Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Glucocorticoid receptor control of transcription: precision and plasticity via allostery

Key Points

  • Glucocorticoid receptor (GR), the founding member of the nuclear receptor superfamily, is a ubiquitously expressed, ligand-regulated vertebrate transcriptional regulatory factor (TRF) that regulates precisely determined gene networks.

  • Although precise, GR-regulated gene networks are highly plastic, changing dramatically with changes in cell or physiological context.

  • GR is regulated by multiple signals (ligands, DNA-binding sequences, post-translational modifications and non-GR TRFs). We propose that each of these signals acts as an allosteric effector that conveys gene, cell or physiological context information to GR by specifically altering its conformation.

  • Integrated signal-driven conformational modifications of GR produce context-specific patterns of GR protein surfaces that are recognized by unique combinations of co-regulator proteins.

  • GR, and perhaps many or all other TRFs, seems to lack intrinsic transcription regulatory activity and instead may be a molecular scaffold whose signal-driven structures nucleate the assembly of enzymatic machineries that confer distinct regulatory outcomes.

  • Regulatory precision, signal-driven allostery and context-specified network plasticity are properties that are likely shared by most, if not all, metazoan TRFs.

Abstract

The glucocorticoid receptor (GR) is a constitutively expressed transcriptional regulatory factor (TRF) that controls many distinct gene networks, each uniquely determined by particular cellular and physiological contexts. The precision of GR-mediated responses seems to depend on combinatorial, context-specific assembly of GR-nucleated transcription regulatory complexes at genomic response elements. In turn, evidence suggests that context-driven plasticity is conferred by the integration of multiple signals, each serving as an allosteric effector of GR conformation, a key determinant of regulatory complex composition and activity. This structural and mechanistic perspective on GR regulatory specificity is likely to extend to other eukaryotic TRFs.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: GR signalling and DNA binding.
Figure 2: Modes of site-specific GR–genome interactions.
Figure 3: Context-specific GR occupancy and gene regulation.
Figure 4: GR–ligand interactions.
Figure 5: Sites of glucocorticoid receptor post-translational modifications.
Figure 6: A model for transcription regulation: precision and plasticity of TRF function achieved via allostery.

References

  1. 1

    Bridgham, J. T. et al. Protein evolution by molecular tinkering: diversification of the nuclear receptor superfamily from a ligand-dependent ancestor. PLoS Biol. 8, e1000497 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  2. 2

    Revollo, J. R. & Cidlowski, J. A. Mechanisms generating diversity in glucocorticoid receptor signaling. Ann. NY Acad. Sci. 1179, 167–178 (2009).

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Kadmiel, M. & Cidlowski, J. A. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol. Sci. 34, 518–530 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Lewis-Tuffin, L. J., Jewell, C. M., Bienstock, R. J., Collins, J. B. & Cidlowski, J. A. Human glucocorticoid receptor binds RU-486 and is transcriptionally active. Mol. Cell. Biol. 27, 2266–2282 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Picard, D. et al. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348, 166–168 (1990).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Chandler, V. L., Maler, B. A. & Yamamoto, K. R. DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell 33, 489–499 (1983).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Yamamoto, K. R. Steroid receptor regulated transcription of specific genes and gene networks. Annu. Rev. Genet. 19, 209–252 (1985).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Yamamoto, K. R., Darimont, B. D., Wagner, R. L. & Iñiguez-Lluhí, J. A. Building transcriptional regulatory complexes: signals and surfaces. Cold Spring Harb. Symp. Quant. Biol. 63, 587–598 (1998). Presents the idea that TRFs nucleate different multi-subunit regulatory complexes on chromatin that drive alternative transcriptional outcomes.

    CAS  PubMed  Article  Google Scholar 

  9. 9

    McNally, J. G. The glucocorticoid receptor: Rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Becker, M. Dynamic behavior of transcription factors on a natural promoter in living cells. EMBO Rep. 3, 1188–1194 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Stavreva, D. A., Muller, W. G., Hager, G. L., Smith, C. L. & McNally, J. G. Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes. Mol. Cell. Biol. 24, 2682–2697 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Meijsing, S. H., Elbi, C., Luecke, H. F., Hager, G. L. & Yamamoto, K. R. The ligand binding domain controls glucocorticoid receptor dynamics independent of ligand release. Mol. Cell. Biol. 27, 2442–2451 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Sacta, M. A., Chinenov, Y. & Rogatsky, I. Glucocorticoid signaling: An update from a genomic perspective. Annu. Rev. Physiol. 78, 155–180 (2016). This review presents new insights into GR biology that have emerged with the development and refinement of systems approaches.

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Wyllie, A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–556 (1980).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Patel, R., Williams-Dautovich, J. & Cummins, C. L. Minireview: New molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol. Endocrinol. 28, 999–1011 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  16. 16

    Kumar, R. & Thompson, E. B. The structure of the nuclear hormone receptors. Steroids 64, 310–319 (1999).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Luisi, B. F. et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352, 497–505 (1991). Provides the first crystallographic analysis of the GR DBD–GBS complex and details how two GR DBDs dimerize on a canonical DNA-binding element.

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Meijsing, S. H. et al. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324, 407–410 (2009). Uses crystallographic analysis and functional assays done on multiple different GR DBD–GBS complexes to demonstrate that DNA binding acts as an allosteric effector of GR.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Watson, L. C. et al. The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals. Nat. Struct. Mol. Biol. 20, 876–883 (2013). Uses biophysical analysis and NMR chemical-shift difference mapping to measure cooperative dimerization and to probe a potential allosteric pathway that extends from a GR DBD bound to one GBS half site, through specific regions within the bound GR DBD and the DBD dimerization domain, to the partner GR DBD bound to the other GBS half site.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Heck, S. et al. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J. 13, 4087–4095 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    Schiller, B. J., Chodankar, R., Watson, L. C., Stallcup, M. R. & Yamamoto, K. R. Glucocorticoid receptor binds half sites as a monomer and regulates specific target genes. Genome Biol. 15, 418 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  22. 22

    Reichardt, H. M. et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93, 531–541 (1998).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Bledsoe, R. K. et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110, 93–105 (2002). Provides the first crystal structure of ligand-bound GR LBD, which reveals the intricate network of protein–ligand interactions that define GR ligand selectivity.

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Surjit, M. et al. Widespread negative response elements mediate direct repression by agonist–liganded glucocorticoid receptor. Cell 145, 224–241 (2011).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Hudson, W. H., Youn, C. & Ortlund, E. A. The structural basis of direct glucocorticoid-mediated transrepression. Nat. Struct. Mol. Biol. 20, 53–58 (2013). Uses crystallographic analysis of the GR DBD–IR-GBS complex to reveal a new mode of GR–DNA recognition, in which two GR monomers bind opposite sides of the DNA.

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Hudson, W. H. et al. Distal substitutions drive divergent DNA specificity among paralogous transcription factors through subdivision of conformational space. Proc. Natl Acad. Sci. USA 113, 326–331 (2016).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Lim, H. et al. Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo. Genome Res. 25, 836–844 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Miner, J. N. & Yamamoto, K. R. The basic region of AP-1 specifies glucocorticoid receptor activity at a composite response element. Genes Dev. 6, 2491–2501 (1992).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    De Bosscher, K., Vanden Berghe, W. & Haegeman, G. Glucocorticoid repression of AP-1 is not mediated by competition for nuclear coactivators. Mol. Endocrinol. 15, 219–227 (2001).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Luecke, H. F. & Yamamoto, K. R. The glucocorticoid receptor blocks P-TEFb recruitment by NFκB to effect promoter-specific transcriptional repression. Genes Dev. 19, 1116–1127 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31

    De Bosscher, K., Vanden Berghe, W. & Haegeman, G. The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: Molecular mechanisms for gene repression. Endocr. Rev. 24, 488–522 (2003).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012). Highlights the differences in experimental methodology and analysis of ChIP-Seq, which has become a mainstream method of analysing TRF–DNA interactions on a genome-wide scale.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Steger, D. J. et al. Propagation of adipogenic signals through an epigenomic transition state. Genes Dev. 24, 1035–1044 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 43, 264–268 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Grøntved, L. et al. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements. EMBO J. 32, 1568–1583 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  36. 36

    So, A. Y. L., Chaivorapol, C., Bolton, E. C., Li, H. & Yamamoto, K. R. Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. PLoS Genet. 3, e94 (2007). Examines cell-type-specific GR occupancy on chromatin.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  37. 37

    Reddy, T. E. et al. Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res. 19, 2163–2171 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Merkenschlager, M. & Nora, E. P. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu. Rev. Genomics Hum. Genet. 17, 17–43 (2016).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Burd, C. J. et al. Analysis of chromatin dynamics during glucocorticoid receptor activation. Mol. Cell. Biol. 32, 1805–1817 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Telorac, J. et al. Identification and characterization of DNA sequences that prevent glucocorticoid receptor binding to nearby response elements. Nucleic Acids Res. 44, 6142–6156 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Uhlenhaut, N. H. et al. Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. Mol. Cell 49, 158–171 (2013).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Presman, D. M. et al. Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor. PLoS Biol. 12, e1001813 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  43. 43

    Starick, S. R. et al. ChIP-exo signal associated with DNA-binding motifs provides insight into the genomic binding of the glucocorticoid receptor and cooperating transcription factors. Genome Res. 25, 825–835 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    So, A. Y. L., Bernal, T. U., Pillsbury, M. L., Yamamoto, K. R. & Feldman, B. J. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc. Natl Acad. Sci. USA 106, 17582–17587 (2009). Identifies and characterizes the only gene–GRE pair confirmed to date, at its endogenous locus in vivo.

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Rogatsky, I. et al. Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor. Proc. Natl Acad. Sci. USA 100, 13845–13850 (2003).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Thomas-Chollier, M. et al. A naturally occuring insertion of a single amino acid rewires transcriptional regulation by glucocorticoid receptor isoforms. Proc. Natl Acad. Sci. USA 110, 17826–17831 (2013).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Chen, S. H., Masuno, K., Cooper, S. B. & Yamamoto, K. R. Incoherent feed-forward regulatory logic underpinning glucocorticoid receptor action. Proc. Natl Acad. Sci. USA 110, 1964–1969 (2013).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA 100, 11980–11985 (2003).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Chinenov, Y., Coppo, M., Gupte, R., Sacta, M. A. & Rogatsky, I. Glucocorticoid receptor coordinates transcription factor-dominated regulatory network in macrophages. BMC Genomics 15, 656 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51

    Hudson, W. H. & Ortlund, E. A. The structure, function and evolution of proteins that bind DNA and RNA. Nat. Rev. Mol. Cell Biol. 15, 749–760 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Lefstin, J. A. & Yamamoto, K. R. Allosteric effects of DNA on transcriptional regulators. Nature 392, 885–888 (1998). Introduces the concept of DNA as an allosteric regulator of DNA-binding proteins.

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Presman, D. M. et al. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells. Proc. Natl Acad. Sci. USA 113, 8236–8241 (2016).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Gebhardt, J. C. M. et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10, 421–426 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Robblee, J. P., Miura, M. T. & Bain, D. L. Glucocorticoid receptor–promoter interactions: Energetic dissection suggests a framework for the specificity of steroid receptor-mediated gene regulation. Biochemistry 51, 4463–4472 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Bain, D. L. et al. Glucocorticoid receptor–DNA interactions: Binding energetics are the primary determinant of sequence-specific transcriptional activity. J. Mol. Biol. 422, 18–32 (2012).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Schöne, S. et al. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity. Nat. Commun. 7, 12621 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  58. 58

    Zhang, J. et al. DNA binding alters coactivator interaction surfaces of the intact VDR–RXR complex. Nat. Struct. Mol. Biol. 18, 556–563 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  59. 59

    Thornton, J. W. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc. Natl Acad. Sci. USA 98, 5671–5676 (2001).

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Eick, G. N., Colucci, J. K., Harms, M. J., Ortlund, E. A. & Thornton, J. W. Evolution of minimal specificity and promiscuity in steroid hormone receptors. PLoS Genet. 8, e1003072 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61

    He, Y. et al. Structures and mechanism for the design of highly potent glucocorticoids. Cell Res. 24, 713–726 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62

    Kauppi, B. et al. The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J. Biol. Chem. 278, 22748–22754 (2003). Describes crystallographic analysis of the GR LBD bound to the non-standard ligand RU-486, which highlights the conformational malleability within GR to accommodate binding to ligands with disparate structures.

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Wang, J.-C. et al. Novel arylpyrazole compounds selectively modulate glucocorticoid receptor regulatory activity. Genes Dev. 20, 689–699 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64

    Ricketson, D., Hostick, U., Fang, L., Yamamoto, K. R. & Darimont, B. D. A conformational switch in the ligand-binding domain regulates the dependence of the glucocorticoid receptor on Hsp90. J. Mol. Biol. 368, 729–741 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65

    Ismaili, N. & Garabedian, M. J. Modulation of glucocorticoid receptor function via phosphorylation. Ann. NY Acad. Sci. 1024, 86–101 (2004).

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Tian, S., Poukka, H., Palvimo, J. J. & Jänne, O. A. Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem. J. 367, 907–911 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67

    Wallace, A. D. & Cidlowski, J. A. Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J. Biol. Chem. 276, 42714–42721 (2001).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Itoh, M. et al. Nuclear export of glucocorticoid receptor is enhanced by c-Jun N-terminal kinase-mediated phosphorylation. Mol. Endocrinol. 16, 2382–2392 (2002).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Galigniana, M. D., Piwien-Pilipuk, G. & Assreuy, J. Inhibition of glucocorticoid receptor binding by nitric oxide. Mol. Pharmacol. 55, 317–323 (1999).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Ward, R. D. & Weigel, N. L. Steroid receptor phosphorylation: Assigning function to site-specific phosphorylation. BioFactors 35, 528–536 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71

    Housley, P. R. & Pratt, W. B. Direct demonstration of glucocorticoid receptor phosphorylation by intact L-cells. J. Biol. Chem. 258, 4630–4635 (1983).

    CAS  PubMed  Google Scholar 

  72. 72

    Wang, Z., Chen, W., Kono, E., Dang, T. & Garabedian, M. J. Modulation of glucocorticoid receptor phosphorylation and transcriptional activity by a C-terminal-associated protein phosphatase. Mol. Endocrinol. 21, 625–634 (2007).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Bodwell, J. E. et al. Glucocorticoid receptor phosphorylation: Overview, function and cell cycle-dependence. J. Steroid Biochem. Mol. Biol. 65, 91–99 (1998).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Krstic, M. D., Rogatsky, I., Yamamoto, K. R. & Garabedian, M. J. Mitogen-activated and cyclin-dependent protein kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor. Mol. Cell. Biol. 17, 3947–3954 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75

    Mason, S. A. & Housley, P. R. Site-directed mutagenesis of the phosphorylation sites in the mouse glucocorticoid receptor. J. Biol. Chem. 268, 21501–21504 (1993).

    CAS  PubMed  Google Scholar 

  76. 76

    Jewell, C. M. Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein. J. Biol. Chem. 272, 9287–9293 (1997).

    PubMed  Article  Google Scholar 

  77. 77

    Chen, W. et al. Glucocorticoid receptor phosphorylation differentially affects target gene expression. Mol. Endocrinol. 22, 1754–1766 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Garza, A. M. S., Khan, S. H. & Kumar, R. Site-specific phosphorylation induces functionally active conformation in the intrinsically disordered N-terminal activation function (AF1) domain of the glucocorticoid receptor. Mol. Cell. Biol. 30, 220–230 (2010).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Miller, A. L. et al. p38 mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: Correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol. Endocrinol. 19, 1569–1583 (2005).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Wang, Z., Frederick, J. & Garabedian, M. J. Deciphering the phosphorylation 'code' of the glucocorticoid receptor in vivo. J. Biol. Chem. 277, 26573–26580 (2002).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    King, K. L. & Cidlowski, J. A. Cell cycle regulation and apoptosis. Annu. Rev. Physiol. 60, 601–617 (1998).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Galliher-Beckley, A. J., Williams, J. G., Collins, J. B. & Cidlowski, J. A. Glycogen synthase kinase 3-mediated serine phosphorylation of the human glucocorticoid receptor redirects gene expression profiles. Mol. Cell. Biol. 28, 7309–7322 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83

    Galliher-Beckley, A. J. & Cidlowski, J. A. Emerging roles of glucocorticoid receptor phosphorylation in modulating glucocorticoid hormone action in health and disease. IUBMB Life 61, 979–986 (2009).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Deroo, B. J. et al. Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking. Mol. Cell. Biol. 22, 4113–4123 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85

    Wallace, A. D., Cao, Y., Chandramouleeswaran, S. & Cidlowski, J. A. Lysine 419 targets human glucocorticoid receptor for proteasomal degradation. Steroids 75, 1016–1023 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86

    Kino, T., Liou, S. H., Charmandari, E. & Chrousos, G. P. Glucocorticoid receptor mutants demonstrate increased motility inside the nucleus of living cells: Time of fluorescence recovery after photobleaching (FRAP) is an integrated measure of receptor function. Mol. Med. 10, 80–88 (2006).

    Article  CAS  Google Scholar 

  87. 87

    Gill, G. Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev. 15, 536–541 (2005).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Le Drean, Y., Mincheneau, N., Le Goff, P. & Michel, D. Potentiation of glucocorticoid receptor transcriptional activity by sumoylation. Endocrinology 143, 3482–3489 (2002).

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Paakinaho, V., Kaikkonen, S., Makkonen, H., Benes, V. & Palvimo, J. J. SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor. Nucleic Acids Res. 42, 1575–1592 (2014).

    CAS  PubMed  Article  Google Scholar 

  90. 90

    Treuter, E. & Venteclef, N. Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochim. Biophys. Acta 1812, 909–918 (2011).

    CAS  PubMed  Article  Google Scholar 

  91. 91

    Flotho, A. & Melchior, F. Sumoylation: A regulatory protein modification in health and disease. Annu. Rev. Biochem. 82, 357–385 (2013).

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Hua, G., Paulen, L. & Chambon, P. GR SUMOylation and formation of an SUMO-SMRT/NCoR1-HDAC3 repressing complex is mandatory for GC-induced IR nGRE-mediated transrepression. Proc. Natl Acad. Sci. USA 113, E626–E634 (2016).

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Hua, G., Ganti, K. P. & Chambon, P. Glucocorticoid-induced tethered transrepression requires SUMOylation of GR and formation of a SUMO-SMRT/NCoR1-HDAC3 repressing complex. Proc. Natl Acad. Sci. USA 113, E635–E643 (2016).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Nader, N., Chrousos, G. P. & Kino, T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB J. 23, 1572–1583 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95

    Kino, T. & Chrousos, G. P. Acetylation-mediated epigenetic regulation of glucocorticoid receptor activity: Circadian rhythm-associated alterations of glucocorticoid actions in target tissues. Mol. Cell. Endocrinol. 336, 23–30 (2011).

    CAS  PubMed  Article  Google Scholar 

  96. 96

    Ito, K. et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J. Exp. Med. 203, 7–13 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Kröncke, K. D. & Carlberg, C. Inactivation of zinc finger transcription factors provides a mechanism for a gene regulatory role of nitric oxide. FASEB J. 14, 166–173 (2000).

    PubMed  Article  Google Scholar 

  98. 98

    Diamond, M., Miner, J., Yoshinaga, S. & Yamamoto, K. Transcription factor interactions: Selectors of positive or negative regulation from a single DNA element. Science 249, 1266–1272 (1990). Introduces differential context-specific regulation through the alternative interactions of GR with non-GR TRFs at composite elements.

    CAS  PubMed  Article  Google Scholar 

  99. 99

    Miner, J. N., Diamond, M. I. & Yamamoto, K. R. Joints in the regulatory lattice: Composite regulation by steroid receptor–AP1 complexes. Cell Growth Differ. 2, 525–530 (1991).

    CAS  PubMed  Google Scholar 

  100. 100

    Jenkins, B. D., Pullen, C. B. & Darimont, B. D. Novel glucocorticoid receptor coactivator effector mechanisms. Trends Endocrinol. Metab. 12, 122–126 (2001).

    CAS  PubMed  Article  Google Scholar 

  101. 101

    Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102

    Millard, C. J., Watson, P. J., Fairall, L. & Schwabe, J. W. R. An evolving understanding of nuclear receptor coregulator proteins. J. Mol. Endocrinol. 51, T23–T36 (2013). Provides a review of nuclear receptor co-regulator proteins, with a focus on the structural analysis of nuclear receptor–co-regulator interactions.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103

    Vandevyver, S., Dejager, L. & Libert, C. Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr. Rev. 35, 671–693 (2014).

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Parker, M. G. & White, R. Nuclear receptors spring into action. Nat. Struct. Biol. 3, 113–115 (1996).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Wang, Z. et al. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423, 555–560 (2003).

    CAS  PubMed  Article  Google Scholar 

  106. 106

    Torchia, J. et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677–684 (1997).

    CAS  PubMed  Article  Google Scholar 

  107. 107

    Heery, D. M., Kalkhoven, E., Hoare, S. & Parker, M. G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736 (1997).

    CAS  PubMed  Article  Google Scholar 

  108. 108

    Hu, X. & Lazar, M. A. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402, 93–96 (1999).

    CAS  PubMed  Article  Google Scholar 

  109. 109

    Khan, S. H. et al. Binding of the N-terminal region of coactivator TIF2 to the intrinsically disordered AF1 domain of the glucocorticoid receptor is accompanied by conformational reorganizations. J. Biol. Chem. 287, 44546–44560 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110

    Khan, S. H., Ling, J. & Kumar, R. TBP binding-induced folding of the glucocorticoid receptor AF1 domain facilitates its interaction with steroid receptor coactivator-1. PLoS ONE 6, e21939 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111

    Dahlman-Wright, K., Almlöf, T., McEwan, I. J., Gustafsson, J. A. & Wright, A. P. Delineation of a small region within the major transactivation domain of the human glucocorticoid receptor that mediates transactivation of gene expression. Proc. Natl Acad. Sci. USA 91, 1619–1623 (1994).

    CAS  PubMed  Article  Google Scholar 

  112. 112

    Yang, L., Guerrero, J., Hong, H., DeFranco, D. B. & Stallcup, M. R. Interaction of the τ2 transcriptional activation domain of glucocorticoid receptor with a novel steroid receptor coactivator, Hic-5, which localizes to both focal adhesions and the nuclear matrix. Mol. Biol. Cell 11, 2007–2018 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113

    Chodankar, R., Wu, D. Y., Schiller, B. J., Yamamoto, K. R. & Stallcup, M. R. Hic-5 is a transcription coregulator that acts before and/or after glucocorticoid receptor genome occupancy in a gene-selective manner. Proc. Natl Acad. Sci. USA 111, 4007–4012 (2014).

    CAS  PubMed  Article  Google Scholar 

  114. 114

    Dasgupta, S., Lonard, D. M. & O'Malley, B. W. Nuclear receptor coactivators: Master regulators of human health and disease. Annu. Rev. Med. 65, 279–292 (2014).

    CAS  PubMed  Article  Google Scholar 

  115. 115

    Perissi, V. & Rosenfeld, M. G. Controlling nuclear receptors: The circular logic of cofactor cycles. Nat. Rev. Mol. Cell Biol. 6, 542–554 (2005).

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Lonard, D. M. & O'Malley, B. W. Nuclear receptor coregulators: Judges, juries, and executioners of cellular regulation. Mol. Cell 27, 691–700 (2007).

    CAS  PubMed  Article  Google Scholar 

  117. 117

    Fonte, C. et al. Involvement of β-catenin and unusual behavior of CBP and p300 in glucocorticosteroid signaling in Schwann cells. Proc. Natl Acad. Sci. USA 102, 14260–14265 (2005).

    CAS  PubMed  Article  Google Scholar 

  118. 118

    Xu, J., Wu, R. C. & O'Malley, B. W. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat. Rev. Cancer 9, 615–630 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. 119

    Kim, J. H., Li, H. & Stallcup, M. R. CoCoA, a nuclear receptor coactivator which acts through an N-terminal activation domain of p160 coactivators. Mol. Cell 12, 1537–1549 (2003).

    CAS  PubMed  Article  Google Scholar 

  120. 120

    Stallcup, M. R. et al. The roles of protein–protein interactions and protein methylation in transcriptional activation by nuclear receptors and their coactivators. J. Steroid Biochem. Mol. Biol. 85, 139–145 (2003).

    CAS  PubMed  Article  Google Scholar 

  121. 121

    Kim, J. H. et al. CCAR1, a key regulator of mediator complex recruitment to nuclear receptor transcription complexes. Mol. Cell 31, 510–519 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122

    Szapary, D., Huang, Y. & Simons, S. S. Opposing effects of corepressor and coactivators in determining the dose-response curve of agonists, and residual agonist activity of antagonists, for glucocorticoid receptor-regulated gene expression. Mol. Endocrinol. 13, 2108–2121 (1999).

    CAS  PubMed  Article  Google Scholar 

  123. 123

    Trousson, A. et al. Recruitment of the p160 coactivators by the glucocorticoid receptor: Dependence on the promoter context and cell type but not hypoxic conditions. J. Steroid Biochem. Mol. Biol. 104, 305–311 (2007).

    CAS  PubMed  Article  Google Scholar 

  124. 124

    Voegel, J. J. et al. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17, 507–519 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125

    Darimont, B. D. et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12, 3343–3356 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126

    Li, X., Wong, J., Tsai, S. Y., Tsai, M. & O'Malley, B. W. Progesterone and glucocorticoid receptors recruit distinct coactivator complexes and promote distinct patterns of local chromatin modification. Mol. Cell. Biol. 23, 3763–3773 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127

    Kurihara, I. et al. Expression and regulation of nuclear receptor coactivators in glucocorticoid action. Mol. Cell. Endocrinol. 189, 181–189 (2002).

    CAS  PubMed  Article  Google Scholar 

  128. 128

    Ronacher, K. et al. Ligand-selective transactivation and transrepression via the glucocorticoid receptor: role of cofactor interaction. Mol. Cell. Endocrinol. 299, 219–231 (2009).

    CAS  PubMed  Article  Google Scholar 

  129. 129

    Ogawa, H. et al. Nuclear structure-associated TIF2 recruits glucocorticoid receptor and its target DNA. Biochem. Biophys. Res. Commun. 320, 218–225 (2004).

    CAS  PubMed  Article  Google Scholar 

  130. 130

    Dobrovolna, J., Chinenov, Y., Kennedy, M. A., Liu, B. & Rogatsky, I. Glucocorticoid-dependent phosphorylation of the transcriptional coregulator GRIP1. Mol. Cell. Biol. 32, 730–739 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131

    Rogatsky, I., Luecke, H. F., Leitman, D. C. & Yamamoto, K. R. Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proc. Natl Acad. Sci. USA 99, 16701–16706 (2002).

    CAS  PubMed  Article  Google Scholar 

  132. 132

    Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).

    CAS  PubMed  Article  Google Scholar 

  133. 133

    Sheppard, K.-A. et al. Nuclear integration of glucocorticoid receptor and nuclear factor-κB signaling by CREB-binding protein and steroid receptor coactivator-1. J. Biol. Chem. 273, 29291–29294 (1998).

    CAS  PubMed  Article  Google Scholar 

  134. 134

    De Bosscher, K. et al. Glucocorticoids repress NF-κB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc. Natl Acad. Sci. USA 97, 3919–3924 (2000).

    CAS  PubMed  Article  Google Scholar 

  135. 135

    Allen, B. L. & Taatjes, D. J. The Mediator complex: A central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155–166 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136

    Knuesel, M. T. & Taatjes, D. J. Mediator and post-recruitment regulation of RNA polymerase II. Transcription 2, 28–31 (2011).

    PubMed  Article  Google Scholar 

  137. 137

    Meyer, K. D., Lin, S. C., Bernecky, C., Gao, Y. & Taatjes, D. J. p53 activates transcription by directing structural shifts in Mediator. Nat. Struct. Mol. Biol. 17, 753–760 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138

    Taatjes, D. J., Näär, A. M., Andel, F., Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058–1062 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139

    Knuesel, M. T., Meyer, K. D., Bernecky, C. & Taatjes, D. J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 23, 439–451 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140

    Bernecky, C., Grob, P., Ebmeier, C. C., Nogales, E. & Taatjes, D. J. Molecular architecture of the human Mediator–RNA polymerase II–TFIIF assembly. PLoS Biol. 9, e1000603 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141

    Meyer, K. D. et al. Cooperative activity of cdk8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3. EMBO J. 27, 1447–1457 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Hittelman, A. B., Burakov, D., Iñiguez-Lluhí, J. A., Freedman, L. P. & Garabedian, M. J. Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins. EMBO J. 18, 5380–5388 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143

    Chen, W., Rogatsky, I. & Garabedian, M. J. MED14 and MED1 differentially regulate target-specific gene activation by the glucocorticoid receptor. Mol. Endocrinol. 20, 560–572 (2006).

    CAS  PubMed  Article  Google Scholar 

  144. 144

    Narlikar, G. J., Sundaramoorthy, R. & Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490–503 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  145. 145

    Pazin, M. J. & Kadonaga, J. T. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein–DNA interactions? Cell 88, 737–740 (1997).

    CAS  PubMed  Article  Google Scholar 

  146. 146

    Fryer, C. J. & Archer, T. K. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 393, 88–91 (1998).

    CAS  PubMed  Article  Google Scholar 

  147. 147

    Engel, K. B. & Yamamoto, K. R. The glucocorticoid receptor and the coregulator Brm selectively modulate each other's occupancy and activity in a gene-specific manner. Mol. Cell. Biol. 31, 3267–3276 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  148. 148

    Ostlund Farrants, A. K., Blomquist, P., Kwon, H. & Wrange, O. Glucocorticoid receptor–glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. Mol. Cell. Biol. 17, 895–905 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  149. 149

    Collingwood, T. N., Urnov, F. D. & Wolffe, A. P. Nuclear receptors: Coactivators, corepressors and chromatin remodeling in the control of transcription. J. Mol. Endocrinol. 23, 255–275 (1999).

    CAS  PubMed  Article  Google Scholar 

  150. 150

    King, H. A., Trotter, K. W. & Archer, T. K. Chromatin remodeling during glucocorticoid receptor regulated transactivation. Biochim. Biophys. Acta 1819, 716–726 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  151. 151

    Yoshinaga, S., Peterson, C., Herskowitz, I. & Yamamoto, K. R. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258, 1598–1604 (1992).

    CAS  PubMed  Article  Google Scholar 

  152. 152

    Wallberg, A. E. et al. Recruitment of the SWI–SNF chromatin remodeling complex as a mechanism of gene activation by the glucocorticoid receptor τ1 activation domain. Mol. Cell. Biol. 20, 2004–2013 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. 153

    Muratcioglu, S. et al. Structural modeling of GR interactions with the SWI/SNF chromatin remodeling complex and C/EBP. Biophys. J. 109, 1227–1239 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. 154

    Chen, D. et al. Regulation of transcription by a protein methyltransferase. Science 284, 2174–2177 (1999).

    CAS  PubMed  Article  Google Scholar 

  155. 155

    Bittencourt, D. et al. G9a functions as a molecular scaffold for assembly of transcriptional coactivators on a subset of glucocorticoid receptor target genes. Proc. Natl Acad. Sci. USA 109, 19673–19678 (2012).

    CAS  PubMed  Article  Google Scholar 

  156. 156

    Lee, K. K. & Workman, J. L. Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell Biol. 8, 284–295 (2007).

    CAS  PubMed  Article  Google Scholar 

  157. 157

    Almlöf, T., Wallberg, A. E., Gustafsson, J. Å. & Wright, A. P. H. Role of important hydrophobic amino acids in the interaction between the glucocorticoid receptor τ1-core activation domain and target factors. Biochemistry 37, 9586–9594 (1998).

    PubMed  Article  Google Scholar 

  158. 158

    Yao, T. P., Ku, G., Zhou, N., Scully, R. & Livingston, D. M. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl Acad. Sci. USA 93, 10626–10631 (1996).

    CAS  PubMed  Article  Google Scholar 

  159. 159

    Wallberg, A. E. et al. Histone acetyltransferase complexes can mediate transcriptional activation by the major glucocorticoid receptor activation domain. Mol. Cell. Biol. 19, 5952–5959 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  160. 160

    Fonte, C., Trousson, A., Grenier, J., Schumacher, M. & Massaad, C. Opposite effects of CBP and p300 in glucocorticoid signaling in astrocytes. J. Steroid Biochem. Mol. Biol. 104, 220–227 (2007).

    CAS  PubMed  Article  Google Scholar 

  161. 161

    Verdin, E. & Ott, M. 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258–264 (2015).

    CAS  PubMed  Article  Google Scholar 

  162. 162

    Shahbazian, M. D. & Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 76, 75–100 (2007).

    CAS  PubMed  Article  Google Scholar 

  163. 163

    Stewart, M. D. & Wong, J. Nuclear receptor repression: Regulatory mechanisms and physiological implications. Prog. Mol. Biol. Transl Sci. 87, 235–259 (2009).

    CAS  PubMed  Article  Google Scholar 

  164. 164

    Schoch, G. A. et al. Molecular switch in the glucocorticoid receptor: Active and passive antagonist conformations. J. Mol. Biol. 395, 568–577 (2010).

    CAS  PubMed  Article  Google Scholar 

  165. 165

    Kuznetsova, T. et al. Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization. Genome Biol. 16, 264 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  166. 166

    Ogryzko, V. V. et al. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94, 35–44 (1998).

    CAS  PubMed  Article  Google Scholar 

  167. 167

    Guenther, M. G., Barak, O. & Lazar, M. A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol. 21, 6091–6101 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  168. 168

    Chen, J. D. & Evans, R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 (1995).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Yamamoto laboratory for critical reading of the manuscript, with special note to Elaine Kirschke for insightful discussions, Samantha Cooper, Sheng-Hong Chen and Benjamin Schiller for use of unpublished data, and Kirk Ehmsen for use of unpublished data and assistance with Figure 3. E.R.W. is supported by US National Institutes of Health (NIH) predoctoral National Research Service Award (NRSA) 1G31GM113397-01A1 from the National Institute of General Medical Sciences. M.T.K. is supported by NIH postdoctoral NRSA 5T32HL007731-20 from the National Heart, Lung, and Blood Institute and by NIH grant R01CA020535 from the National Cancer Institute. E.A.O. is supported by NIH grant R01DK095750 from the National Institute of Diabetes and Digestive and Kidney Diseases, by American Heart Association (AHA) grant 14GRNT20460124 and by a W.M. Keck Foundation Medical Research Grant. K.R.Y. is supported by NIH grants R01CA020535 from the National Cancer Institute and R21ES026068 from the National Institute of Environmental Health Sciences, and by grant MCB-1615826 from the National Science Foundation.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Eric A. Ortlund or Keith R. Yamamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Methods to probe glucocorticoid receptor (GR)–DNA Interactions (PDF 202 kb)

Related links

Related links

DATABASES

RCSB Protein Data Bank

Glossary

Transcriptional regulatory factors

(TRFs). A general class of sequence-specific DNA-binding proteins that regulate transcription (for example, glucocorticoid receptor).

Nuclear receptor

A member of a superfamily of potentially ligand-gated DNA-binding transcriptional regulatory factors.

Glucocorticoid

A natural hormone that binds to glucocorticoid receptor, or a synthetic derivative with physiological effects similar to the natural hormone, cortisol.

Dexamethasone

A synthetic glucocorticoid receptor (GR) ligand, developed in 1957, which is GR specific, unlike cortisol (the natural ligand), which also binds to mineralocorticoid receptor with high affinity. Dexamethasone is universally used clinically as an anti- inflammatory agent and immunosuppressant.

Apo-GR

Inactive glucocorticoid receptor (GR) protein in a ligand-unbound state.

Glucocorticoid response elements

(GREs). Genomic DNA segments (typically 0.5–2 kb long) that confer a specific glucocorticoid receptor response in particular contexts in vivo. The term 'response element' is appropriately unbiased with respect to potential activation ('enhancement') or repression of target gene transcription.

Allostery

Conformational changes in one region of a molecule (usually a protein) that alter its function and are induced by binding of a modulator to a different, remote site on the target molecule.

GR-binding sequence

(GBS). A short DNA sequence motif bound specifically and with high affinity by glucocorticoid receptor in vitro.

Nuclear magnetic resonance

(NMR). A technique that uses the magnetic properties of atomic nuclei to probe chemical environments experienced by atoms, for example, within a small molecule, protein or protein–DNA complex. See Supplementary information S1 (table).

3-Keto steroid receptors

Members of nuclear receptor subfamily 3 (NR3), including the glucocorticoid receptor (encoded by NR3 group C member 1 (NR3C1)), mineralocorticoid receptor (encoded by NR3C2), progesterone receptor (encoded by NR3C3) and androgen receptor (encoded by NR3C4).

Epistatic mutations

Gene alterations that display a phenotype only in the context of another mutation.

Chromatin immunoprecipitation followed by sequencing

(ChIP-Seq). A technique to identify genomic segments occupied genome-wide in vivo by a particular antigen surface, such as a transcriptional regulatory factor epitope. See Supplementary information S1 (table).

GR-occupied regions

(GORs). Genomic DNA segments occupied by glucocorticoid receptor (GR) in particular contexts in vivo. GOR terminology, typically identified by chromatin immunoprecipitation (ChIP), improves on the previously used GR-binding region (GBR or GRBR) nomenclature, which implies direct DNA binding rather than a broader proximity to DNA, the parameter measured by ChIP.

DNase I-hypersensitive sites

(DHSs). Short genomic regions that are cleaved by brief exposure to low concentrations of DNase I in permeabilized cells or isolated nuclei. See Supplementary information S1 (table).

Negative regulatory DNA sequence

(NRS). A short DNA sequence motif, under-represented at glucocorticoid receptor (GR)-occupied regions within the genome, that interferes with the ability of GR to functionally interact with DNA proximal to the motif.

Molecular dynamics simulations

A computer simulation method to model the physical movements of atoms within a macromolecule that occur over short, fixed time intervals, giving information about dynamics within a macromolecule. See Supplementary information S1 (table).

RU-486

A synthetic glucocorticoid receptor (GR) ligand, developed in 1980, which also has high affinity for progesterone receptor. As a non-standard ligand, binding of RU-486 results in both an altered GR conformation and a distinct pattern of transcription regulation compared to binding of standard glucocorticoids, such as dexamethasone and cortisol.

Selective GR modulators

(SGRMs). Glucocorticoid receptor (GR) ligands with a regulatory range distinct from that of the standard glucocorticoid ligands cortisol and dexamethasone.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weikum, E., Knuesel, M., Ortlund, E. et al. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol 18, 159–174 (2017). https://doi.org/10.1038/nrm.2016.152

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing