Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chaperoning SNARE assembly and disassembly

Key Points

  • Fusion of eukaryotic transport vesicles with target organelles requires membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs).

  • Productive assembly of SNARE complexes, involving four different SNAREs anchored in two different membranes, is topologically complex. Both assembly and disassembly chaperones are required to ensure the temporal and spatial integrity of the intracellular trafficking network.

  • The initial contact of a transport vesicle with a target membrane is mediated by homodimeric and hetero-oligomeric membrane-tethering factors. In addition to their role in tethering, these factors may function as chaperones for SNARE complex assembly.

  • Sec1–Munc18 proteins (SM proteins) interact directly with SNAREs and are required in vivo for SNARE-mediated membrane fusion. They may accelerate the formation of SNARE complexes by functioning as templates to stabilize early assembly intermediates.

  • Recent X-ray crystal and nuclear magnetic resonance (NMR) structures of the Ca2+ sensor protein synaptotagmin bound to a SNARE complex reveal the molecular details of an interaction that probably underlies the exquisite sensitivity of neurotransmitter release to Ca2+ levels.

  • Recent cryo-electron microscopy (cryo-EM) structures and single-particle Förster resonance energy transfer (FRET) studies both indicate that the chaperone N-ethylmaleimide-sensitive factor (NSF) may use a 'spring-loaded' mechanism to disassemble SNARE complexes in a single step.

Abstract

Intracellular membrane fusion is mediated in most cases by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). However, the assembly of such complexes in vitro is inefficient, and their uncatalysed disassembly is undetectably slow. Here, we focus on the cellular machinery that orchestrates assembly and disassembly of SNARE complexes, thereby regulating processes ranging from vesicle trafficking to organelle fusion to neurotransmitter release. Rapid progress is being made on many fronts, including the development of more realistic cell-free reconstitutions, the application of single-molecule biophysics, and the elucidation of X-ray and high-resolution electron microscopy structures of the SNARE assembly and disassembly machineries 'in action'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cycles of SNARE assembly and disassembly.
Figure 2: Membrane tethering and SNARE assembly.
Figure 3: A structure-based mechanism for SM protein-mediated SNARE complex assembly.
Figure 4: Structural characterization of the synaptotagmin–SNARE complex interaction.
Figure 5: SNARE complex disassembly mediated by NSF and SNAPs.

Similar content being viewed by others

References

  1. Südhof, T. C. & Rothman, J. E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).

    PubMed  PubMed Central  Google Scholar 

  2. Jahn, R. & Scheller, R. H. SNAREs — engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    CAS  PubMed  Google Scholar 

  3. Fasshauer, D., Sutton, R. B., Brunger, A. T. & Jahn, R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl Acad. Sci. USA 95, 15781–15786 (1998).

    CAS  PubMed  Google Scholar 

  4. Stein, A., Weber, G., Wahl, M. C. & Jahn, R. Helical extension of the neuronal SNARE complex into the membrane. Nature 460, 525–528 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    CAS  PubMed  Google Scholar 

  6. McNew, J. A., Sondermann, H., Lee, T., Stern, M. & Brandizzi, F. GTP-dependent membrane fusion. Annu. Rev. Cell Dev. Biol. 29, 529–550 (2013).

    CAS  PubMed  Google Scholar 

  7. Bombardier, J. P. & Munson, M. Three steps forward, two steps back: mechanistic insights into the assembly and disassembly of the SNARE complex. Curr. Opin. Chem. Biol. 29, 66–71 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hong, W. & Lev, S. Tethering the assembly of SNARE complexes. Trends Cell Biol. 24, 35–43 (2014).

    CAS  PubMed  Google Scholar 

  9. Kuhlee, A., Raunser, S. & Ungermann, C. Functional homologies in vesicle tethering. FEBS Lett. 589, 2487–2497 (2015).

    CAS  PubMed  Google Scholar 

  10. Yu, I. M. & Hughson, F. M. Tethering factors as organizers of intracellular vesicular traffic. Annu. Rev. Cell Dev. Biol. 26, 137–156 (2010).

    CAS  PubMed  Google Scholar 

  11. Archbold, J. K., Whitten, A. E., Hu, S. H., Collins, B. M. & Martin, J. L. SNARE-ing the structures of Sec1/Munc18 proteins. Curr. Opin. Struct. Biol. 29, 44–51 (2014).

    CAS  PubMed  Google Scholar 

  12. Baker, R. W. et al. A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 349, 1111–1114 (2015). X-ray crystal structures of SM protein–SNARE complexes indicate that SM proteins can function as templates to stabilize an early intermediate in SNARE complex assembly.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rizo, J. & Xu, J. The synaptic vesicle release machinery. Annu. Rev. Biophys. 44, 339–367 (2015).

    CAS  PubMed  Google Scholar 

  14. Sudhof, T. C. The molecular machinery of neurotransmitter release (Nobel lecture). Angew. Chem. Int. Ed. Engl. 53, 12696–12717 (2014).

    PubMed  Google Scholar 

  15. Zhao, M. & Brunger, A. T. Recent advances in deciphering the structure and molecular mechanism of the AAA+ ATPase N-ethylmaleimide-sensitive factor (NSF). J. Mol. Biol. 428, 1912–1926 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    PubMed  Google Scholar 

  17. Hanson, P. I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J. E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    CAS  PubMed  Google Scholar 

  18. Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    PubMed  Google Scholar 

  19. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    CAS  PubMed  Google Scholar 

  20. Brunger, A. T., Cipriano, D. J. & Diao, J. Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins. Crit. Rev. Biochem. Mol. Biol. 50, 231–241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma, C., Su, L., Seven, A. B., Xu, Y. & Rizo, J. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339, 421–425 (2013). Using liposomes bearing syntaxin 1–Munc18 (rather than syntaxin 1–SNAP25) complexes, this recent reconstitution of synaptic vesicle fusion seems to faithfully recapitulate the crucial roles of Munc18, Munc13 and synaptotagmin.

    CAS  PubMed  Google Scholar 

  22. Zick, M. & Wickner, W. T. A distinct tethering step is vital for vacuole membrane fusion. eLife 3, e03251 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. McNew, J. A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153–159 (2000).

    CAS  PubMed  Google Scholar 

  24. Block, M. R., Glick, B. S., Wilcox, C. A., Wieland, F. T. & Rothman, J. E. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc. Natl Acad. Sci. USA 85, 7852–7856 (1988).

    CAS  PubMed  Google Scholar 

  25. Clary, D. O., Griff, I. C. & Rothman, J. E. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61, 709–721 (1990).

    CAS  PubMed  Google Scholar 

  26. Miller, S. E. et al. The molecular basis for the endocytosis of small R-SNAREs by the clathrin adaptor CALM. Cell 147, 1118–1131 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pryor, P. R. et al. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell 134, 817–827 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fasshauer, D., Antonin, W., Subramaniam, V. & Jahn, R. SNARE assembly and disassembly exhibit a pronounced hysteresis. Nat. Struct. Biol. 9, 144–151 (2002).

    CAS  PubMed  Google Scholar 

  29. Gao, Y. et al. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337, 1340–1343 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Min, D. et al. Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat. Commun. 4, 1705 (2013).

    PubMed  PubMed Central  Google Scholar 

  31. Zorman, S. et al. Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. eLife 3, e03348 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. Margittai, M., Fasshauer, D., Pabst, S., Jahn, R. & Langen, R. Homo- and heterooligomeric SNARE complexes studied by site-directed spin labeling. J. Biol Chem. 276, 13169–13177 (2001).

    CAS  PubMed  Google Scholar 

  33. Xiao, W., Poirier, M. A., Bennett, M. K. & Shin, Y. K. The neuronal t-SNARE complex is a parallel four-helix bundle. Nat. Struct. Biol. 8, 308–311 (2001).

    CAS  PubMed  Google Scholar 

  34. Lerman, J. C., Robblee, J., Fairman, R. & Hughson, F. M. Structural analysis of the neuronal SNARE protein syntaxin-1A. Biochemistry 39, 8470–8479 (2000).

    CAS  PubMed  Google Scholar 

  35. Weninger, K., Bowen, M. E., Chu, S. & Brunger, A. T. Single-molecule studies of SNARE complex assembly reveal parallel and antiparallel configurations. Proc. Natl Acad. Sci. USA 100, 14800–14805 (2003).

    CAS  PubMed  Google Scholar 

  36. Furukawa, N. & Mima, J. Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion. Sci. Rep. 4, 4277 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Xu, H., Jun, Y., Thompson, J., Yates, J. & Wickner, W. HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion. EMBO J. 29, 1948–1960 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Weber, T. et al. SNAREpins are functionally resistant to disruption by NSF and αSNAP. J. Cell Biol. 149, 1063–1072 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao, M. et al. Mechanistic insights into the recycling machine of the SNARE complex. Nature 518, 61–67 (2015). A tour-de-force cryo-EM study of NSF, SNAPs and SNAREs reveals the probable mechanism of ATP-dependent SNARE disassembly.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brunet, S. & Sacher, M. Are all multisubunit tethering complexes bona fide tethers? Traffic 15, 1282–1287 (2014).

    CAS  PubMed  Google Scholar 

  41. Wong, M. & Munro, S. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science 346, 1256898 (2014). The authors provide convincing evidence that golgins are bona fide vesicle tethers by relocalizing them to mitochondria and showing that appropriate vesicles are thereby recruited to this ectopic location.

    PubMed  PubMed Central  Google Scholar 

  42. Munro, S. The golgin coiled-coil proteins of the Golgi apparatus. Cold Spring Harb. Perspect. Biol. 3, a005256 (2011).

    PubMed  PubMed Central  Google Scholar 

  43. Bachert, C. & Linstedt, A. D. Dual anchoring of the GRASP membrane tether promotes trans pairing. J. Biol. Chem. 285, 16294–16301 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sengupta, D., Truschel, S., Bachert, C. & Linstedt, A. D. Organelle tethering by a homotypic PDZ interaction underlies formation of the Golgi membrane network. J. Cell Biol. 186, 41–55 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hayes, G. L. et al. Multiple Rab GTPase binding sites in GCC185 suggest a model for vesicle tethering at the trans-Golgi. Mol. Biol. Cell 20, 209–217 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sinka, R., Gillingham, A. K., Kondylis, V. & Munro, S. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins. J. Cell Biol. 183, 607–615 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Barr, F. A. Rab GTPases and membrane identity: causal or inconsequential? J. Cell Biol. 202, 191–199 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513–525 (2009).

    CAS  PubMed  Google Scholar 

  49. Drin, G., Morello, V., Casella, J. F., Gounon, P. & Antonny, B. Asymmetric tethering of flat and curved lipid membranes by a golgin. Science 320, 670–673 (2008).

    CAS  PubMed  Google Scholar 

  50. Sato, K., Roboti, P., Mironov, A. A. & Lowe, M. Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210. Mol. Biol. Cell 26, 537–553 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Wang, T., Grabski, R., Sztul, E. & Hay, J. C. p115-SNARE Interactions: a dynamic cycle of p115 binding monomeric SNARE motifs and releasing assembled bundles. Traffic 16, 148–171 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Shorter, J., Beard, M. B., Seemann, J., Dirac-Svejstrup, A. B. & Warren, G. Sequential tethering of golgins and SNAREpin assembly by the vesicle tethering protein p115. J. Cell Biol. 157, 45–62 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cheung, P. Y., Limouse, C., Mabuchi, H. & Pfeffer, S. R. Protein flexibility is required for vesicle tethering at the Golgi. eLife 4, e12790 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Balderhaar, H. J. & Ungermann, C. CORVET and HOPS tethering complexes — coordinators of endosome and lysosome fusion. J. Cell Sci. 126, 1307–1316 (2013).

    CAS  PubMed  Google Scholar 

  55. Solinger, J. A. & Spang, A. Tethering complexes in the endocytic pathway: CORVET and HOPS. FEBS J. 280, 2743–2757 (2013).

    CAS  PubMed  Google Scholar 

  56. Whyte, J. R. & Munro, S. Vesicle tethering complexes in membrane traffic. J. Cell Sci. 115, 2627–2637 (2002).

    CAS  PubMed  Google Scholar 

  57. Kim, J. J., Lipatova, Z. & Segev, N. TRAPP complexes in secretion and autophagy. Front. Cell Dev. Biol. 4, 20 (2016).

    PubMed  PubMed Central  Google Scholar 

  58. Wickner, W. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu. Rev. Cell Dev. Biol. 26, 115–136 (2010).

    CAS  PubMed  Google Scholar 

  59. Mima, J., Hickey, C. M., Xu, H., Jun, Y. & Wickner, W. Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J. 27, 2031–2042 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zick, M., Stroupe, C., Orr, A., Douville, D. & Wickner, W. T. Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. eLife 3, e01879 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. Hickey, C. M. & Wickner, W. HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly. Mol. Biol. Cell 21, 2297–2305 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Stroupe, C., Hickey, C. M., Mima, J., Burfeind, A. S. & Wickner, W. Minimal membrane docking requirements revealed by reconstitution of Rab GTPase-dependent membrane fusion from purified components. Proc. Natl Acad. Sci. USA 106, 17626–17633 (2009).

    CAS  PubMed  Google Scholar 

  63. Bröcker, C. et al. Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Proc. Natl Acad. Sci. USA 109, 1991–1996 (2012).

    PubMed  Google Scholar 

  64. Krämer, L. & Ungermann, C. HOPS drives vacuole fusion by binding the vacuolar SNARE complex and the Vam7 PX domain via two distinct sites. Mol. Biol. Cell 22, 2601–2611 (2011).

    PubMed  PubMed Central  Google Scholar 

  65. Lobingier, B. T. & Merz, A. J. Sec1/Munc18 protein Vps33 binds to SNARE domains and the quaternary SNARE complex. Mol. Biol. Cell 23, 4611–4622 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lürick, A. et al. The Habc domain of the SNARE Vam3 interacts with the HOPS tethering complex to facilitate vacuole fusion. J. Biol. Chem. 290, 5405–5413 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Stroupe, C., Collins, K. M., Fratti, R. A. & Wickner, W. Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. EMBO J. 25, 1579–1589 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lobingier, B. T., Nickerson, D. P., Lo, S. Y. & Merz, A. J. SM proteins Sly1 and Vps33 co-assemble with Sec17 and SNARE complexes to oppose SNARE disassembly by Sec18. eLife 3, e02272 (2014). Sec17 (the yeast SNAP) is shown to help load SM proteins on to SNARE complexes, thereby protecting them from disassembly.

    PubMed  PubMed Central  Google Scholar 

  69. Andag, U., Neumann, T. & Schmitt, H. D. The coatomer-interacting protein Dsl1p is required for Golgi-to-endoplasmic reticulum retrieval in yeast. J. Biol. Chem. 276, 39150–39160 (2001).

    CAS  PubMed  Google Scholar 

  70. Zink, S., Wenzel, D., Wurm, C. A. & Schmitt, H. D. A link between ER tethering and COP-I vesicle uncoating. Dev. Cell 17, 403–416 (2009).

    CAS  PubMed  Google Scholar 

  71. Ren, Y. et al. A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1. Cell 139, 1119–1129 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tripathi, A., Ren, Y., Jeffrey, P. D. & Hughson, F. M. Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex. Nat. Struct. Mol. Biol. 16, 114–123 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kraynack, B. A. et al. Dsl1p, Tip20p, and the novel Dsl3(Sec39) protein are required for the stability of the Q/t-SNARE complex at the endoplasmic reticulum in yeast. Mol. Biol. Cell 16, 3963–3977 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Andag, U. & Schmitt, H. D. Dsl1p, an essential component of the Golgi-endoplasmic reticulum retrieval system in yeast, uses the same sequence motif to interact with different subunits of the COPI vesicle coat. J. Biol. Chem. 278, 51722–51734 (2003).

    CAS  PubMed  Google Scholar 

  75. Suckling, R. J. et al. Structural basis for the binding of tryptophan-based motifs by δ-COP. Proc. Natl Acad. Sci. USA 112, 14242–14247 (2015).

    CAS  PubMed  Google Scholar 

  76. Heider, M. R. et al. Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nat. Struct. Mol. Biol. 23, 59–66 (2016).

    CAS  PubMed  Google Scholar 

  77. Lees, J. A., Yip, C. K., Walz, T. & Hughson, F. M. Molecular organization of the COG vesicle tethering complex. Nat. Struct. Mol. Biol. 17, 1292–1297 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shestakova, A., Suvorova, E., Pavliv, O., Khaidakova, G. & Lupashin, V. Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J. Cell Biol. 179, 1179–1192 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Laufman, O., Kedan, A., Hong, W. & Lev, S. Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing. EMBO J. 28, 2006–2017 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Laufman, O., Hong, W. & Lev, S. The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes. J. Cell Sci. 126, 1506–1516 (2013).

    CAS  PubMed  Google Scholar 

  81. Dubuke, M. L., Maniatis, S., Shaffer, S. A. & Munson, M. The exocyst subunit Sec6 interacts with assembled exocytic SNARE complexes. J. Biol. Chem. 290, 28245–28256 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Shen, D. et al. The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p. J. Cell Biol. 202, 509–526 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Perez-Victoria, F. J. & Bonifacino, J. S. Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network. Mol. Cell. Biol. 29, 5251–5263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim, Y. G. et al. The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering. Cell 127, 817–830 (2006).

    CAS  PubMed  Google Scholar 

  85. Yip, C. K., Berscheminski, J. & Walz, T. Molecular architecture of the TRAPPII complex and implications for vesicle tethering. Nat. Struct. Mol. Biol. 17, 1298–1304 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cai, Y. et al. The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell 133, 1202–1213 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lord, C. et al. Sequential interactions with Sec23 control the direction of vesicle traffic. Nature 473, 181–186 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Koumandou, V. L., Dacks, J. B., Coulson, R. M. & Field, M. C. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol. Biol. 7, 29 (2007).

    PubMed  PubMed Central  Google Scholar 

  89. Rizo, J. & Sudhof, T. C. The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices — guilty as charged? Annu. Rev. Cell Dev. Biol. 28, 279–308 (2012).

    CAS  PubMed  Google Scholar 

  90. Zhang, Y. et al. Munc18a does not alter fusion rates mediated by neuronal SNAREs, synaptotagmin, and complexin. J. Biol. Chem. 290, 10518–10534 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bracher, A. & Weissenhorn, W. Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p. EMBO J. 21, 6114–6124 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hu, S. H. et al. Possible roles for Munc18-1 domain 3a and Syntaxin1 N-peptide and C-terminal anchor in SNARE complex formation. Proc. Natl Acad. Sci. USA 108, 1040–1045 (2011).

    CAS  PubMed  Google Scholar 

  93. Hu, S. H., Latham, C. F., Gee, C. L., James, D. E. & Martin, J. L. Structure of the Munc18c/Syntaxin4 N-peptide complex defines universal features of the N-peptide binding mode of Sec1/Munc18 proteins. Proc. Natl Acad. Sci. USA 104, 8773–8778 (2007).

    CAS  PubMed  Google Scholar 

  94. Burkhardt, P., Hattendorf, D. A., Weis, W. I. & Fasshauer, D. Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide. EMBO J. 27, 923–933 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Burkhardt, P. et al. Primordial neurosecretory apparatus identified in the choanoflagellate Monosiga brevicollis. Proc. Natl Acad. Sci. USA 108, 15264–15269 (2011).

    CAS  PubMed  Google Scholar 

  96. Misura, K. M., Scheller, R. H. & Weis, W. I. Three-dimensional structure of the neuronal-Sec1-syntaxin complex. Nature 404, 355–362 (2000).

    CAS  PubMed  Google Scholar 

  97. Dulubova, I. et al. How Tlg2p/syntaxin 16 'snares' Vps45. EMBO J. 21, 3620–3631 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shen, J., Tareste, D. C., Paumet, F., Rothman, J. E. & Melia, T. J. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128, 183–195 (2007).

    CAS  PubMed  Google Scholar 

  99. Zhou, P. et al. Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion. EMBO J. 32, 159–171 (2013).

    CAS  PubMed  Google Scholar 

  100. Shen, J., Rathore, S. S., Khandan, L. & Rothman, J. E. SNARE bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of membrane fusion. J. Cell Biol. 190, 55–63 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rathore, S. S. et al. Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARE-Sec1/Munc18 membrane fusion complex. Proc. Natl Acad. Sci. USA 107, 22399–22406 (2010).

    CAS  PubMed  Google Scholar 

  102. Fernandez, I. et al. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94, 841–849 (1998).

    CAS  PubMed  Google Scholar 

  103. Chen, X., Lu, J., Dulubova, I. & Rizo, J. NMR analysis of the closed conformation of syntaxin-1. J. Biomol. NMR 41, 43–54 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Munson, M., Chen, X., Cocina, A. E., Schultz, S. M. & Hughson, F. M. Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly. Nat. Struct. Biol. 7, 894–902 (2000).

    CAS  PubMed  Google Scholar 

  105. Demircioglu, F. E., Burkhardt, P. & Fasshauer, D. The SM protein Sly1 accelerates assembly of the ER-Golgi SNARE complex. Proc. Natl Acad. Sci. USA 111, 13828–13833 (2014).

    CAS  PubMed  Google Scholar 

  106. Furgason, M. L. et al. The N-terminal peptide of the syntaxin Tlg2p modulates binding of its closed conformation to Vps45p. Proc. Natl Acad. Sci. USA 106, 14303–14308 (2009).

    CAS  PubMed  Google Scholar 

  107. Gerber, S. H. et al. Conformational switch of syntaxin-1 controls synaptic vesicle fusion. Science 321, 1507–1510 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000).

    CAS  PubMed  Google Scholar 

  109. Parisotto, D. et al. An extended helical conformation in domain 3a of Munc18-1 provides a template for SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex assembly. J. Biol. Chem. 289, 9639–9650 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Han, G. A. et al. A pivotal role for Pro-335 in balancing the dual functions of Munc18-1 domain-3a in regulated exocytosis. J. Biol. Chem. 289, 33617–33628 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Carpp, L. N., Ciufo, L. F., Shanks, S. G., Boyd, A. & Bryant, N. J. The Sec1p/Munc18 protein Vps45p binds its cognate SNARE proteins via two distinct modes. J. Cell Biol. 173, 927–936 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Togneri, J., Cheng, Y. S., Munson, M., Hughson, F. M. & Carr, C. M. Specific SNARE complex binding mode of the Sec1/Munc-18 protein, Sec1p. Proc. Natl Acad. Sci. USA 103, 17730–17735 (2006).

    CAS  PubMed  Google Scholar 

  113. Xu, Y., Su, L. & Rizo, J. Binding of Munc18-1 to synaptobrevin and to the SNARE four-helix bundle. Biochemistry 49, 1568–1576 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Dulubova, I. et al. Munc18-1 binds directly to the neuronal SNARE complex. Proc. Natl Acad. Sci. USA 104, 2697–2702 (2007).

    CAS  PubMed  Google Scholar 

  115. Carr, C. M. & Rizo, J. At the junction of SNARE and SM protein function. Curr. Opin. Cell Biol. 22, 488–495 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Augustin, I., Rosenmund, C., Sudhof, T. C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    CAS  PubMed  Google Scholar 

  117. Ma, C., Li, W., Xu, Y. & Rizo, J. Munc13 mediates the transition from the closed syntaxin–Munc18 complex to the SNARE complex. Nat. Struct. Mol. Biol. 18, 542–549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang, X. et al. Syntaxin opening by the MUN domain underlies the function of Munc13 in synaptic-vesicle priming. Nat. Struct. Mol. Biol. 22, 547–554 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Richmond, J. E., Weimer, R. M. & Jorgensen, E. M. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412, 338–341 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, W. et al. The crystal structure of a Munc13 C-terminal module exhibits a remarkable similarity to vesicle tethering factors. Structure 19, 1443–1455 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Dulubova, I., Yamaguchi, T., Wang, Y., Sudhof, T. C. & Rizo, J. Vam3p structure reveals conserved and divergent properties of syntaxins. Nat. Struct. Biol. 8, 258–264 (2001).

    CAS  PubMed  Google Scholar 

  122. Jahn, R. & Fasshauer, D. Molecular machines governing exocytosis of synaptic vesicles. Nature 490, 201–207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sudhof, T. C. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80, 675–690 (2013).

    CAS  PubMed  Google Scholar 

  124. Mohrmann, R., Dhara, M. & Bruns, D. Complexins: small but capable. Cell. Mol. Life Sci. 72, 4221–4235 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Krishnakumar, S. S. et al. Re-visiting the trans insertion model for complexin clamping. eLife 4, e04463 (2015).

    PubMed  PubMed Central  Google Scholar 

  126. Kümmel, D. et al. Complexin cross-links prefusion SNAREs into a zigzag array. Nat. Struct. Mol. Biol. 18, 927–933 (2011).

    PubMed  PubMed Central  Google Scholar 

  127. Trimbuch, T. et al. Re-examining how complexin inhibits neurotransmitter release. eLife 3, e02391 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Brewer, K. D. et al. Dynamic binding mode of a Synaptotagmin-1–SNARE complex in solution. Nat. Struct. Mol. Biol. 22, 555–564 (2015). NMR characterization of the interaction between neuronal SNAREs and synaptotagmin reveals a dynamic binding mode; mutagenic disruption of this binding was correlated with functional deficits.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhou, Q. et al. Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis. Nature 525, 62–67 (2015). The X-ray crystal structure of a complex between synaptotagmin and the neuronal SNARE complex reveals interfaces that are crucial for Ca2+-triggered neurotransmitter release.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).

    CAS  PubMed  Google Scholar 

  131. Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    CAS  PubMed  Google Scholar 

  132. Park, Y. et al. Synaptotagmin-1 binds to PIP2-containing membrane but not to SNAREs at physiological ionic strength. Nat. Struct. Mol. Biol. 22, 815–823 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chang, L. F. et al. Structural characterization of full-length NSF and 20S particles. Nat. Struct. Mol. Biol. 19, 268–275 (2012).

    CAS  PubMed  Google Scholar 

  134. Furst, J., Sutton, R. B., Chen, J., Brunger, A. T. & Grigorieff, N. Electron cryomicroscopy structure of N-ethyl maleimide sensitive factor at 11 Å resolution. EMBO J. 22, 4365–4374 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ryu, J. K. et al. Spring-loaded unraveling of a single SNARE complex by NSF in one round of ATP turnover. Science 347, 1485–1489 (2015). Experiments using single-molecule fluorescence microscopy and magnetic tweezers provide strong support for a 'spring-loaded' mechanism for NSF-driven SNARE complex disassembly that is consistent with recent structural studies (see reference 39).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Cipriano, D. J. et al. Processive ATP-driven substrate disassembly by the N-ethylmaleimide-sensitive factor (NSF) molecular machine. J. Biol. Chem. 288, 23436–23445 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Shah, N., Colbert, K. N., Enos, M. D., Herschlag, D. & Weis, W. I. Three αSNAP and 10 ATP molecules are used in SNARE complex disassembly by N-ethylmaleimide-sensitive factor (NSF). J. Biol. Chem. 290, 2175–2188 (2015).

    CAS  PubMed  Google Scholar 

  138. Schwartz, M. L. & Merz, A. J. Capture and release of partially zipped trans-SNARE complexes on intact organelles. J. Cell Biol. 185, 535–549 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Zick, M., Orr, A., Schwartz, M. L., Merz, A. J. & Wickner, W. T. Sec17 can trigger fusion of trans-SNARE paired membranes without Sec18. Proc. Natl Acad. Sci. USA 112, E2290–E2297 (2015). Proteoliposome experiments unexpectedly indicate that Sec17 (the yeast SNAP) can, when bound to SNARE complexes, facilitate membrane fusion.

    CAS  PubMed  Google Scholar 

  140. Park, Y. et al. αSNAP interferes with the zippering of the SNARE protein membrane fusion machinery. J. Biol. Chem. 289, 16326–16335 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, L., Ungermann, C. & Wickner, W. The docking of primed vacuoles can be reversibly arrested by excess Sec17p (αSNAP). J. Biol. Chem. 275, 22862–22867 (2000).

    CAS  PubMed  Google Scholar 

  142. Tan, D. et al. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. Proc. Natl Acad. Sci. USA 110, 19432–19437 (2013).

    CAS  PubMed  Google Scholar 

  143. Darsow, T., Katzmann, D. J., Cowles, C. R. & Emr, S. D. Vps41p function in the alkaline phosphatase pathway requires homo-oligomerization and interaction with AP-3 through two distinct domains. Mol. Biol. Cell 12, 37–51 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Baker, R. W., Jeffrey, P. D. & Hughson, F. M. Crystal structures of the Sec1/Munc18 (SM) protein Vps33, alone and bound to the homotypic fusion and vacuolar protein sorting (HOPS) subunit Vps16. PLoS ONE 8, e67409 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Graham, S. C. et al. Structural basis of Vps33A recruitment to the human HOPS complex by Vps16. Proc. Natl Acad. Sci. USA 110, 13345–13350 (2013).

    CAS  PubMed  Google Scholar 

  146. Seals, D. F., Eitzen, G., Margolis, N., Wickner, W. T. & Price, A. A. Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc. Natl Acad. Sci. USA 97, 9402–9407 (2000).

    CAS  PubMed  Google Scholar 

  147. Sivaram, M. V., Saporita, J. A., Furgason, M. L., Boettcher, A. J. & Munson, M. Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p. Biochemistry 44, 6302–6311 (2005).

    CAS  PubMed  Google Scholar 

  148. Morgera, F. et al. Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1. Mol. Biol. Cell 23, 337–346 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071–1080 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Willett, R. et al. COG complexes form spatial landmarks for distinct SNARE complexes. Nat. Commun. 4, 1553 (2013).

    PubMed  PubMed Central  Google Scholar 

  151. Laufman, O., Hong, W. & Lev, S. The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport. J. Cell Biol. 194, 459–472 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Miller, V. J. et al. Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). J. Biol. Chem. 288, 4229–4240 (2013).

    CAS  PubMed  Google Scholar 

  153. Suvorova, E. S., Duden, R. & Lupashin, V. V. The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J. Cell Biol. 157, 631–643 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Siniossoglou, S. & Pelham, H. R. Vps51p links the VFT complex to the SNARE Tlg1p. J. Biol. Chem. 277, 48318–48324 (2002).

    CAS  PubMed  Google Scholar 

  155. Cai, H. et al. TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445, 941–944 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' membrane trafficking work is supported by a grant from the US National Institutes of Health (GM071574).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick M. Hughson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Related links

Related links

DATABASES

Protein Data Bank

3PUJ

3C98

5BUZ

5BV0

5CCH

2N1T

3J96

3J94

3J95

Glossary

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors

(SNAREs). Integral or peripheral membrane proteins that mediate membrane fusion by forming parallel four-helix bundles.

Sec1–Munc18 proteins

(SM proteins). Cytoplasmic proteins that bind to SNAREs and seem to be universally required for SNARE-mediated membrane fusion.

N-ethylmaleimide-sensitive fusion factor

(NSF). Homohexameric protein of the AAA+ ATPase family that drives the disassembly of SNARE complexes; known as Sec18 in yeast.

Soluble NSF attachment proteins

(SNAPs). Adaptor proteins that allow NSF to recognize and disassemble SNARE complexes; Sec17 is the yeast SNAP.

Trans-SNARE complexes

Complexes containing at least one SNARE embedded within each of two apposed membranes; required for membrane fusion.

Cis-SNARE complex

Non-fusogenic SNARE complex, in which all SNAREs are associated with the same membrane; created from a trans-SNARE complex when membranes fuse.

Multisubunit tethering complexes

(MTCs). Large, hetero-oligomeric complexes that orchestrate vesicle docking and fusion through interactions with SNAREs, Rab proteins, SM proteins and/or vesicle coat proteins.

HOPS complex

A heterohexameric MTC — comprising Vps11, Vps16, Vps18, Vps33, Vps39 and Vps41 in yeast — that functions in endo-lysosomal fusion reactions (for example, the homotypic fusion of yeast vacuoles).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, R., Hughson, F. Chaperoning SNARE assembly and disassembly. Nat Rev Mol Cell Biol 17, 465–479 (2016). https://doi.org/10.1038/nrm.2016.65

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.65

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing