Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functions of bromodomain-containing proteins and their roles in homeostasis and cancer

Key Points

  • Bromodomains (BRDs) are evolutionarily conserved protein–protein interaction modules. Structure-based alignments have clustered human BRDs into eight distinct families.

  • BRD modules share a conserved bundle of 4 α-helices (αZ, αA, αB and αC) that are linked to each other by loop segments of variable length (ZA and BC loops).

  • BRDs primarily recognize acetylated Lys residues on histones. Several BRDs were found to recognize acetylated non-histone proteins.

  • BRD-containing proteins regulate gene expression, alone or as part of larger protein complexes, through chromatin remodelling, histone modification, histone recognition and transcriptional machinery regulation.

  • BRD-containing proteins are frequently deregulated in cancer, and mutations in the BRDs themselves are frequently identified in a variety of cancers. BRD-containing proteins also form part of oncogenic fusion proteins that result from chromosomal rearrangements.

  • The development of BRD inhibitors as anticancer agents is now an intense area of research. Small-molecule inhibitors that target the bromodomain and extraterminal domain (BET) family of BRDs are now being tested in clinical trials for the treatment of various types of cancers.

Abstract

Bromodomains (BRDs) are evolutionarily conserved protein–protein interaction modules that are found in a wide range of proteins with diverse catalytic and scaffolding functions and are present in most tissues. BRDs selectively recognize and bind to acetylated Lys residues — particularly in histones — and thereby have important roles in the regulation of gene expression. BRD-containing proteins are frequently dysregulated in cancer, they participate in gene fusions that generate diverse, frequently oncogenic proteins, and many cancer-causing mutations have been mapped to the BRDs themselves. Importantly, BRDs can be targeted by small-molecule inhibitors, which has stimulated many translational research projects that seek to attenuate the aberrant functions of BRD-containing proteins in disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue expression and domain organization of bromodomain-containing proteins.
Figure 2: Structure and plasticity of bromodomain modules.
Figure 3: Engagement of target sequences by bromodomain modules.
Figure 4: Roles of bromodomain-containing proteins in gene regulation.
Figure 5: Deregulation of bromodomain-containing proteins in cancer.

Similar content being viewed by others

References

  1. Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607–618 (2006). The first proteomic study to report the widespread existence of acetylation in human (HeLa) and mouse cells.

    Article  CAS  PubMed  Google Scholar 

  2. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009). A large-scale, high-resolution proteomic screen that identified over 3,500 acetylated Lys sites in human cells.

    Article  CAS  PubMed  Google Scholar 

  3. Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Verdin, E. & Ott, M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Glozak, M. A. & Seto, E. Histone deacetylases and cancer. Oncogene 26, 5420–5432 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, D., Li, F. L., Cheng, Z. L. & Lei, Q. Y. Impact of acetylation on tumor metabolism. Mol. Cell. Oncol. 1, e963452 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Haynes, S. R. et al. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 20, 2603 (1992). The first report of the BRD motif, which speculates that it constitutes a protein–protein interaction domain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, Y. et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell 159, 558–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, Y. et al. Molecular coupling of histone crotonylation and active transcription by AF9 YEATS domain. Mol. Cell 62, 181–193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Andrews, F. H. et al. The Taf14 YEATS domain is a reader of histone crotonylation. Nat. Chem. Biol. 12, 396–398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, M. S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–584 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Muller, S., Filippakopoulos, P. & Knapp, S. Bromodomains as therapeutic targets. Expert Rev. Mol. Med. 13, e29 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Belkina, A. C. & Denis, G. V. BET domain co-regulators in obesity, inflammation and cancer. Nat. Rev. Cancer 12, 465–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, J. & Vakoc, C. R. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol. Cell 54, 728–736 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, C. Y. & Filippakopoulos, P. Beating the odds: BETs in disease. Trends Biochem. Sci. 40, 468–479 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Filippakopoulos, P. & Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Basheer, F. & Huntly, B. J. BET bromodomain inhibitors in leukemia. Exp. Hematol. 43, 718–731 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Theodoulou, N. H., Tomkinson, N. C., Prinjha, R. K. & Humphreys, P. G. Progress in the development of non-BET bromodomain chemical probes. ChemMedChem 11, 477–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012). This study reported the first large-scale structural analysis of the human BRD family.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alsarraj, J. et al. BRD4 short isoform interacts with RRP1B, SIPA1 and components of the LINC complex at the inner face of the nuclear membrane. PLoS ONE 8, e80746 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999). The first report of the solution structure of a BRD (from PCAF), which established that it interacts directly with acetylated Lys residues.

    Article  CAS  PubMed  Google Scholar 

  25. Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000). The first crystal structure of a tandem BRD module from TAF1, which established the rationale for the simultaneous engagement of multiple acetylated histone peptides.

    Article  CAS  PubMed  Google Scholar 

  26. Owen, D. J. et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase Gcn5p. EMBO J. 19, 6141–6149 (2000). The first high-resolution crystal structure of the yeast Gcn5 BRD bound to an acetylated H4 peptide.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mujtaba, S. et al. Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol. Cell 9, 575–586 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Mujtaba, S. et al. Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol. Cell 13, 251–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Gamsjaeger, R. et al. Structural basis and specificity of acetylated transcription factor GATA1 recognition by BET family bromodomain protein Brd3. Mol. Cell. Biol. 31, 2632–2640 (2011). This study demonstrated that BRD3 recognizes acetylated Lys residues in the transcription factor GATA1, which participates in the regulation of haematopoietic lineages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schroder, S. et al. Two-pronged binding with bromodomain-containing protein 4 liberates positive transcription elongation factor b from inactive ribonucleoprotein complexes. J. Biol. Chem. 287, 1090–1099 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Shi, J. et al. Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell 25, 210–225 (2014). This study demonstrated that BRD4 recognizes acetylated Lys residues on the transcription factor TWIST, which affects TWIST-controlled gene expression programmes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zou, Z. et al. Brd4 maintains constitutively active NF-κB in cancer cells by binding to acetylated RelA. Oncogene 33, 2395–2404 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Tsai, W. W. et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 468, 927–932 (2010). This study demonstrated that the PHD–BRD cassette of TRIM24 combinatorially recognizes H3K23ac and unmodified H3K4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91–95 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruthenburg, A. J. et al. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145, 692–706 (2011). This study demonstrated that BPTF multivalently recognizes Kac histone marks on the tails of different histones within the same nucleosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xi, Q. et al. A poised chromatin platform for TGF-β access to master regulators. Cell 147, 1511–1524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moriniere, J. et al. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature 461, 664–668 (2009). The first report to show that a single BRD can recognize two Kac histone marks simultaneously.

    Article  CAS  PubMed  Google Scholar 

  38. Chen, Y. et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteomics 6, 812–819 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sabari, B. R. et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol. Cell 58, 203–215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goudarzi, A. et al. Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Mol. Cell 62, 169–180 (2016). This study demonstrated that histone butyrylation regulates the binding of BRDT to histones.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rousseaux, S. & Khochbin, S. Histone acylation beyond acetylation: terra incognita in chromatin biology. Cell J. 17, 1–6 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Flynn, E. M. et al. A subset of human bromodomains recognizes butyryllysine and crotonyllysine histone peptide modifications. Structure 23, 1801–1814 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Singhal, N. et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 141, 943–955 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Singh, M., Popowicz, G. M., Krajewski, M. & Holak, T. A. Structural ramification for acetyl-lysine recognition by the bromodomain of human BRG1 protein, a central ATPase of the SWI/SNF remodeling complex. Chembiochem 8, 1308–1316 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Reyes, J. C. et al. Altered control of cellular proliferation in the absence of mammalian Brahma (SNF2α). EMBO J. 17, 6979–6991 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Huang, X., Gao, X., Diaz-Trelles, R., Ruiz-Lozano, P. & Wang, Z. Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev. Biol. 319, 258–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Burrows, A. E., Smogorzewska, A. & Elledge, S. J. Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proc. Natl Acad. Sci. USA 107, 14280–14285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brownlee, P. M., Chambers, A. L., Cloney, R., Bianchi, A. & Downs, J. A. BAF180 promotes cohesion and prevents genome instability and aneuploidy. Cell Rep. 6, 973–981 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaeser, M. D. et al. BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J. Biol. Chem. 283, 32254–32263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chiu, Y. H., Lee, J. Y. & Cantley, L. C. BRD7, a tumor suppressor, interacts with p85α and regulates PI3K activity. Mol. Cell 54, 193–202 (2014). This study showed that BRD7 functions as a tumour suppressor through the regulation of PI3K activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Park, S. W. et al. BRD7 regulates XBP1s' activity and glucose homeostasis through its interaction with the regulatory subunits of PI3K. Cell Metab. 20, 73–84 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013). This proteomic and bioinformatic study identified new components of the mammalian SWI–SNF complex and mutations in them that are found in human cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fairbridge, N. A. et al. Cecr2 mutations causing exencephaly trigger misregulation of mesenchymal/ectodermal transcription factors. Birth Defects Res. A Clin. Mol. Teratol. 88, 619–625 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Banting, G. S. et al. CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L. Hum. Mol. Genet. 14, 513–524 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Bowser, R., Giambrone, A. & Davies, P. FAC1, a novel gene identified with the monoclonal antibody Alz50, is developmentally regulated in human brain. Dev. Neurosci. 17, 20–37 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Tallant, C. et al. Molecular basis of histone tail recognition by human TIP5 PHD finger and bromodomain of the chromatin remodeling complex NoRC. Structure 23, 80–92 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Collins, N. et al. An ACF1−ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat. Genet. 32, 627–632 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Xiao, A. et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457, 57–62 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Zhou, Y. et al. Reversible acetylation of the chromatin remodelling complex NoRC is required for non-coding RNA-dependent silencing. Nat. Cell Biol. 11, 1010–1016 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Jones, M. H., Hamana, N., Nezu, J. & Shimane, M. A novel family of bromodomain genes. Genomics 63, 40–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Huang, H., Rambaldi, I., Daniels, E. & Featherstone, M. Expression of the WDR9 gene and protein products during mouse development. Dev. Dyn. 227, 608–614 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Philipps, D. L. et al. The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte−embryo transition. Dev. Biol. 317, 72–82 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pattabiraman, S. et al. Mouse BRWD1 is critical for spermatid postmeiotic transcription and female meiotic chromosome stability. J. Cell Biol. 208, 53–69 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Muller, P., Kuttenkeuler, D., Gesellchen, V., Zeidler, M. P. & Boutros, M. Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 436, 871–875 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Dancy, B. M. & Cole, P. A. Protein lysine acetylation by p300/CBP. Chem. Rev. 115, 2419–2452 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yao, T. P. et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Tanaka, Y. et al. Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein. Mech. Dev. 95, 133–145 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Kasper, L. H. et al. Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol. Cell. Biol. 26, 789–809 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nagy, Z. & Tora, L. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26, 5341–5357 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Krebs, A. R., Karmodiya, K., Lindahl-Allen, M., Struhl, K. & Tora, L. SAGA and ATAC histone acetyl transferase complexes regulate distinct sets of genes and ATAC defines a class of p300-independent enhancers. Mol. Cell 44, 410–423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Maurice, T. et al. Altered memory capacities and response to stress in p300/CBP-associated factor (PCAF) histone acetylase knockout mice. Neuropsychopharmacology 33, 1584–1602 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Xu, W. et al. Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development. Nat. Genet. 26, 229–232 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Bu, P., Evrard, Y. A., Lozano, G. & Dent, S. Y. Loss of Gcn5 acetyltransferase activity leads to neural tube closure defects and exencephaly in mouse embryos. Mol. Cell. Biol. 27, 3405–3416 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Doyon, Y., Selleck, W., Lane, W. S., Tan, S. & Cote, J. Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol. Cell. Biol. 24, 1884–1896 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Altaf, M. et al. NuA4-dependent acetylation of nucleosomal histones H4 and H2A directly stimulates incorporation of H2A.Z by the SWR1 complex. J. Biol. Chem. 285, 15966–15977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Obri, A. et al. ANP32E is a histone chaperone that removes H2A.Z from chromatin. Nature 505, 648–653 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Yang, X. J. MOZ and MORF acetyltransferases: molecular interaction, animal development and human disease. Biochim. Biophys. Acta 1853, 1818–1826 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Klein, B. J. et al. Bivalent interaction of the PZP domain of BRPF1 with the nucleosome impacts chromatin dynamics and acetylation. Nucleic Acids Res. 44, 472–484 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. You, L., Chen, L., Penney, J., Miao, D. & Yang, X. J. Expression atlas of the multivalent epigenetic regulator Brpf1 and its requirement for survival of mouse embryos. Epigenetics 9, 860–872 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mishima, Y. et al. The Hbo1−Brd1/Brpf2 complex is responsible for global acetylation of H3K14 and required for fetal liver erythropoiesis. Blood 118, 2443–2453 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Feng, Y. et al. BRPF3−HBO1 regulates replication origin activation and histone H3K14 acetylation. EMBO J. 35, 176–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Gregory, G. D. et al. Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol. Cell. Biol. 27, 8466–8479 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tanaka, Y. et al. Dual function of histone H3 lysine 36 methyltransferase ASH1 in regulation of Hox gene expression. PLoS ONE 6, e28171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rao, R. C. & Dou, Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat. Rev. Cancer 15, 334–346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Milne, T. A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010). This study reports the first potent and selective thienodiazepine compound that targets BET family BRDs in a NUT midline carcinoma model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010). This study reports the first benzodiazepine compound that targets the BET family of BRDs and its use as an anti-inflammatory agent.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, F. et al. Brd2 disruption in mice causes severe obesity without type 2 diabetes. Biochem. J. 425, 71–83 (2010).

    Article  CAS  Google Scholar 

  91. Shang, E., Wang, X., Wen, D., Greenberg, D. A. & Wolgemuth, D. J. Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse. Dev. Dyn. 238, 908–917 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Houzelstein, D. et al. Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol. Cell. Biol. 22, 3794–3802 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lamonica, J. M. et al. Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc. Natl Acad. Sci. USA 108, E159–E168 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Stonestrom, A. J. et al. Functions of BET proteins in erythroid gene expression. Blood 125, 2825–2834 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Gaucher, J. et al. Bromodomain-dependent stage-specific male genome programming by Brdt. EMBO J. 31, 3809–3820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shang, E., Nickerson, H. D., Wen, D., Wang, X. & Wolgemuth, D. J. The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation. Development 134, 3507–3515 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Matzuk, M. M. et al. Small-molecule inhibition of BRDT for male contraception. Cell 150, 673–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Buchmann, A. M., Skaar, J. R. & DeCaprio, J. A. Activation of a DNA damage checkpoint response in a TAF1-defective cell line. Mol. Cell. Biol. 24, 5332–5339 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kimura, J. et al. A functional genome-wide RNAi screen identifies TAF1 as a regulator for apoptosis in response to genotoxic stress. Nucleic Acids Res. 36, 5250–5259 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sdelci, S. et al. Mapping the chemical chromatin reactivation landscape identifies BRD4−TAF1 cross-talk. Nat. Chem. Biol. 12, 504–510 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, P. J. & Page, D. C. Functional substitution for TAFII250 by a retroposed homolog that is expressed in human spermatogenesis. Hum. Mol. Genet. 11, 2341–2346 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Gong, F. et al. Screen identifies bromodomain protein ZMYND8 in chromatin recognition of transcription-associated DNA damage that promotes homologous recombination. Genes Dev. 29, 197–211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shen, H. et al. Suppression of enhancer overactivation by a RACK7-histone demethylase complex. Cell 165, 331–342 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wen, H. et al. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508, 263–268 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo, R. et al. BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol. Cell 56, 298–310 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zou, J. X., Revenko, A. S., Li, L. B., Gemo, A. T. & Chen, H. W. ANCCA, an estrogen-regulated AAA+ ATPase coactivator for ERα, is required for coregulator occupancy and chromatin modification. Proc. Natl Acad. Sci. USA 104, 18067–18072 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ciro, M. et al. ATAD2 is a novel cofactor for MYC, overexpressed and amplified in aggressive tumors. Cancer Res. 69, 8491–8498 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Revenko, A. S., Kalashnikova, E. V., Gemo, A. T., Zou, J. X. & Chen, H. W. Chromatin loading of E2F−MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark. Mol. Cell. Biol. 30, 5260–5272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Leachman, N. T., Brellier, F., Ferralli, J., Chiquet-Ehrismann, R. & Tucker, R. P. ATAD2B is a phylogenetically conserved nuclear protein expressed during neuronal differentiation and tumorigenesis. Dev. Growth Differ. 52, 747–755 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Morozumi, Y. et al. Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells. J. Mol. Cell. Biol. 8, 349–362 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Malovannaya, A. et al. Analysis of the human endogenous coregulator complexome. Cell 145, 787–799 (2011). A large-scale affinity purification–mass spectrometry study that charts endogenous human co-regulator complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cammas, F. et al. Cell differentiation induces TIF1β association with centromeric heterochromatin via an HP1 interaction. J. Cell Sci. 115, 3439–3448 (2002).

    CAS  PubMed  Google Scholar 

  115. Ivanov, A. V. et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell 28, 823–837 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zeng, L. et al. Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing. Nat. Struct. Mol. Biol. 15, 626–633 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tubbs, A. T. et al. KAP-1 promotes resection of broken DNA ends not protected by γ-H2AX and 53BP1 in G1-phase lymphocytes. Mol. Cell. Biol. 34, 2811–2821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dupont, S. et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell 136, 123–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Agricola, E., Randall, R. A., Gaarenstroom, T., Dupont, S. & Hill, C. S. Recruitment of TIF1γ to chromatin via its PHD finger-bromodomain activates its ubiquitin ligase and transcriptional repressor activities. Mol. Cell 43, 85–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Kim, J. & Kaartinen, V. Generation of mice with a conditional allele for Trim33. Genesis 46, 329–333 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Khetchoumian, K. et al. TIF1δ, a novel HP1-interacting member of the transcriptional intermediary factor 1 (TIF1) family expressed by elongating spermatids. J. Biol. Chem. 279, 48329–48341 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Bloch, D. B. et al. Sp110 localizes to the PML−Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Mol. Cell. Biol. 20, 6138–6146 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wasylyk, C., Schlumberger, S. E., Criqui-Filipe, P. & Wasylyk, B. Sp100 interacts with ETS-1 and stimulates its transcriptional activity. Mol. Cell. Biol. 22, 2687–2702 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yordy, J. S. et al. SP100 expression modulates ETS1 transcriptional activity and inhibits cell invasion. Oncogene 23, 6654–6665 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Podcheko, A. et al. Identification of a WD40 repeat-containing isoform of PHIP as a novel regulator of β-cell growth and survival. Mol. Cell. Biol. 27, 6484–6496 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Huether, R. et al. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat. Commun. 5, 3630 (2014). This large-scale study provided important insights into the mutational landscape of BRD-containing proteins across 1,000 paediatric cancer genomes.

    Article  CAS  PubMed  Google Scholar 

  127. Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Cleary, S. P. et al. Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatology 58, 1693–1702 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

  130. Liu, J. et al. Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events. Genome Res. 22, 2315–2327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

  132. Liu, L. et al. Identification of hallmarks of lung adenocarcinoma prognosis using whole genome sequencing. Oncotarget 6, 38016–38028 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. Peifer, M. et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet. 44, 1104–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Grunwald, C. et al. Expression of multiple epigenetically regulated cancer/germline genes in nonsmall cell lung cancer. Int. J. Cancer 118, 2522–2528 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Zheng, C. X. et al. Whole-exome sequencing to identify novel somatic mutations in squamous cell lung cancers. Int. J. Oncol. 43, 755–764 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Ho, A. S. et al. The mutational landscape of adenoid cystic carcinoma. Nat. Genet. 45, 791–798 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lourdusamy, A., Rahman, R. & Grundy, R. G. Expression alterations define unique molecular characteristics of spinal ependymomas. Oncotarget 6, 19780–19791 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Odejide, O. et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood 123, 1293–1296 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Petrini, I. et al. A specific missense mutation in GTF2I occurs at high frequency in thymic epithelial tumors. Nat. Genet. 46, 844–849 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ojesina, A. I. et al. Landscape of genomic alterations in cervical carcinomas. Nature 506, 371–375 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Shang, P., Meng, F., Liu, Y. & Chen, X. Overexpression of ANCCA/ATAD2 in endometrial carcinoma and its correlation with tumor progression and poor prognosis. Tumor Biol. 36, 4479–4485 (2015).

    Article  CAS  Google Scholar 

  142. Okosun, J. et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 46, 176–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Song, Y. et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature 509, 91–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Gao, Y. B. et al. Genetic landscape of esophageal squamous cell carcinoma. Nat. Genet. 46, 1097–1102 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Zhang, L. et al. Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma. Am. J. Hum. Genet. 96, 597–611 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Oh, H. R., An, C. H., Yoo, N. J. & Lee, S. H. Somatic mutations of amino acid metabolism-related genes in gastric and colorectal cancers and their regional heterogeneity — a short report. Cell. Oncol. (Dordr.) 37, 455–461 (2014).

    Article  CAS  Google Scholar 

  147. Zhang, L. H. et al. TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway. Oncogene 34, 600–610 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Chen, Y. et al. TRIM66 overexpresssion contributes to osteosarcoma carcinogenesis and indicates poor survival outcome. Oncotarget 6, 23708–23719 (2015).

    PubMed  PubMed Central  Google Scholar 

  149. Kuroyanagi, J. et al. Zinc finger MYND-type containing 8 promotes tumour angiogenesis via induction of vascular endothelial growth factor-A expression. FEBS Lett. 588, 3409–3416 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Alekseyenko, A. A. et al. The oncogenic BRD4−NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 29, 1507–1523 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Andreasen, S., French, C. A., Josiassen, M., Hahn, C. H. & Kiss, K. NUT carcinoma of the sublingual gland. Head Neck Pathol. 10, 362–366 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Reynoird, N. et al. Oncogenesis by sequestration of CBP/p300 in transcriptionally inactive hyperacetylated chromatin domains. EMBO J. 29, 2943–2952 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pleasance, E. D. et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463, 184–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Gocho, Y. et al. A novel recurrent EP300ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia. Leukemia 29, 2445–2448 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Marschalek, R. Systematic classification of mixed-lineage leukemia fusion partners predicts additional cancer pathways. Ann. Lab. Med. 36, 85–100 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Panagopoulos, I. et al. Fusion of ZMYND8 and RELA genes in acute erythroid leukemia. PLoS ONE 8, e63663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Edgren, H. et al. Identification of fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol. 12, R6 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kalyana-Sundaram, S. et al. Gene fusions associated with recurrent amplicons represent a class of passenger aberrations in breast cancer. Neoplasia 14, 702–708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. de Rooij, J. D. et al. Recurrent translocation t(10;17)(p15;q21) in minimally differentiated acute myeloid leukemia results in ZMYND11/MBTD1 fusion. Genes Chromosomes Cancer 55, 237–241 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Frattini, V. et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat. Genet. 45, 1141–1149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Robinson, D. R. et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat. Med. 17, 1646–1651 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Asmann, Y. W. et al. Detection of redundant fusion transcripts as biomarkers or disease-specific therapeutic targets in breast cancer. Cancer Res. 72, 1921–1928 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Wu, W. J. et al. Prognostic relevance of BRD7 expression in colorectal carcinoma. Eur. J. Clin. Invest. 43, 131–140 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Park, Y. A. et al. Tumor suppressive effects of bromodomain-containing protein 7 (BRD7) in epithelial ovarian carcinoma. Clin. Cancer Res. 20, 565–575 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Herquel, B. et al. Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 108, 8212–8217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Xue, J. et al. Tumour suppressor TRIM33 targets nuclear β-catenin degradation. Nat. Commun. 6, 6156 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011). This large-scale study demonstrated the power of the whole-exome sequencing technique to identify mutations in BRD-containing proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jiao, Y. et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat. Genet. 45, 1470–1473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wilson, B. G. & Roberts, C. W. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 11, 481–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Egelhofer, T. A. et al. An assessment of histone-modification antibody quality. Nat. Struct. Mol. Biol. 18, 91–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Rothbart, S. B. et al. An interactive database for the assessment of histone antibody specificity. Mol. Cell 59, 502–511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhang, G. et al. Down-regulation of NF-κB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. J. Biol. Chem. 287, 28840–28851 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Li, A. G. et al. An acetylation switch in p53 mediates holo-TFIID recruitment. Mol. Cell 28, 408–421 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Ciceri, P. et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat. Chem. Biol. 10, 305–312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Martin, M. P., Olesen, S. H., Georg, G. I. & Schonbrunn, E. Cyclin-dependent kinase inhibitor dinaciclib interacts with the acetyl-lysine recognition site of bromodomains. ACS Chem. Biol. 8, 2360–2365 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Dittmann, A. et al. The commonly used PI3-kinase probe LY294002 is an inhibitor of BET bromodomains. ACS Chem. Biol. 9, 495–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Ember, S. W. et al. Acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase inhibitors. ACS Chem. Biol. 9, 1160–1171 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Allen, B. K. et al. Large-scale computational screening identifies first in class multitarget inhibitor of EGFR kinase and BRD4. Sci. Rep. 5, 16924 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kurimchak, A. M. et al. Resistance to BET bromodomain inhibitors is mediated by kinome reprogramming in ovarian cancer. Cell Rep. 16, 1273–1286 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Stathis, A. et al. Clinical response of carcinomas harboring the BRD4−NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 6, 492–500 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bolden, J. E. et al. Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep. 8, 1919–1929 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Di Micco, R. et al. Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell Rep. 9, 234–247 (2014). References 182 and 183 raise concerns about the potential toxicity of inhibiting BET proteins.

    Article  CAS  PubMed  Google Scholar 

  184. Korb, E., Herre, M., Zucker-Scharff, I., Darnell, R. B. & Allis, C. D. BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat. Neurosci. 18, 1464–1473 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Fong, C. Y. et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 525, 538–542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Rathert, P. et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 525, 543–547 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Shu, S. et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature 529, 413–417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Togel, L. et al. Dual targeting of bromodomain and extra-terminal domain proteins, and WNT or MAPK signaling, inhibits c-MYC expression and proliferation of colorectal cancer cells. Mol. Cancer Ther. 15, 1217–1226 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to all researchers whose important contributions could not be acknowledged owing to space limitations. The authors are grateful for the support for their research received from the Ludwig Institute for Cancer Research and the Structural Genomics Consortium (SGC), which is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada, Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck & Co., Novartis Pharma AG, Ontario Ministry of Economic Development and Innovation, Pfizer, São Paulo Research Foundation-FAPESP, Takeda and the Wellcome Trust (092809/Z/10/Z). T.F. is supported by a Uehara Memorial Foundation Fellowship (201330102). P.F. is supported by a Wellcome Trust Career Development Fellowship (095751/Z/11/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagis Filippakopoulos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Role(s) of BRD-containing proteins in cellular homeostasis (PDF 258 kb)

Supplementary information S2 (figure)

Structural Classification of the human BRD family. (PDF 3766 kb)

Supplementary information S3 (table)

Structures of BRD/peptide complexes (PDF 185 kb)

Supplementary information S4 (table)

Role(s) of BRD-containing proteins in cancer (mutations, expression, translocations) (PDF 307 kb)

Supplementary information S5 (table)

Mutation load of BRD modules. (PDF 2511 kb)

Supplementary information

Supplementary information S6 (figure) (XLSX 49 kb)

Supplementary information S7 (table)

Available Chemical Tools targeting BRD modules with low nM activity (PDF 179 kb)

Supplementary information S8 (table)

Bromodomain Inhibitors in Clinical Development (data from www.clinicaltrials.gov) (PDF 162 kb)

Related links

Related links

FURTHER INFORMATION

AbMiner

cBioPortal

COSMIC

GENT

Histone Antibodies

Human Proteome Map

SGC Chemical Probes Portal

Glossary

YEATS domains

Protein interaction domains with an immunoglobulin-like fold that can bind to acetylated and crotonylated Lys residues.

Transcriptional co-regulators

Proteins that repress or stimulate transcription via the modulation of the activity of transcription factors through various mechanisms.

Histone code

The epigenetic combination of histone modifications that affect transcription of genes in a hereditary fashion.

Epitopes

The part of a protein that can be recognized by a protein interaction domain. In the context of antibodies, it is the part of an antigen molecule to which an antibody binds.

Epithelial–mesenchymal transition

(EMT). The process by which epithelial cells lose polarity and adhesion and acquire the invasive and migratory properties of mesenchymal cells.

Epicardium

Connective tissue that forms a protective layer around the heart muscle.

Centromeres

Portions of the chromosome that link the sister chromatids. Cohesion of the centromeres is achieved by associating with the protein cohesin, which is subsequently modified in order to keep the two sister chromatids together.

Homeobox genes

(HOX genes). A group of related homeotic genes that control the body plan of embryos along the head–tail axis.

Enhancer

A short region of DNA that provides a docking site for transcriptional activators that increases the likelihood of transcription of particular genes.

RING domain

(Really interesting new gene domain). Zinc finger domain containing a Cys3HisCys4 motif that binds two zinc ions.

NUT midline carcinomas

Aggressive epithelial cancers that typically arise in organs in the midline of the body and result from a fusion of the NUT gene with BRD3, BRD4 or nuclear SET domain-containing gene 3 (NSD3).

Mediator

Large multiprotein complex that acts as a transcriptional co-activator in eukaryotes and binds to the C-terminal domain of RNAPII, which provides a bridge between the polymerase and transcription factors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujisawa, T., Filippakopoulos, P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat Rev Mol Cell Biol 18, 246–262 (2017). https://doi.org/10.1038/nrm.2016.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing