Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Metabolomics: beyond biomarkers and towards mechanisms

Abstract

Metabolomics, which is the profiling of metabolites in biofluids, cells and tissues, is routinely applied as a tool for biomarker discovery. Owing to innovative developments in informatics and analytical technologies, and the integration of orthogonal biological approaches, it is now possible to expand metabolomic analyses to understand the systems-level effects of metabolites. Moreover, because of the inherent sensitivity of metabolomics, subtle alterations in biological pathways can be detected to provide insight into the mechanisms that underlie various physiological conditions and aberrant processes, including diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: From metabolites to pathways and mechanisms.
Figure 2: Controlling and influencing metabolism: perspectives from metabolomics.
Figure 3: Novel biological insights.

Similar content being viewed by others

References

  1. Johnson, C. H., Patterson, A. D., Idle, J. R. & Gonzalez, F. J. Xenobiotic metabolomics: major impact on the metabolome. Annu. Rev. Pharmacol. Toxicol. 52, 37–56 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Sperber, H. et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat. Cell Biol. 17, 1523–1535 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yanes, O. et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat. Chem. Biol. 6, 411–417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karlic, H. et al. Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells. Cancer Genet. 208, 241–252 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Ulanovskaya, O. A., Zuhl, A. M. & Cravatt, B. F. NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nat. Chem. Biol. 9, 300–306 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gornall, A. G. (ed) Applied Biochemistry of Clinical Disorders (Lippincott Williams & Wilkins, 1986).

    Google Scholar 

  10. Richieri, G. V. & Kleinfeld, A. M. Unbound free fatty-acid levels in human serum. J. Lipid Res. 36, 229–240 (1995).

    CAS  PubMed  Google Scholar 

  11. Li, X., Gianoulis, T. A., Yip, K. Y., Gerstein, M. & Snyder, M. Extensive in vivo metabolite-protein interactions revealed by large-scale systematic analyses. Cell 143, 639–650 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hubbard, T. D. et al. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci. Rep. 5, 12689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharma, M., Astekar, M., Soi, S., Manjunatha, B. S. & Shetty, D. C. pH gradient reversal: an emerging hallmark of cancers. Recent Pat. Anticancer Drug Discov. 10, 244–258 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661–672 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Brahimi-Horn, M. C., Laferriere, J., Mazure, N. & Pouyssegur, J. in Tumor Angiogenesis: Basic Mechanisms and Cancer Therapy (eds Marme, D. & Fusenig, N.) 186 (Springer-Verlag Berlin Heidelberg, 2008).

    Google Scholar 

  16. Ivanisevic, J. et al. Arteriovenous blood metabolomics: a readout of intra-tissue metabostasis. Sci. Rep. 5, 12757 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ivanisevic, J. et al. Brain region mapping using global metabolomics. Chem. Biol. 21, 1575–1584 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson, C. H. & Gonzalez, F. J. Challenges and opportunities of metabolomics. J. Cell. Physiol. 227, 2975–2981 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koeth, R. A. et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pannkuk, E. L., Laiakis, E. C., Authier, S., Wong, K. & Fornace, A. J. Jr. Global metabolomic identification of long-term dose-dependent urinary biomarkers in nonhuman primates exposed to ionizing radiation. Radiat. Res. 184, 121–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson, C. H. et al. Radiation metabolomics. 5. identification of urinary biomarkers of ionizing radiation exposure in nonhuman primates by mass spectrometry-based metabolomics. Radiat. Res. 178, 328–340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johnson, C. H. et al. Radiation metabolomics. 4. UPLC-ESI-QTOFMS-based metabolomics for urinary biomarker discovery in gamma-irradiated rats. Radiat. Res. 175, 473–484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hamdalla, M. A., Ammar, R. A. & Rajasekaran, S. A molecular structure matching approach to efficient identification of endogenous mammalian biochemical structures. BMC Bioinformatics 16, S11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wolf, S., Schmidt, S., Muller-Hannemann, M. & Neumann, S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11, 148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ridder, L. et al. Automatic chemical structure annotation of an LC-MSn based metabolic profile from green tea. Anal. Chem. 85, 6033–6040 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Vinaixa, M. et al. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trends Analyt. Chem. http://dx.doi.org/10.1016/j.trac.2015.09.005, (2015).

  27. Rocca-Serra, P. et al. Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics 12, 14 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Ellis, J. K. et al. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population. BMC Med. 10, 61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scalbert, A. et al. The food metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 99, 1286–1308 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Wishart, D. S. et al. HMDB 3.0 — the human metabolome database in 2013. Nucleic Acids Res. 41, D801–D807 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Ji, Y. et al. Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics. Clin. Pharmacol. Ther. 89, 97–104 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson, C. H., Ivanisevic, J., Benton, H. P. & Siuzdak, G. Bioinformatics: the next frontier of metabolomics. Anal. Chem. 87, 147–156 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 31, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Zamboni, N., Saghatelian, A. & Patti, G. J. Defining the metabolome: size, flux, and regulation. Mol. Cell 58, 699–706 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mathe, E. A. et al. Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res. 74, 3259–3270 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, Y. et al. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 158, 1415–1430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543–550 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Misra, B. B. & van der Hooft, J. J. Updates in metabolomics tools and resources: 2014–2015. Electrophoresis 37, 86–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Salek, R. M. et al. COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics 11, 1587–1597 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tautenhahn, R., Patti, G. J., Rinehart, D. & Siuzdak, G. XCMS online: a web-based platform to process untargeted metabolomic data. Anal. Chem. 84, 5035–5039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xia, J. G., Psychogios, N., Young, N. & Wishart, D. S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37, W652–W660 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Caesar, R., Nygren, H., Oresic, M. & Backhed, F. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism. J. Lipid Res. http://dx.doi.org/10.1194/jlr.M065847, (2016).

  45. Paris, L. P. et al. Global metabolomics reveals metabolic dysregulation in ischemic retinopathy. Metabolomics 12, 15 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Li, S. et al. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 9, e1003123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cottret, L. et al. MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks. Nucleic Acids Res. 38, W132–W137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Metallo, C. M. & Vander Heiden, M. G. Understanding metabolic regulation and its influence on cell physiology. Mol. Cell 49, 388–398 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buescher, J. M. et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34, 189–201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fan, J. et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sellers, K. et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125, 687–698 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huang, X. et al. X13CMS: global tracking of isotopic labels in untargeted metabolomics. Anal. Chem. 86, 1632–1639 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bueschl, C. et al. A novel stable isotope labelling assisted workflow for improved untargeted LC-HRMS based metabolomics research. Metabolomics 10, 754–769 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Creek, D. J. et al. Stable isotope-assisted metabolomics for network-wide metabolic pathway elucidation. Anal. Chem. 84, 8442–8447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Capellades, J. et al. geoRge: a computational tool to detect the presence of stable isotope labeling in LC/MS-based untargeted metabolomics. Anal. Chem. 88, 621–628 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, Y. J. et al. Differential incorporation of glucose into biomass during Warburg metabolism. Biochemistry 53, 4755–4757 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Creek, D. J. et al. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose. PLoS Pathog. 11, e1004689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zelezniak, A., Sheridan, S. & Patil, K. R. Contribution of network connectivity in determining the relationship between gene expression and metabolite concentration changes. PLoS Comput. Biol. 10, e1003572 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. O'Keefe, S. J. et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6, 6342 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Woolley, D. W. A Study of Antimetabolites (John Wiley & Sons, 1952).

    Google Scholar 

  63. Johnson, C. H. et al. Alterations in spinal cord metabolism during treatment of neuropathic pain. J. Neuroimmune Pharmacol. 10, 396–401 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Frauwirth, K. A. & Thompson, C. B. Regulation of T lymphocyte metabolism. J. Immunol. 172, 4661–4665 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. van Stipdonk, M. J. B. et al. Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol. 4, 361–365 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Mockler, M. B., Conroy, M. J. & Lysaght, J. Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment. Front. Oncol. 4, 107 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Johnson, C. H. et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 21, 891–897 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Northen, T. R. et al. Clathrate nanostructures for mass spectrometry. Nature 449, 1033–1036 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. PNAS 111, 18321–18326 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Wikoff, W. R. et al. Diacetylspermine is a novel prediagnostic serum biomarker for non-small-cell lung cancer and has additive performance with pro-surfactant protein B. J. Clin. Oncol. 33, 3880–3886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Umemori, Y. et al. Evaluating the utility of N1,N12-diacetylspermine and N1, N8-diacetylspermidine in urine as tumor markers for breast and colorectal cancers. Clin. Chim. Acta 411, 1894–1899 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Lee, S. H., Suh, J. W., Chung, B. C. & Kim, S. O. Polyamine profiles in the urine of patients with leukemia. Cancer Lett. 122, 1–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Stejskal, D. et al. Evaluation of urine N1, N12-diacetylspermine as potential tumor marker for urinary bladder cancer. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 150, 235–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Vargas, A. J., Ashbeck, E. L., Thomson, C. A., Gerner, E. W. & Thompson, P. A. Dietary polyamine intake and polyamines measured in urine. Nutr. Cancer 66, 1144–1153 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tang, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Z. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Prentice, K. J. et al. The furan fatty acid metabolite CMPF is elevated in diabetes and induces β cell dysfunction. Cell Metab. 19, 653–666 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim, D. et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Siuzdak, G. The Expanding Role of Mass Spectrometry in Biotechnology (MCC Press, 2006).

    Google Scholar 

  84. Tanaka, K. et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988).

    Article  CAS  Google Scholar 

  85. Siuzdak, G. E., Buriak, J. & Wei, J. Desorption/ionization of analytes from porous light-absorbing semiconductor. US Patent 6288390 B1 (2000).

  86. Wiseman, J. M., Ifa, D. R., Song, Q. & Cooks, R. G. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew. Chem. Int. Ed. Engl. 45, 7188–7192 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Kraft, M. L., Weber, P. K., Longo, M. L., Hutcheon, I. D. & Boxer, S. G. Phase separation of lipid membranes analyzed with high-resolution secondary ion mass spectrometry. Science 313, 1948–1951 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Gowda, H. et al. Interactive XCMS Online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal. Chem. 86, 6931–6939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Smith, C. A. et al. METLIN — a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Wishart, D. S. et al. HMDB: the human metabolome database. Nucleic Acids Res. 35, D521–D526 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Horai, H. et al. MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 45, 703–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Kopka, J. et al. GMD@CSB. DB: the Golm Metabolome Database. Bioinformatics 21, 1635–1638 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Gerlich, M. & Neumann, S. MetFusion: integration of compound identification strategies. J. Mass Spectrom. 48, 291–298 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Paglia, G. et al. Ion mobility derived collision cross sections to support metabolomics applications. Anal. Chem. 86, 3985–3993 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ogata, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Karp, P. D. et al. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res. 33, 6083–6089 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xia, J. & Wishart, D. S. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 38, W71–W77 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nadine Levin at UCLA for her comments on the manuscript. Funding for this work was supported by US National Institutes of Health (NIH) grants R01 GM114368 and PO1 A1043376-02S1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Siuzdak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Supplementary information

Supplementary information S1 (box)

Novel computational concepts in metabolomics (PDF 147 kb)

Related links

Related links

DATABASES

FooDB

HMDB

FURTHER INFORMATION

Common Fund Metabolomics Program

Coordination of Standards in Metabolomics (COSMOS)

DeviumWeb

MetaboAnalyst

MZmine 2

XCMS Online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, C., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17, 451–459 (2016). https://doi.org/10.1038/nrm.2016.25

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.25

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research