J. Mol. Sci. 17, E1732 (2016).

    PubMed  Google Scholar 

  35. 35

    Griffiths, W. J. et al. Cholesterolomics: an update. Anal. Biochem. 524, 56–67 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Park, J. W., Park, W. J. & Futerman, A. H. Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841, 671–681 (2014).

    CAS  PubMed  Google Scholar 

  37. 37

    Sassa, T. & Kihara, A. Metabolism of very long-chain fatty acids: genes and pathophysiology. Biomol. Ther. (Seoul) 22, 83–92 (2014).

    CAS  Google Scholar 

  38. 38

    Kihara, A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog. Lipid Res. 63, 50–69 (2016).

    CAS  PubMed  Google Scholar 

  39. 39

    Gaspard, G. J. & McMaster, C. R. Cardiolipin metabolism and its causal role in the etiology of the inherited cardiomyopathy Barth syndrome. Chem. Phys. Lipids 193, 1–10 (2015).

    CAS  PubMed  Google Scholar 

  40. 40

    Chevallier, J. et al. Lysobisphosphatidic acid controls endosomal cholesterol levels. J. Biol. Chem. 283, 27871–27880 (2008).

    CAS  PubMed  Google Scholar 

  41. 41

    Bissig, C. & Gruenberg, J. Lipid sorting and multivesicular endosome biogenesis. Cold Spring Harb. Perspect. Biol. 5, a016816 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. 42

    Gassama-Diagne, A. et al. Phosphatidylinositol- 3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat. Cell Biol. 8, 963–970 (2006).

    CAS  PubMed  Google Scholar 

  43. 43

    Raghupathy, R. et al. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161, 581–594 (2015). The authors describe a novel mechanism of nanodomain formation by PtdSer clustering and transbilayer interdigitations, which is not only important for understanding lateral heterogeneities in the plasma membrane, but is also interesting from the point of view of lipid biology because a slight difference in acyl-chain length strongly affects the outcome of nanodomain formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Suzuki, J., Umeda, M., Sims, P. J. & Nagata, S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468, 834–838 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Suzuki, J., Denning, D. P., Imanishi, E., Horvitz, H. R. & Nagata, S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341, 403–406 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Carbon, S. et al. AmiGO: online access to ontology and annotation data. Bioinformatics 25, 288–289 (2009).

    CAS  Google Scholar 

  47. 47

    Tidhar, R. & Futerman, A. H. The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim. Biophys. Acta 1833, 2511–2518 (2013).

    CAS  PubMed  Google Scholar 

  48. 48

    Wegner, M. S., Schiffmann, S., Parnham, M. J., Geisslinger, G. & Grosch, S. The enigma of ceramide synthase regulation in mammalian cells. Prog. Lipid Res. 63, 93–119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  50. 50

    Ichi, I. et al. Identification of genes and pathways involved in the synthesis of mead acid (20:3n-9), an indicator of essential fatty acid deficiency. Biochim. Biophys. Acta 1841, 204–213 (2014).

    CAS  PubMed  Google Scholar 

  51. 51

    Imae, R. et al. LYCAT, a homologue of C. elegans acl-8, acl-9, and acl-10, determines the fatty acid composition of phosphatidylinositol in mice. J. Lipid Res. 53, 335–347 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Lee, H. C. et al. LPIAT1 regulates arachidonic acid content in phosphatidylinositol and is required for cortical lamination in mice. Mol. Biol. Cell 23, 4689–4700 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Vance, J. E. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta 1841, 595–609 (2014).

    CAS  Google Scholar 

  54. 54

    Kim, Y. J., Guzman-Hernandez, Maria, L. & Balla, T. A. Highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev. Cell 21, 813–824 (2011). The authors identify a novel subdomain (described as an organelle in this paper) of the ER for local synthesis of PtdIns, which is required for their supply to other membranes, showing the importance of compartmentalization in lipid metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Bone, L. N. et al. The acyltransferase LYCAT controls specific phosphoinositides and related membrane traffic. Mol. Biol. Cell 28, 161–172 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Nishimura, T. et al. Autophagosome formation is initiated at phosphatidylinositol synthase-enriched ER subdomains. EMBO J. 36, 1719–1735 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    English, A. R. & Voeltz, G. K. Rab10 GTPase regulates ER dynamics and morphology. Nat. Cell Biol. 15, 169–178 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. 58

    Epand, R. M. Features of the phosphatidylinositol cycle and its role in signal transduction. J. Membr. Biol. 250, 353–366 (2016).

    PubMed  Google Scholar 

  59. 59

    Shulga, Y. V., Topham, M. K. & Epand, R. M. Study of arachidonoyl specificity in two enzymes of the PI cycle. J. Mol. Biol. 409, 101–112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Nadler, A. et al. The fatty acid composition of diacylglycerols determines local signaling patterns. Angew. Chem. Int. Ed. Engl. 52, 6330–6334 (2013).

    CAS  PubMed  Google Scholar 

  61. 61

    Watkins, S. M., Zhu, X. & Zeisel, S. H. Phosphatidylethanolamine-N-methyltransferase activity and dietary choline regulate liver-plasma lipid flux and essential fatty acid metabolism in mice. J. Nutr. 133, 3386–3391 (2003).

    CAS  PubMed  Google Scholar 

  62. 62

    da Costa, K. A. et al. Dietary docosahexaenoic acid supplementation modulates hippocampal development in the Pemt−/− mouse. J. Biol. Chem. 285, 1008–1015 (2009).

    PubMed  PubMed Central  Google Scholar 

  63. 63

    Hishikawa, D., Valentine, W. J., Iizuka-Hishikawa, Y., Shindou, H. & Shimizu, T. Metabolism and functions of docosahexaenoic acid-containing membrane glycerophospholipids. FEBS Lett. 591, 2730–2744 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Nguyen, L. N. et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509, 503–506 (2014).

    CAS  Google Scholar 

  65. 65

    Mullen, T. D. et al. Selective knockdown of ceramide synthases reveals complex interregulation of sphingolipid metabolism. J. Lipid Res. 52, 68–77 (2010).

    PubMed  Google Scholar 

  66. 66

    Nakahara, K. et al. The Sjögren-Larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway. Mol. Cell 46, 461–471 (2012).

    CAS  PubMed  Google Scholar 

  67. 67

    Braverman, N. E. et al. Peroxisome biogenesis disorders in the Zellweger spectrum: an overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol. Genet. Metab. 117, 313–321 (2016).

    CAS  PubMed  Google Scholar 

  68. 68

    Malheiro, A. R., da Silva, T. F. & Brites, P. Plasmalogens and fatty alcohols in rhizomelic chondrodysplasia punctata and Sjogren-Larsson syndrome. J. Inherit. Metab. Dis. 38, 111–121 (2015).

    CAS  PubMed  Google Scholar 

  69. 69

    Gable, K. et al. A disease-causing mutation in the active site of serine palmitoyltransferase causes catalytic promiscuity. J. Biol. Chem. 285, 22846–22852 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Duan, J. & Merrill, A. H. 1-Deoxysphingolipids encountered exogenously and madede novo: dangerous mysteries inside an enigma. J. Biol. Chem. 290, 15380–15389 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Guri, Y. et al. mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell 32, 807–823.12 (2017). This longitudinal transcriptomic, proteomic, phosphoproteomic and lipidomic study in a mouse model shows that mTORC2-driven tumorigenesis in hepatocellular carcinoma requires increased de novo lipid synthesis, in particular of cardiolipin and glucosylceramide, and human biopsy samples support the relevance of this model to human liver cancer.

    CAS  PubMed  Google Scholar 

  72. 72

    Wigger, L. et al. Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans. Cell Rep. 18, 2269–2279 (2017).

    CAS  PubMed  Google Scholar 

  73. 73

    Schaefer, E. J. et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease. Arch. Neurol. 63, 1545 (2006).

    PubMed  Google Scholar 

  74. 74

    Perrotti, F. et al. Advances in lipidomics for cancer biomarkers discovery. Int. J. Mol. Sci. 17, 1992 (2016).

    PubMed Central  Google Scholar 

  75. 75

    Bridges, J. P. et al. LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice. J. Clin. Invest. 120, 1736–1748 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Hirabayashi, T. et al. PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat. Commun. 8, 14609 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Ohno, Y., Kamiyama, N., Nakamichi, S. & Kihara, A. PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide. Nat. Commun. 8, 14610 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. 78

    Grond, S. et al. PNPLA1 deficiency in mice and humans leads to a defect in the synthesis of omega-O-acylceramides. J. Invest. Dermatol. 137, 394–402 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Grall, A. et al. PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. Nat. Genet. 44, 140–147 (2012).

    CAS  PubMed  Google Scholar 

  80. 80

    Johansen, A. et al. Mutations in MBOAT7, encoding lysophosphatidylinositol acyltransferase I, lead to intellectual disability accompanied by epilepsy and autistic features. Am. J. Hum. Genet. 99, 912–916 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Ernst, R., Ejsing, C. S. & Antonny, B. Homeoviscous adaptation and the regulation of membrane lipids. J. Mol. Biol. 428, 4776–4791 (2016).

    CAS  PubMed  Google Scholar 

  82. 82

    Zick, M., Stroupe, C., Orr, A., Douville, D. & Wickner, W. T. Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. eLife 3, e01879 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. 83

    Irie, A., Yamamoto, K., Miki, Y. & Murakami, M. Phosphatidylethanolamine dynamics are required for osteoclast fusion. Sci. Rep. 7, 46715 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. 84

    Pagliuso, A. et al. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ. Nat. Commun. 7, 12148 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Rosetti, C. M., Mangiarotti, A. & Wilke, N. Sizes of lipid domains: what do we know from artificial lipid membranes? What are the possible shared features with membrane rafts in cells? Biochim. Biophys. Acta 1859, 789–802 (2017).

    CAS  Google Scholar 

  86. 86

    Stone, M. B., Shelby, S. A., Núñez, M. F., Wisser, K. & Veatch, S. L. Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. eLife 6, e19891 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. 87

    Guan, X. L. et al. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol. Biol. Cell 20, 2083–2095 (2009). A systematic lipidomic analysis of mutants reveals that yeasts adapt their sphingolipidome when sterols with aberrant structure accumulate and genetic evidence demonstrates the importance of functional interactions between sphingolipid and sterols, showing the importance of unbiased, systematic approaches to answer very basic questions of lipid biology.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Maekawa, M. & Fairn, G. D. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J. Cell Sci. 128, 1422–1433 (2015).

    CAS  PubMed  Google Scholar 

  89. 89

    Barelli, H. & Antonny, B. Lipid unsaturation and organelle dynamics. Curr. Opin. Cell Biol. 41, 25–32 (2016).

    CAS  PubMed  Google Scholar 

  90. 90

    Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D. & Evans, E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Iizuka-Hishikawa, Y. et al. Lysophosphatidic acid acyltransferase 3 tunes the membrane status of germ cells by incorporating docosahexaenoic acid during spermatogenesis. J. Biol. Chem. 292, 12065–12076 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Shindou, H. et al. Docosahexaenoic acid preserves visual function by maintaining correct disc morphology in retinal photoreceptor cells. J. Biol. Chem. 292, 12054–12064 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Rong, X. et al. Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion. eLife 4, e06557 (2015).

    PubMed Central  Google Scholar 

  94. 94

    Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Dixon, S. J. et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604–1609 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    O'Donnell, V. B. & Murphy, R. C. Directing eicosanoid esterification into phospholipids. J. Lipid Res. 58, 837–839 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Isaacson, Y., Sherbourne, C. D., Gross, R. W. & Stenson, W. F. The synthesis and molecular dynamics of phospholipids having hydroxylated fatty acids at the sn-2 position. Chem. Phys. Lipids 52, 217–226 (1990).

    CAS  PubMed  Google Scholar 

  98. 98

    Lemmon, M. A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell. Biol. 9, 99–111 (2008).

    CAS  PubMed  Google Scholar 

  99. 99

    Lee, S. et al. Impaired retrograde membrane traffic through endosomes in a mutant CHO cell defective in phosphatidylserine synthesis. Genes Cells 17, 728–736 (2012).

    CAS  PubMed  Google Scholar 

  100. 100

    Vonkova, I. et al. Lipid cooperativity as a general membrane-recruitment principle for PH domains. Cell Rep. 12, 1519–1530 (2015).

    CAS  PubMed  Google Scholar 

  101. 101

    Crowder, M. K., Seacrist, C. D. & Blind, R. D. Phospholipid regulation of the nuclear receptor superfamily. Adv. Biol. Regul. 63, 6–14 (2017).

    CAS  PubMed  Google Scholar 

  102. 102

    Chakravarthy, M. V. et al. Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 138, 476–488 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Lee, J. M. et al. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature 474, 506–510 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Moser von Filseck, J. & Drin, G. Running up that hill: How to create cellular lipid gradients by lipid counter-flows. Biochimie 130, 115–121 (2016).

    CAS  PubMed  Google Scholar 

  105. 105

    Moser von Filseck, J. et al. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science 349, 432–436 (2015).

    CAS  PubMed  Google Scholar 

  106. 106

    Antonny, B. Mechanisms of membrane curvature sensing. Annu. Rev. Biochem. 80, 101–123 (2011).

    CAS  PubMed  Google Scholar 

  107. 107

    Daumke, O., Roux, A. & Haucke, V. BAR domain scaffolds in dynamin-mediated membrane fission. Cell 156, 882–892 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Hirama, T. et al. Membrane curvature induced by proximity of anionic phospholipids can initiate endocytosis. Nat. Commun. 8, 1393 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. 109

    Magdeleine, M. et al. A filter at the entrance of the Golgi that selects vesicles according to size and bulk lipid composition. eLife 5, e16988 (2016). This study shows that the selection of vesicles that enter the Golgi is performed by sensing lipid composition through packing defects, showing the importance of lipid compositional diversity in different organelles.

    PubMed  PubMed Central  Google Scholar 

  110. 110

    Lee, A. G. Biological membranes: the importance of molecular detail. Trends Biochem. Sci. 36, 493–500 (2011).

    CAS  PubMed  Google Scholar 

  111. 111

    Hedger, G. & Sansom, M. S. P. Lipid interaction sites on channels, transporters and receptors: recent insights from molecular dynamics simulations. Biochim. Biophys. Acta 1858, 2390–2400 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Contreras, F. X., Ernst, A. M., Wieland, F. & Brugger, B. Specificity of intramembrane protein-lipid interactions. Cold Spring Harb. Perspect. Biol. 3, a004705 (2011).

    PubMed  PubMed Central  Google Scholar 

  113. 113

    Anderson, R. G. W. A. Role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825 (2002).

    CAS  PubMed  Google Scholar 

  114. 114

    Kim, T. & Im, W. Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation. Biophys. J. 99, 175–183 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Milovanovic, D. et al. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains. Nat. Commun. 6, 5984 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Sharpe, H. J., Stevens, T. J. & Munro, S. A. Comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Norimatsu, Y., Hasegawa, K., Shimizu, N. & Toyoshima, C. Protein–phospholipid interplay revealed with crystals of a calcium pump. Nature 545, 193–198 (2017).

    CAS  PubMed  Google Scholar 

  118. 118

    Gupta, K. et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175 (2014). The authors analyse the behaviour of purified membrane proteins in the gas phase of an ion mobility mass spectrometer (native mass spectrometry), revealing the importance of specific lipid–protein interactions for regulating protein structure.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Haberkant, P. et al. In vivo profiling and visualization of cellular protein-lipid interactions using bifunctional fatty acids. Angew. Chem. 52, 4033–4038 (2013).

    CAS  Google Scholar 

  121. 121

    Niphakis, Micah, J. et al. A global map of lipid-binding proteins and their ligandability in cells. Cell 161, 1668–1680 (2015). This paper shows the power of chemical biology for the identification of novel lipid-binding proteins in a proteome-wide manner, leading to the identification of novel lipid functions.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Hulce, J. J., Cognetta, A. B., Niphakis, M. J., Tully, S. E. & Cravatt, B. F. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods 10, 259–264 (2013).

    PubMed  PubMed Central  Google Scholar 

  123. 123

    Haberkant, P. et al. Bifunctional sphingosine for cell-based analysis of protein-sphingolipid interactions. ACS Chem. Biol. 11, 222–230 (2016).

    CAS  PubMed  Google Scholar 

  124. 124

    Aviram, R. et al. Lipidomics analyses reveal temporal and spatial lipid organization and uncover daily oscillations in intracellular organelles. Mol. Cell 62, 636–648 (2016).

    CAS  PubMed  Google Scholar 

  125. 125

    Loizides-Mangold, U. et al. Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proc. Natl Acad. Sci. USA 114, E8565–E8574 (2017).

    CAS  PubMed  Google Scholar 

  126. 126

    Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Yang, H. et al. Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2. Nat. Commun. 6, 6129 (2015).

    CAS  PubMed  Google Scholar 

  128. 128

    Sousa, S. B. et al. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome. Nat. Genet. 46, 70–76 (2013).

    PubMed  Google Scholar 

  129. 129

    Henry, S. A., Kohlwein, S. D. & Carman, G. M. Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190, 317–349 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Cornell, R. B. & Northwood, I. C. Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization. Trends Biochem. Sci. 25, 441–447 (2000).

    CAS  PubMed  Google Scholar 

  131. 131

    Covino, R. et al. A eukaryotic sensor for membrane lipid saturation. Mol. Cell 63, 49–59 (2016). The function of yeast Mga2 as a sensor for membrane lipid saturation is explained in molecular detail, which is a clear example of how membrane composition can affect the function of a transmembrane protein.

    CAS  PubMed  Google Scholar 

  132. 132

    Holzer, R. G. et al. Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation. Cell 147, 173–184 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Ariyama, H., Kono, N., Matsuda, S., Inoue, T. & Arai, H. Decrease in membrane phospholipid unsaturation induces unfolded protein response. J. Biol. Chem. 285, 22027–22035 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Volmer, R., van der Ploeg, K. & Ron, D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl Acad. Sci. USA 110, 4628–4633 (2013).

    CAS  Google Scholar 

  135. 135

    Kono, N., Amin-Wetzel, N., Ron, D. & Gilmore, R. Generic membrane-spanning features endow IRE1α with responsiveness to membrane aberrancy. Mol. Biol. Cell 28, 2318–2332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Akagi, S. et al. Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids. FASEB J. 30, 2027–2039 (2016).

    CAS  PubMed  Google Scholar 

  137. 137

    Breslow, D. K. et al. Orm family proteins mediate sphingolipid homeostasis. Nature 463, 1048–1053 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Siow, D. L. & Wattenberg, B. W. Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis. J. Biol. Chem. 287, 40198–40204 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Kiefer, K. et al. Coordinated regulation of the orosomucoid-like gene family expression controls de novo ceramide synthesis in mammalian cells. J. Biol. Chem. 290, 2822–2830 (2015).

    CAS  PubMed  Google Scholar 

  140. 140

    Siow, D., Sunkara, M., Dunn, T. M., Morris, A. J. & Wattenberg, B. ORMDL/serine palmitoyltransferase stoichiometry determines effects of ORMDL3 expression on sphingolipid biosynthesis. J. Lipid Res. 56, 898–908 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Zhakupova, A. et al. ORMDL3 expression levels have no influence on the activity of serine palmitoyltransferase. FASEB J. 30, 4289–4300 (2016).

    CAS  PubMed  Google Scholar 

  142. 142

    Capasso, S. et al. Sphingolipid metabolic flow controls phosphoinositide turnover at the trans-Golgi network. EMBO J. 36, 1736–1754 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Senkal, C. E. et al. Ceramide is metabolized to acylceramide and stored in lipid droplets. Cell Metab. 25, 686–697 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Hofbauer, Harald, F. et al. Regulation of gene expression through a transcriptional repressor that senses acyl-chain length in membrane phospholipids. Dev. Cell 29, 729–739 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Young, B. P. et al. Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism. Science 329, 1085–1088 (2010). This study proposes a novel concept about PtdA as a pH sensor, showing how cells use this information to detect the metabolic status (cellular pH changes upon metabolic status) of the cell and then regulate transcription of phospholipid synthesis genes.

    CAS  PubMed  Google Scholar 

  146. 146

    Zhang, C. et al. Glycerolipid signals alter mTOR complex 2 (mTORC2) to diminish insulin signaling. Proc. Natl Acad. Sci. USA 109, 1667–1672 (2012).

    CAS  PubMed  Google Scholar 

  147. 147

    Menon, D. et al. Lipid sensing by mTOR complexes viade novosynthesis of phosphatidic acid. J. Biol. Chem. 292, 6303–6311 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Yoon, M.-S. et al. Rapid mitogenic regulation of the mTORC1 inhibitor, DEPTOR, by phosphatidic acid. Mol. Cell 58, 549–556 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Ohba, Y. et al. Mitochondria-type GPAT is required for mitochondrial fusion. EMBO J. 32, 1265–1279 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Höglinger, D. et al. Intracellular sphingosine releases calcium from lysosomes. eLife 4, e10616 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. 151

    Savoglidis, G. et al. A method for analysis and design of metabolism using metabolomics data and kinetic models: application on lipidomics using a novel kinetic model of sphingolipid metabolism. Metab. Eng. 37, 46–62 (2016).

    CAS  PubMed  Google Scholar 

  152. 152

    Frank, J. A. et al. Photoswitchable diacylglycerols enable optical control of protein kinase C. Nat. Chem. Biol. 12, 755–762 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2016).

    PubMed  PubMed Central  Google Scholar 

  154. 154

    Gulbins, E. et al. Acid sphingomyelinase–ceramide system mediates effects of antidepressant drugs. Nat. Med. 19, 934–938 (2013). The authors identify acid sphingomyelinase as a target for antidepressant drugs and use various approaches to modulate ceramide levels to show its importance in major depression, a good example of the production of a lipid as a therapeutic target.

    CAS  PubMed  Google Scholar 

  155. 155

    Ding, J. et al. The peroxisomal enzyme L-PBE is required to prevent the dietary toxicity of medium-chain fatty acids. Cell Rep. 5, 248–258 (2013).

    CAS  PubMed  Google Scholar 

  156. 156

    Andreone, B. J. et al. Blood—brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94, 581–594 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Guillou, H., Zadravec, D., Martin, P. G. & Jacobsson, A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog. Lipid Res. 49, 186–199 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Riezman laboratory for helpful discussions and funding from the Japanese Society for the Promotion of Science (T.H.), the Swiss National Science Foundation (H.R.) and the National Centre for Competence in Research in Chemical Biology (H.R.).

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article (researching data for the article, discussion of the content, writing, review and editing).

Corresponding author

Correspondence to Howard Riezman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

The LipidWeb

The SwissLipids site

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Inherited diseases of lipid metabolism (XLSX 18 kb)

Supplementary information S2 (table)

List of enzymes and their localizations. (XLSX 23 kb)

Supplementary information S3 (table)

Tissue distributions of enzymes. (XLSX 130 kb)

Supplementary information S4 (figure)

Analysis of tissue-specific regulation of lipid-related genes (PDF 175 kb)

Supplementary information S5 (box)

Effect of lipid structures on lateral heterogeneity in membranes (PDF 757 kb)

Glossary

Stereoisomers

Isomeric molecules that have the same molecular formula but different structures.

Membrane contact sites

Regions where two organelles are in close proximity, typically at a distance of less than 30 nm, where nonvesicular exchange of lipids is proposed to occur.

Lipid mediators

Lipids with signalling functions, such as the eicosanoids, which are derived from arachidonic acid released from the membrane and serve as ligands for their receptors.

Lipid droplets

Organelles where the excess of triglycerides, cholesteryl esters and acylceramides is stored.

Protein lipidation

A post-translational modification of proteins encompassing a covalent attachment of a lipid.

Sphingoid base

The structural backbone of sphingolipids, which also acts as one of the hydrophobic chains.

Cardiolipin

A mitochondria-specific (in mammals) glycerophospholipid with four acyl chains, the malfunction of which is involved in Barth syndrome.

Membrane nanodomains

Lateral heterogeneities in membranes, often very small and dynamic, where lipids are postulated to have important roles affecting membrane properties and function.

Plasmalogen

Glycerophospholipids with a vinyl-ether bond at the sn-1 position, which depend upon peroxisomes for their synthesis.

Promiscuity

In terms of enzymology, the ability of an enzyme to utilize a broad range of substrates.

Redundancy

A situation where different molecules (for example, enzymes) have (at least partially) overlapping functions.

ENCODE Project

(Encyclopaedia of DNA Elements). An international collaboration with the objective of comprehensively elucidating functional elements in the human genome.

Mead acid

A polyunsaturated fatty acid (20:3 n-9) that can be synthesized endogenously in mammals, which is produced under polyunsaturated fatty acid insufficiency.

Omega end

In fatty acid nomenclature, the end of a fatty acid that has a methyl group. The other end with a carboxyl group is called the alpha end.

Sjögren–Larsson syndrome

A genetic disease with skin and neurological problems, caused by mutations in a fatty aldehyde dehydrogenase involved in sphingolipid degradation.

Hereditary sensory and autonomic neuropathy

A genetic disease affecting the nervous system characterized by a loss of pain sensation, among other symptoms.

ω-O-acylceramides

Ceramides with another fatty acid O-esterified at the ω-end of the N-acyl chain.

SNARE

A group of proteins involved in membrane fusion.

Osteoclast

Multinucleated cell type generated by cell fusion that has a role in bone resorption.

Liquid-ordered domains

A state of membrane lipids where hydrophobic chains are ordered but lateral diffusion is still high.

Sertoli cells

Testicular cells that assist spermatogenesis.

Ferroptosis

A non-apoptotic cell death triggered by overaccumulation of peroxidized lipids.

Nuclear receptors

A family of proteins that serve as transcriptional regulators in the nucleus upon ligand binding.

BAR domain

A protein domain that has the ability to bind and/or to induce a specific curvature in membranes.

Annular lipids

Lipids that stick to the surface of membrane protein transmembrane regions with fairly weak interactions, being in rapid exchange with the bulk of membrane lipids.

Nonannular lipids

Lipids that bind strongly to, or are buried in, membrane protein transmembrane regions.

Tor complex 2

(TORC2) Protein kinase complex that contains the target of rapamycin subunit that responds to nutritional and other signals and acts as a central regulator of protein and lipid synthesis and cell proliferation.

AMP-activated protein kinase

(AMPK). An important protein kinase that senses energy status by binding to AMP and that is activated upon glucose deprivation to regulate several biosynthetic pathways.

pKa

The negative log10 of the acid dissociation constant of a molecule.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harayama, T., Riezman, H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 19, 281–296 (2018). https://doi.org/10.1038/nrm.2017.138

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing