Once and only once: mechanisms of centriole duplication and their deregulation in disease

Key Points

  • Centrosome duplication is tightly regulated to ensure that centrioles duplicate only once per cell cycle and that only one new centriole is produced per pre-existing centriole

  • Phosphorylation events have an important role in controlling centriole number. Polo-like kinase 1 (PLK1) has a key function in cell cycle control of centriole duplication, whereas PLK4 takes centre stage in controlling centriole copy number

  • Recent work has uncovered the existence of distinct signalling pathways that limit the proliferation of cells with an increase or decrease in centrosome number

  • The presence of extra centrosomes can endow cells with oncogenic properties. However, overcoming the inhibitory effect of extra centrosomes on cell proliferation is necessary to allow cells with extra centrosomes to sustain the cell divisions required for tumour development

  • Primary microcephaly may be caused by deregulation of centriole numbers and, potentially, by pathological activation of the mitotic surveillance pathway, and in consequence cell cycle arrest or apoptosis, in the developing brain

Abstract

Centrioles are conserved microtubule-based organelles that form the core of the centrosome and act as templates for the formation of cilia and flagella. Centrioles have important roles in most microtubule-related processes, including motility, cell division and cell signalling. To coordinate these diverse cellular processes, centriole number must be tightly controlled. In cycling cells, one new centriole is formed next to each pre-existing centriole in every cell cycle. Advances in imaging, proteomics, structural biology and genome editing have revealed new insights into centriole biogenesis, how centriole numbers are controlled and how alterations in these processes contribute to diseases such as cancer and neurodevelopmental disorders. Moreover, recent work has uncovered the existence of surveillance pathways that limit the proliferation of cells with numerical centriole aberrations. Owing to this progress, we now have a better understanding of the molecular mechanisms governing centriole biogenesis, opening up new possibilities for targeting these pathways in the context of human disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Centriole architecture and the centrosome duplication–segregation cycle.
Figure 2: Key aspects of the centrosome duplication cycle.
Figure 3: Responding to centrosome defects.
Figure 4: Mechanisms through which centrosome amplification can contribute to tumorigenesis.

References

  1. 1

    Nigg, E. A. & Raff, J. W. Centrioles, centrosomes, and cilia in health and disease. Cell 139, 663–678 (2009).

    CAS  Google Scholar 

  2. 2

    Bornens, M. The centrosome in cells and organisms. Science 335, 422–426 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Conduit, P. T., Wainman, A. & Raff, J. W. Centrosome function and assembly in animal cells. Nat. Rev. Mol. Cell Biol. 16, 611–624 (2015).

    CAS  Google Scholar 

  4. 4

    Fu, J., Hagan, I. M. & Glover, D. M. The centrosome and its duplication cycle. Cold Spring Harb. Perspect. Biol. 7, a015800 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. 5

    Woodruff, J. B., Wueseke, O. & Hyman, A. A. Pericentriolar material structure and dynamics. Philos. Trans. R. Soc. Lond. B Biol Sci. 369, 20130459 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Arquint, C., Gabryjonczyk, A. M. & Nigg, E. A. Centrosomes as signalling centres. Philos. Trans. R. Soc. Lond. B Biol Sci. 369, 20130464 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. 7

    Sanchez, I. & Dynlacht, B. D. Cilium assembly and disassembly. Nat. Cell Biol. 18, 711–717 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Braun, D. A. & Hildebrandt, F. Ciliopathies. Cold Spring Harb. Perspect. Biol. 9, a028191 (2016).

    Google Scholar 

  9. 9

    Bettencourt-Dias, M., Hildebrandt, F., Pellman, D., Woods, G. & Godinho, S. A. Centrosomes and cilia in human disease. Trends Genet. 27, 307–315 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Gonczy, P. Centrosomes and cancer: revisiting a long-standing relationship. Nat. Rev. Cancer 15, 639–652 (2015).

    CAS  PubMed  Google Scholar 

  11. 11

    Azimzadeh, J. & Marshall, W. F. Building the centriole. Curr. Biol. 20, R816–R825 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Gonczy, P. Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol. 13, 425–435 (2012).

    PubMed  Google Scholar 

  13. 13

    Gupta, G. D. et al. A Dynamic protein interaction landscape of the human centrosome-cilium interface. Cell 163, 1484–1499 (2015). This study is a large proteomics effort to probe protein interactions at the centrosome–cilium interface.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Garcia, G. 3rd & Reiter, J. F. A primer on the mouse basal body. Cilia 5, 17 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Hirono, M. Cartwheel assembly. Philos. Trans. R. Soc. Lond. B Biol Sci. 369, 20130458 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Keller, D. et al. Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells. J. Cell Biol. 204, 697–712 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Guichard, P., Chretien, D., Marco, S. & Tassin, A. M. Procentriole assembly revealed by cryo-electron tomography. EMBO J. 29, 1565–1572 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Guichard, P. et al. Cartwheel architecture of Trichonympha basal body. Science 337, 553 (2012).

    CAS  PubMed  Google Scholar 

  19. 19

    Guichard, P. et al. Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry. Curr. Biol. 23, 1620–1628 (2013).

    CAS  PubMed  Google Scholar 

  20. 20

    Bauer, M., Cubizolles, F., Schmidt, A. & Nigg, E. A. Quantitative analysis of human centrosome architecture by targeted proteomics and fluorescence imaging. EMBO J. 35, 2152–2166 (2016). This study is an initial effort at obtaining quantitative information about the abundance of centrosomal proteins within cells and isolated organelles.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Kitagawa, D. et al. Structural basis of the 9-fold symmetry of centrioles. Cell 144, 364–375 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    van Breugel, M. et al. Structures of SAS-6 suggest its organization in centrioles. Science 331, 1196–1199 (2011).

    CAS  PubMed  Google Scholar 

  23. 23

    Guichard, P. et al. Cell-free reconstitution reveals centriole cartwheel assembly mechanisms. Nat. Commun. 8, 14813 (2017). This is a pioneering study demonstrating successful in vitro reconstitution of early steps of centriole assembly.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Wang, W. J. et al. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly. eLife 4, e10586 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Hilbert, M. et al. SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture. Nat. Cell Biol. 18, 393–403 (2016).

    CAS  PubMed  Google Scholar 

  26. 26

    Ohta, M. et al. Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat. Commun. 5, 5267 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Dzhindzhev, N. S. et al. Plk4 phosphorylates Ana2 to trigger Sas6 recruitment and procentriole formation. Curr. Biol. 24, 2526–2532 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Moyer, T. C., Clutario, K. M., Lambrus, B. G., Daggubati, V. & Holland, A. J. Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J. Cell Biol. 209, 863–878 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Kratz, A. S., Barenz, F., Richter, K. T. & Hoffmann, I. Plk4-dependent phosphorylation of STIL is required for centriole duplication. Biol. Open 4, 370–377 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Stevens, N. R., Dobbelaere, J., Brunk, K., Franz, A. & Raff, J. W. Drosophila Ana2 is a conserved centriole duplication factor. J. Cell Biol. 188, 313–323 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Arquint, C., Sonnen, K. F., Stierhof, Y. D. & Nigg, E. A. Cell-cycle-regulated expression of STIL controls centriole number in human cells. J. Cell Sci. 125, 1342–1352 (2012).

    CAS  PubMed  Google Scholar 

  32. 32

    Tang, C. J. et al. The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation. EMBO J. 30, 4790–4804 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Hiraki, M., Nakazawa, Y., Kamiya, R. & Hirono, M. Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. Curr. Biol. 17, 1778–1783 (2007).

    CAS  PubMed  Google Scholar 

  34. 34

    Lin, Y. C. et al. Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole assembly. EMBO J. 32, 1141–1154 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Sonnen, K. F., Schermelleh, L., Leonhardt, H. & Nigg, E. A. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol. Open 1, 965–976 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Kleylein-Sohn, J. et al. Plk4-induced centriole biogenesis in human cells. Dev. Cell 13, 190–202 (2007).

    CAS  PubMed  Google Scholar 

  37. 37

    Pelletier, L., O'Toole, E., Schwager, A., Hyman, A. A. & Muller-Reichert, T. Centriole assembly in Caenorhabditis elegans. Nature 444, 619–623 (2006).

    CAS  PubMed  Google Scholar 

  38. 38

    Sharma, A. et al. Centriolar CPAP/SAS-4 imparts slow processive microtubule growth. Dev. Cell 37, 362–376 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Zheng, X. et al. Molecular basis for CPAP-tubulin interaction in controlling centriolar and ciliary length. Nat. Commun. 7, 11874 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Galletta, B. J., Jacobs, K. C., Fagerstrom, C. J. & Rusan, N. M. Asterless is required for centriole length control and sperm development. J. Cell Biol. 213, 435–450 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Marshall, W. F. Cell geometry: how cells count and measure size. Annu. Rev. Biophys. 45, 49–64 (2016).

    CAS  PubMed  Google Scholar 

  42. 42

    Delgehyr, N. et al. Klp10A, a microtubule-depolymerizing kinesin-13, cooperates with CP110 to control Drosophila centriole length. Curr. Biol. 22, 502–509 (2012).

    CAS  PubMed  Google Scholar 

  43. 43

    Kobayashi, T., Tsang, W. Y., Li, J., Lane, W. & Dynlacht, B. D. Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell 145, 914–925 (2011).

    CAS  PubMed  Google Scholar 

  44. 44

    Franz, A., Roque, H., Saurya, S., Dobbelaere, J. & Raff, J. W. CP110 exhibits novel regulatory activities during centriole assembly in Drosophila. J. Cell Biol. 203, 785–799 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Schmidt, T. I. et al. Control of centriole length by CPAP and CP110. Curr. Biol. 19, 1005–1011 (2009).

    CAS  PubMed  Google Scholar 

  46. 46

    Tsang, W. Y. et al. CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. Dev. Cell 15, 187–197 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Al-Hakim, A. K., Bashkurov, M., Gingras, A. C., Durocher, D. & Pelletier, L. Interaction proteomics identify NEURL4 and the HECT E3 ligase HERC2 as novel modulators of centrosome architecture. Mol. Cell. Proteomics 11, M111.014233 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. 48

    Li, J. et al. USP33 regulates centrosome biogenesis via deubiquitination of the centriolar protein CP110. Nature 495, 255–259 (2013).

    CAS  PubMed  Google Scholar 

  49. 49

    Li, J. et al. Neurl4, a novel daughter centriole protein, prevents formation of ectopic microtubule organizing centres. EMBO Rep. 13, 547–553 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Cao, J. et al. miR-129-3p controls cilia assembly by regulating CP110 and actin dynamics. Nat. Cell Biol. 14, 697–706 (2012).

    CAS  PubMed  Google Scholar 

  51. 51

    Kohlmaier, G. et al. Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP. Curr. Biol. 19, 1012–1018 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Tang, C. J., Fu, R. H., Wu, K. S., Hsu, W. B. & Tang, T. K. CPAP is a cell-cycle regulated protein that controls centriole length. Nat. Cell Biol. 11, 825–831 (2009).

    CAS  PubMed  Google Scholar 

  53. 53

    Comartin, D. et al. CEP120 and SPICE1 cooperate with CPAP in centriole elongation. Curr. Biol. 23, 1360–1366 (2013).

    CAS  PubMed  Google Scholar 

  54. 54

    Lin, Y. N. et al. CEP120 interacts with CPAP and positively regulates centriole elongation. J. Cell Biol. 202, 211–219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Keller, L. C. et al. Molecular architecture of the centriole proteome: the conserved WD40 domain protein POC1 is required for centriole duplication and length control. Mol. Biol. Cell 20, 1150–1166 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Azimzadeh, J. et al. hPOC5 is a centrin-binding protein required for assembly of full-length centrioles. J. Cell Biol. 185, 101–114 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Chang, C. W., Hsu, W. B., Tsai, J. J., Tang, C. J. & Tang, T. K. CEP295 interacts with microtubules and is required for centriole elongation. J. Cell Sci. 129, 2501–2513 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Saurya, S. et al. Drosophila Ana1 is required for centrosome assembly and centriole elongation. J. Cell Sci. 129, 2514–2525 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Bobinnec, Y. et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575–1589 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Janke, C. & Bulinski, J. C. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12, 773–786 (2011).

    CAS  PubMed  Google Scholar 

  61. 61

    Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

    CAS  PubMed  Google Scholar 

  62. 62

    Jakobsen, L. et al. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. EMBO J. 30, 1520–1535 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Prosser, S. L. & Pelletier, L. Mitotic spindle assembly in animal cells: a fine balancing act. Nat. Rev. Mol. Cell Biol. 18, 187–201 (2017).

    CAS  PubMed  Google Scholar 

  64. 64

    Hori, A. & Toda, T. Regulation of centriolar satellite integrity and its physiology. Cell. Mol. Life Sci. 74, 213–229 (2017).

    CAS  Google Scholar 

  65. 65

    Fu, J. & Glover, D. M. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol. 2, 120104 (2012).

    PubMed  PubMed Central  Google Scholar 

  66. 66

    Lawo, S., Hasegan, M., Gupta, G. D. & Pelletier, L. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14, 1148–1158 (2012).

    CAS  PubMed  Google Scholar 

  67. 67

    Mennella, V. et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14, 1159–1168 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Conduit, P. T. et al. The centrosome-specific phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation. Dev. Cell 28, 659–669 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Conduit, P. T. et al. A molecular mechanism of mitotic centrosome assembly in Drosophila. eLife 3, e03399 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. 70

    Feng, Z. et al. Structural basis for mitotic centrosome assembly in flies. Cell 169, 1078–1089.e13 (2017). This structural study focusing on the D. melanogaster PCM scaffolding protein Cnn provides insight into molecular interactions required for mitotic centrosome assembly.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  Google Scholar 

  72. 72

    Zwicker, D., Decker, M., Jaensch, S., Hyman, A. A. & Julicher, F. Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. Proc. Natl Acad. Sci. USA 111, E2636–2645 (2014).

    CAS  PubMed  Google Scholar 

  73. 73

    Woodruff, J. B. et al. Regulated assembly of a supramolecular centrosome scaffold in vitro. Science 348, 808–812 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Woodruff, J. B. et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169, 1066–1077.e10 (2017). This study shows that the C. elegans PCM protein SPD-5 forms a selective condensate able to nucleate microtubules, suggesting that PCM formation in vivo involves a phase separation process (compare with reference 70).

    CAS  PubMed  Google Scholar 

  75. 75

    Nigg, E. A. Centrosome duplication: of rules and licenses. Trends Cell Biol. 17, 215–221 (2007).

    CAS  PubMed  Google Scholar 

  76. 76

    Tsou, M. F. & Stearns, T. Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947–951 (2006).

    CAS  PubMed  Google Scholar 

  77. 77

    Tsou, M. F. et al. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell 17, 344–354 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Loncarek, J., Hergert, P., Magidson, V. & Khodjakov, A. Control of daughter centriole formation by the pericentriolar material. Nat. Cell Biol. 10, 322–328 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Matsuo, K. et al. Kendrin is a novel substrate for separase involved in the licensing of centriole duplication. Curr. Biol. 22, 915–921 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Lee, K. & Rhee, K. Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis. Cell Cycle 11, 2476–2485 (2012).

    CAS  PubMed  Google Scholar 

  81. 81

    Kim, J., Lee, K. & Rhee, K. PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit. Nat. Commun. 6, 10076 (2015). This study, along with reference 79, identifies pericentrin as a key substrate of separase, which is important for licensing of centriole duplication.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Schockel, L., Mockel, M., Mayer, B., Boos, D. & Stemmann, O. Cleavage of cohesin rings coordinates the separation of centrioles and chromatids. Nat. Cell Biol. 13, 966–972 (2011).

    PubMed  Google Scholar 

  83. 83

    Oliveira, R. A. & Nasmyth, K. Cohesin cleavage is insufficient for centriole disengagement in Drosophila. Curr. Biol. 23, R601–603 (2013).

    CAS  PubMed  Google Scholar 

  84. 84

    Kuriyama, R. & Borisy, G. G. Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J. Cell Biol. 91, 814–821 (1981).

    CAS  PubMed  Google Scholar 

  85. 85

    Shukla, A., Kong, D., Sharma, M., Magidson, V. & Loncarek, J. Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation. Nat. Commun. 6, 8077 (2015). This is a correlative live and electron microscopy study emphasizing the role of PLK1 in triggering early licensing events important for a new round of centriole duplication.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Arquint, C. & Nigg, E. A. STIL microcephaly mutations interfere with APC/C-mediated degradation and cause centriole amplification. Curr. Biol. 24, 351–360 (2014).

    CAS  PubMed  Google Scholar 

  87. 87

    Kim, M. et al. Promotion and suppression of centriole duplication are catalytically coupled through PLK4 to ensure centriole homeostasis. Cell Rep. 16, 1195–1203 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Izquierdo, D., Wang, W. J., Uryu, K. & Tsou, M. F. Stabilization of cartwheel-less centrioles for duplication requires CEP295-mediated centriole-to-centrosome conversion. Cell Rep. 8, 957–965 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Fu, J. et al. Conserved molecular interactions in centriole-to-centrosome conversion. Nat. Cell Biol. 18, 87–99 (2016). This study illuminates an evolutionarily conserved mechanism underlying centriole-to-centrosome conversion.

    CAS  PubMed  Google Scholar 

  90. 90

    Wang, W. J., Soni, R. K., Uryu, K. & Tsou, M. F. The conversion of centrioles to centrosomes: essential coupling of duplication with segregation. J. Cell Biol. 193, 727–739 (2011). This study emphasizes a key role for PLK1 in both centriole disengagement and PCM assembly on procentrioles, two mitotic events critical for licensing centrioles for the next round of duplication.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Novak, Z. A., Wainman, A., Gartenmann, L. & Raff, J. W. Cdk1 Phosphorylates Drosophila Sas-4 to recruit Polo to daughter centrioles and convert them to centrosomes. Dev. Cell 37, 545–557 (2016). This study describes an early key step leading to centrosomal recruitment of PLK1, which is important for centriole-to-centrosome conversion (see also references 85, 89 and 90).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Novak, Z. A., Conduit, P. T., Wainman, A. & Raff, J. W. Asterless licenses daughter centrioles to duplicate for the first time in Drosophila embryos. Curr. Biol. 24, 1276–1282 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Tsuchiya, Y., Yoshiba, S., Gupta, A., Watanabe, K. & Kitagawa, D. Cep295 is a conserved scaffold protein required for generation of a bona fide mother centriole. Nat. Commun. 7, 12567 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Hatch, E. M., Kulukian, A., Holland, A. J., Cleveland, D. W. & Stearns, T. Cep152 interacts with Plk4 and is required for centriole duplication. J. Cell Biol. 191, 721–729 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Cizmecioglu, O. et al. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol. 191, 731–739 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Kim, T. S. et al. Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152. Proc. Natl Acad. Sci. USA 110, E4849–4857 (2013).

    CAS  PubMed  Google Scholar 

  97. 97

    Sonnen, K. F., Gabryjonczyk, A. M., Anselm, E., Stierhof, Y. D. & Nigg, E. A. Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication. J. Cell Sci. 126, 3223–3233 (2013).

    CAS  PubMed  Google Scholar 

  98. 98

    Park, S. Y. et al. Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis. Nat. Struct. Mol. Biol. 21, 696–703 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Sugioka, K. et al. Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly and pericentriolar material formation. eLife 6, e20353 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. 100

    Habedanck, R., Stierhof, Y. D., Wilkinson, C. J. & Nigg, E. A. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 7, 1140–1146 (2005).

    CAS  PubMed  Google Scholar 

  101. 101

    Bettencourt-Dias, M. et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199–2207 (2005).

    CAS  PubMed  Google Scholar 

  102. 102

    Cunha-Ferreira, I. et al. Regulation of autophosphorylation controls PLK4 self-destruction and centriole number. Curr. Biol. 23, 2245–2254 (2013).

    CAS  PubMed  Google Scholar 

  103. 103

    Holland, A. J., Lan, W., Niessen, S., Hoover, H. & Cleveland, D. W. Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J. Cell Biol. 188, 191–198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Klebba, J. E. et al. Polo-like kinase 4 autodestructs by generating its Slimb-binding phosphodegron. Curr. Biol. 23, 2255–2261 (2013).

    CAS  PubMed  Google Scholar 

  105. 105

    Guderian, G., Westendorf, J., Uldschmid, A. & Nigg, E. A. Plk4 trans-autophosphorylation regulates centriole number by controlling betaTrCP-mediated degradation. J. Cell Sci. 123, 2163–2169 (2010).

    CAS  PubMed  Google Scholar 

  106. 106

    Holland, A. J. et al. The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev. 26, 2684–2689 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Lopes, C. A. et al. PLK4 trans-autoactivation controls centriole biogenesis in space. Dev. Cell 35, 222–235 (2015).

    CAS  PubMed  Google Scholar 

  108. 108

    Arquint, C. et al. STIL binding to Polo-box 3 of PLK4 regulates centriole duplication. eLife 4, e07888 (2015).

    PubMed Central  Google Scholar 

  109. 109

    Lettman, M. M. et al. Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly. Dev. Cell 25, 284–298 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Cottee, M. A. et al. Crystal structures of the CPAP/STIL complex reveal its role in centriole assembly and human microcephaly. eLife 2, e01071 (2013).

    PubMed  PubMed Central  Google Scholar 

  111. 111

    Hatzopoulos, G. N. et al. Structural analysis of the G-box domain of the microcephaly protein CPAP suggests a role in centriole architecture. Structure 21, 2069–2077 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Zheng, X. et al. Conserved TCP domain of Sas-4/CPAP is essential for pericentriolar material tethering during centrosome biogenesis. Proc. Natl Acad. Sci. USA 111, E354–E363 (2014).

    CAS  PubMed  Google Scholar 

  113. 113

    Goryachev, A. B. & Leda, M. Many roads to symmetry breaking: molecular mechanisms and theoretical models of yeast cell polarity. Mol. Biol. Cell 28, 370–380 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Fong, C. S., Kim, M., Yang, T. T., Liao, J. C. & Tsou, M. F. SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication. Dev. Cell 30, 238–245 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Zitouni, S. et al. CDK1 prevents unscheduled PLK4-STIL complex assembly in centriole biogenesis. Curr. Biol. 26, 1127–1137 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Peel, N. et al. Protein phosphatase 1 down regulates ZYG-1 levels to limit centriole duplication. PLoS Genet. 13, e1006543 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. 117

    Agircan, F. G., Schiebel, E. & Mardin, B. R. Separate to operate: control of centrosome positioning and separation. Philos. Trans. R. Soc. Lond. B Biol Sci. 369, 20130461 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. 118

    Mayor, T., Stierhof, Y. D., Tanaka, K., Fry, A. M. & Nigg, E. A. The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J. Cell Biol. 151, 837–846 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Nigg, E. A. & Stearns, T. The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat. Cell Biol. 13, 1154–1160 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Kong, D. et al. Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles. J. Cell Biol. 206, 855–865 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Lane, H. A. & Nigg, E. A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol. 135, 1701–1713 (1996).

    CAS  PubMed  Google Scholar 

  122. 122

    Lee, K. & Rhee, K. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 195, 1093–1101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Joukov, V., Walter, J. C. & De Nicolo, A. The Cep192-organized aurora A-Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly. Mol. Cell 55, 578–591 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Laos, T., Cabral, G. & Dammermann, A. Isotropic incorporation of SPD-5 underlies centrosome assembly in C. elegans. Curr. Biol. 25, R648–649 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Spassky, N. & Meunier, A. The development and functions of multiciliated epithelia. Nat. Rev. Mol. Cell Biol. 18, 423–436 (2017).

    CAS  PubMed  Google Scholar 

  126. 126

    Azimzadeh, J., Wong, M. L., Downhour, D. M., Sanchez Alvarado, A. & Marshall, W. F. Centrosome loss in the evolution of planarians. Science 335, 461–463 (2012). By showing that in planarians centrioles assemble only in terminally differentiating ciliated cells but are not required for mitotic cell divisions, this study has important implications for the understanding of the evolution of the animal centrosome and its role in development.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Basto, R. et al. Flies without centrioles. Cell 125, 1375–1386 (2006).

    CAS  Google Scholar 

  128. 128

    Debec, A., Sullivan, W. & Bettencourt-Dias, M. Centrioles: active players or passengers during mitosis? Cell. Mol. Life Sci. 67, 2173–2194 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Szollosi, D., Calarco, P. & Donahue, R. P. Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J. Cell Sci. 11, 521–541 (1972).

    CAS  PubMed  Google Scholar 

  130. 130

    Howe, K. & FitzHarris, G. A non-canonical mode of microtubule organization operates throughout pre-implantation development in mouse. Cell Cycle 12, 1616–1624 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Coelho, P. A. et al. Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles. Dev. Cell 27, 586–597 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Bazzi, H. & Anderson, K. V. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc. Natl Acad. Sci. USA 111, E1491–1500 (2014).

    CAS  Google Scholar 

  133. 133

    Wong, Y. L. et al. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348, 1155–1160 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Lambrus, B. G. et al. p53 protects against genome instability following centriole duplication failure. J. Cell Biol. 210, 63–77 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Lambrus, B. G. et al. A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis. J. Cell Biol. 214, 143–153 (2016). This study uses genome-wide screening to uncover a surveillance pathway involving 53BP1 and USP28 that acts to activate p53 in response to loss of centrosomes or extended duration of mitosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Fong, C. S. et al. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. Elife 5 (2016). This study uses CRISPR screening to identify 53BP1 and USP28 as components acting upstream of p53 to arrest the cell cycle in response to centrosome loss or an increased duration of mitosis.

    Google Scholar 

  137. 137

    Meitinger, F. et al. 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J. Cell Biol. 214, 155–166 (2016). This study presents results in line with those from references 135 and 136 and additionally shows that loss of the ubiquitin ligase TRIM37 enables the formation of extra-centrosomal microtubule organizing centres, thereby allowing the cell to bypass cell cycle arrest caused by centrosome loss.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Knobel, P. A. et al. USP28 is recruited to sites of DNA damage by the tandem BRCT domains of 53BP1 but plays a minor role in double-strand break metabolism. Mol. Cell. Biol. 34, 2062–2074 (2014).

    PubMed  PubMed Central  Google Scholar 

  139. 139

    Zhang, D., Zaugg, K., Mak, T. W. & Elledge, S. J. A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 126, 529–542 (2006).

    CAS  PubMed  Google Scholar 

  140. 140

    Zimmermann, M. & de Lange, T. 53BP1: pro choice in DNA repair. Trends Cell Biol. 24, 108–117 (2014).

    CAS  PubMed  Google Scholar 

  141. 141

    Cuella-Martin, R. et al. 53BP1 integrates DNA repair and p53-dependent cell fate decisions via distinct mechanisms. Mol. Cell 64, 51–64 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Uetake, Y. & Sluder, G. Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr. Biol. 20, 1666–1671 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Schulein-Volk, C. et al. Dual regulation of Fbw7 function and oncogenic transformation by Usp28. Cell Rep. 9, 1099–1109 (2014).

    PubMed  Google Scholar 

  144. 144

    Diefenbacher, M. E. et al. The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J. Clin. Invest. 124, 3407–3418 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Lambrus, B. G. & Holland, A. J. A new mode of mitotic surveillance. Trends Cell Biol. 27, 314–321 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Levine, M. S. et al. Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Dev. Cell 40, 313–322.e5 (2017). Using a mouse model allowing moderately increased expression of PLK4, this study provides long-awaited evidence for the hypothesis that centrosome amplification is sufficient to promote spontaneous tumorigenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Ganem, N. J. et al. Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833–848 (2014). This study reports that cytokinesis failure and concomitant centrosome amplification result in the activation of the Hippo pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Fava, L. L. et al. The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev. 31, 34–45 (2017). This study reports that PIDDosome–caspase 2 axis activation has a key role in stabilizing p53 and provides a means to halt cell proliferation in response to centrosome amplification (see also reference 147).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Tinel, A. & Tschopp, J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304, 843–846 (2004).

    CAS  PubMed  Google Scholar 

  150. 150

    Chan, J. Y. A clinical overview of centrosome amplification in human cancers. Int. J. Biol. Sci. 7, 1122–1144 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Schnerch, D. & Nigg, E. A. Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene 35, 2711–2722 (2016).

    CAS  PubMed  Google Scholar 

  152. 152

    Basto, R. et al. Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032–1042 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Sabino, D. et al. Moesin is a major regulator of centrosome behavior in epithelial cells with extra centrosomes. Curr. Biol. 25, 879–889 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Marthiens, V. et al. Centrosome amplification causes microcephaly. Nat. Cell Biol. 15, 731–740 (2013).

    CAS  PubMed  Google Scholar 

  155. 155

    Vitre, B. et al. Chronic centrosome amplification without tumorigenesis. Proc. Natl Acad. Sci. USA 112, E6321–E6330 (2015).

    CAS  PubMed  Google Scholar 

  156. 156

    Sercin, O. et al. Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nat. Cell Biol. 18, 100–110 (2016).

    CAS  PubMed  Google Scholar 

  157. 157

    Coelho, P. A. et al. Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse. Open Biol. 5, 150209 (2015).

    PubMed  PubMed Central  Google Scholar 

  158. 158

    Kulukian, A. et al. Epidermal development, growth control, and homeostasis in the face of centrosome amplification. Proc. Natl Acad. Sci. USA 112, E6311–E6320 (2015).

    CAS  PubMed  Google Scholar 

  159. 159

    Loncarek, J., Hergert, P. & Khodjakov, A. Centriole reduplication during prolonged interphase requires procentriole maturation governed by Plk1. Curr. Biol. 20, 1277–1282 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Douthwright, S. & Sluder, G. Link between DNA damage and centriole disengagement/reduplication in untransformed human cells. J. Cell. Physiol. 229, 1427–1436 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Inanc, B., Dodson, H. & Morrison, C. G. A centrosome-autonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage. Mol. Biol. Cell 21, 3866–3877 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162

    Ganem, N. J., Storchova, Z. & Pellman, D. Tetraploidy, aneuploidy and cancer. Curr. Opin. Genet. Dev. 17, 157–162 (2007).

    CAS  PubMed  Google Scholar 

  163. 163

    Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    CAS  PubMed  Google Scholar 

  165. 165

    Krzywicka-Racka, A. & Sluder, G. Repeated cleavage failure does not establish centrosome amplification in untransformed human cells. J. Cell Biol. 194, 199–207 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166

    Fan, G. et al. Loss of KLF14 triggers centrosome amplification and tumorigenesis. Nat. Commun. 6, 8450 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167

    Li, J. et al. SAK, a new polo-like kinase, is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing. Neoplasia 7, 312–323 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168

    Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande Woude, G. F. Abnormal centrosome amplification in the absence of p53. Science 271, 1744–1747 (1996).

    CAS  Google Scholar 

  169. 169

    Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Quintyne, N. J., Reing, J. E., Hoffelder, D. R., Gollin, S. M. & Saunders, W. S. Spindle multipolarity is prevented by centrosomal clustering. Science 307, 127–129 (2005).

    CAS  Google Scholar 

  171. 171

    Leber, B. et al. Proteins required for centrosome clustering in cancer cells. Sci. Transl Med. 2, 33ra38 (2010).

    PubMed  Google Scholar 

  172. 172

    Kwon, M. et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22, 2189–2203 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Silkworth, W. T., Nardi, I. K., Scholl, L. M. & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS ONE 4, e6564 (2009).

    PubMed  PubMed Central  Google Scholar 

  174. 174

    Zhang, Y. et al. USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J. Clin. Invest. 122, 4362–4374 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175

    Silkworth, W. T., Nardi, I. K., Paul, R., Mogilner, A. & Cimini, D. Timing of centrosome separation is important for accurate chromosome segregation. Mol. Biol. Cell 23, 401–411 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176

    van Ree, J. H., Nam, H. J., Jeganathan, K. B., Kanakkanthara, A. & van Deursen, J. M. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes. Nat. Cell Biol. 18, 814–821 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. 177

    Nam, H. J. & van Deursen, J. M. Cyclin B2 and p53 control proper timing of centrosome separation. Nat. Cell Biol. 16, 538–549 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178

    Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J. & Medema, R. H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333, 1895–1898 (2011).

    CAS  PubMed  Google Scholar 

  179. 179

    Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180

    Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181

    Castellanos, E., Dominguez, P. & Gonzalez, C. Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr. Biol. 18, 1209–1214 (2008).

    CAS  PubMed  Google Scholar 

  182. 182

    Godinho, S. A. & Pellman, D. Causes and consequences of centrosome abnormalities in cancer. Philos. Trans. R. Soc. Lond. B Biol Sci. 369, 20130467 (2014).

    PubMed  PubMed Central  Google Scholar 

  183. 183

    Godinho, S. A. et al. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510, 167–171 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184

    Mahjoub, M. R. & Stearns, T. Supernumerary centrosomes nucleate extra cilia and compromise primary cilium signaling. Curr. Biol. 22, 1628–1634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185

    Han, Y. G. et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 15, 1062–1065 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186

    Wong, S. Y. et al. Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat. Med. 15, 1055–1061 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187

    Nano, M. & Basto, R. Consequences of centrosome dysfunction during brain development. Adv. Exp. Med. Biol. 1002, 19–45 (2017).

    CAS  PubMed  Google Scholar 

  188. 188

    Chavali, P. L., Putz, M. & Gergely, F. Small organelle, big responsibility: the role of centrosomes in development and disease. Philos. Trans. R. Soc. Lond. B Biol Sci. 369, 20130468 (2014).

    PubMed  PubMed Central  Google Scholar 

  189. 189

    Faheem, M. et al. Molecular genetics of human primary microcephaly: an overview. BMC Med. Genom. 8 (Suppl. 1), S4 (2015).

    Google Scholar 

  190. 190

    Jayaraman, D. et al. Microcephaly proteins Wdr62 and Aspm define a mother centriole complex regulating centriole biogenesis, apical complex, and cell fate. Neuron 92, 813–828 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191

    Insolera, R., Bazzi, H., Shao, W., Anderson, K. V. & Shi, S. H. Cortical neurogenesis in the absence of centrioles. Nat. Neurosci. 17, 1528–1535 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192

    Marjanovic, M. et al. CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination. Nat. Commun. 6, 7676 (2015).

    PubMed  PubMed Central  Google Scholar 

  193. 193

    Martin, C. A. et al. Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy. Nat. Genet. 46, 1283–1292 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194

    Morin, X. & Bellaiche, Y. Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev. Cell 21, 102–119 (2011).

    CAS  PubMed  Google Scholar 

  195. 195

    Lizarraga, S. B. et al. Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors. Development 137, 1907–1917 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. 196

    Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    CAS  Google Scholar 

  197. 197

    Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat. Cell Biol. 10, 93–101 (2008).

    CAS  PubMed  Google Scholar 

  198. 198

    Sir, J. H. et al. Loss of centrioles causes chromosomal instability in vertebrate somatic cells. J. Cell Biol. 203, 747–756 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. 199

    Pilaz, L. J. et al. Prolonged mitosis of neural progenitors alters cell fate in the developing brain. Neuron 89, 83–99 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200

    Bury, L. et al. Plk4 and Aurora A cooperate in the initiation of acentriolar spindle assembly in mammalian oocytes. J. Cell Biol. 216, 3571–3590 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. 201

    Kazazian, K. et al. Plk4 promotes cancer invasion and metastasis through Arp2/3 complex regulation of the actin cytoskeleton. Cancer Res. 77, 434–447 (2017).

    CAS  PubMed  Google Scholar 

  202. 202

    Mason, J. M. et al. Functional characterization of CFI-400945, a Polo-like kinase 4 inhibitor, as a potential anticancer agent. Cancer Cell 26, 163–176 (2014).

    CAS  PubMed  Google Scholar 

  203. 203

    Holland, A. J. & Cleveland, D. W. Polo-like kinase 4 inhibition: a strategy for cancer therapy? Cancer Cell 26, 151–153 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. 204

    Meraldi, P., Lukas, J., Fry, A. M., Bartek, J. & Nigg, E. A. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat. Cell Biol. 1, 88–93 (1999).

    CAS  PubMed  Google Scholar 

  205. 205

    Knockleby, J. & Lee, H. Same partners, different dance: involvement of DNA replication proteins in centrosome regulation. Cell Cycle 9, 4487–4491 (2010).

    CAS  PubMed  Google Scholar 

  206. 206

    Meraldi, P. & Nigg, E. A. Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J. Cell Sci. 114, 3749–3757 (2001).

    CAS  PubMed  Google Scholar 

  207. 207

    Tanenbaum, M. E. et al. Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr. Biol. 19, 1703–1711 (2009).

    CAS  Google Scholar 

  208. 208

    Blangy, A. et al. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159–1169 (1995).

    CAS  Google Scholar 

  209. 209

    Oliver, T. G. et al. Caspase-2-mediated cleavage of Mdm2 creates a p53-induced positive feedback loop. Mol. Cell 43, 57–71 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank their laboratory members for helpful discussions and apologize to colleagues whose work could not be cited due to space limitations. Work in the authors' laboratories was supported by grants from the Swiss National Science Foundation (310030B-149641) to E.A.N. and a R01 research grant from the US National Institutes of Health (GM 114119), an American Cancer Society Scholar Grant (129742-RSG-16-156-01-CCG) and a March of Dimes Research Grant (1-FY17-698) to A.J.H.

Author information

Affiliations

Authors

Contributions

Both E.A.N. and A.J.H. researched data for the article, made substantial contributions to the discussion of content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Erich A. Nigg or Andrew J. Holland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Procentriole

A newly constructed centriole that is unable to duplicate.

A tubules

A typical microtubule triplet is composed of A, B and C tubules, with the innermost A tubule being built from 13 protofilaments.

Molecular rulers

Molecules of defined size that can be used to set distances between other structures.

Axoneme

The nine-fold symmetrical microtubule-based structure at the centre of cilia and flagella.

WD40 protein

A structural motif of approximately 40 amino acids, often terminating in a tryptophan-aspartic acid (WD) dipeptide.

Planarians

Flatworms used as a model system to study regeneration.

Hippo pathway

A signalling pathway that controls organ size in animals by restraining cell proliferation and promoting apoptosis.

PIDDosome

A protein complex composed of death domain-containing protein CRADD (also known as RAIDD) and p53-induced death domain-containing protein 1 (PIDD1) that is implicated in the activation of caspase 2.

Cytokinesis failure

Failure to physically separate the two daughter cells after chromosome segregation is completed.

Neuroblasts

Dividing neuronal precursor cells.

Aneuploidy

The presence of an abnormal chromosome number that is not a multiple of the haploid chromosome complement.

Merotelic attachments

Spindle microtubule–chromosome attachments in which one kinetochore binds microtubules emanating from two centrosomes located on opposite sides of the mitotic spindle.

Micronuclei

Small nuclei that are separate from the cell nucleus and that contain one or a few chromosomes or chromosome fragments.

RAC1

A small GTPase member of the RAS superfamily with diverse cellular functions.

Organoids

An in vitro culture system that mimics the micro-anatomy of an organ.

Hypomorphic mutations

Mutations that cause a partial loss of gene function.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nigg, E., Holland, A. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol 19, 297–312 (2018). https://doi.org/10.1038/nrm.2017.127

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing