Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear DNA damage signalling to mitochondria in ageing

This article has been updated

Key Points

  • Mitochondrial dysfunction and genomic instability are two hallmarks of ageing.

  • Nuclear DNA damage accumulates with ageing and contributes to ageing-associated diseases. Signalling from the nucleus to mitochondria (NM signalling) has a crucial role in regulating mitochondrial function and ageing.

  • Three major NM signalling pathways link DNA damage to mitochondrial dysfunction: nuclear DNA repair and mitochondrial homeostasis; nuclear DNA damage-induced metabolic pathways; and regulation of mitophagy–apoptosis crosstalk by nuclear DNA repair-associated proteins.

  • NM signalling pathways can be targeted pharmacologically to promote healthy ageing and to treat age-associated diseases.

Abstract

Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of DNA damage-induced nucleus-to-mitochondria signalling and ageing.
Figure 2: PARP1–NAD+–SIRT1-mediated nuclear DNA damage to mitochondria signalling.
Figure 3: DNA damage-induced nucleus-to-mitochondria signalling is linked to metabolic dysfunction and age-associated diseases.
Figure 4: DNA damage signalling in the regulation of mitophagy and apoptosis.
Figure 5: Pharmacological interventions in the DNA damage response that may lead to increases in lifespan and healthspan.

Similar content being viewed by others

Change history

  • 24 March 2016

    The title of Figure 2 was incorrectly phrased in the original HTML and PDF versions of this article. This has been corrected to "PARP1–NAD+–SIRT1-mediated nuclear DNA damage to mitochondria signalling".

References

  1. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Wallace, D. C. Mitochondrial DNA variation in human radiation and disease. Cell 163, 33–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scheibye-Knudsen, M. et al. Protecting the mitochondrial powerhouse. Trends Cell Biol. 25, 158–170. (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Maynard, S., Fang, E. F., Scheibye-Knudsen, M., Croteau, D. L. & Bohr, V. A. DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb. Perspect. Med. 5, a025130 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Youle, R. J. & van der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Randow, F. & Youle, R. J. Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15, 403–411 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wallace, D. C. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coskun, P. et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim. Biophys. Acta 1820, 553–564 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Mattson, M. P. Pathways towards and away from Alzheimer's disease. Nature 430, 631–639 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Palikaras, K., Lionaki, E. & Tavernarakis, N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525–528 (2015). Provides evidence for a pivotal role of mitophagy in healthspan and lifespan in C. elegans.

    Article  CAS  PubMed  Google Scholar 

  12. Fang, E. F. et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157, 882–896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Menzies, F. M., Fleming, A. & Rubinsztein, D. C. Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci. 16, 345–357 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Petersen, K. F. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300, 1140–1142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conley, K. E., Jubrias, S. A. & Esselman, P. C. Oxidative capacity and ageing in human muscle. J. Physiol. 526, 203–210 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013). Shows that the UPRmt contributes to SIR2.1-related longevity in C. elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hey-Mogensen, M. et al. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function. J. Physiol. 593, 3991–4010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Capel, F. et al. Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved. Mech. Ageing Dev. 126, 505–511 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Maynard, S. et al. Relationships between human vitality and mitochondrial respiratory parameters, reactive oxygen species production and dNTP levels in peripheral blood mononuclear cells. Aging 5, 850–864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Scheibye-Knudsen, M. et al. Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy. J. Exp. Med. 209, 855–869 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scheibye-Knudsen, M., Fang, E. F., Croteau, D. L. & Bohr, V. A. Contribution of defective mitophagy to the neurodegeneration in DNA repair-deficient disorders. Autophagy 10, 1468–1469 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Houtkooper, R. H. et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497, 451–457 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mohrin, M. et al. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374–1377 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pellegrino, M. W., Nargund, A. M. & Haynes, C. M. Signaling the mitochondrial unfolded protein response. Biochim. Biophys. Acta 1833, 410–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Canto, C., Menzies, K. J. & Auwerx, J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G. & Attardi, G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286, 774–779 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Croteau, D. L., Popuri, V., Opresko, P. L. & Bohr, V. A. Human RecQ helicases in DNA repair, recombination, and replication. Annu. Rev. Biochem. 83, 519–552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang, H. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095–1107 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Verdin, E. NAD+ in aging, metabolism, and neurodegeneration. Science 350, 1208–1213 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Chalkiadaki, A. & Guarente, L. The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer 15, 608–624 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000). The first evidence linking NAD+ to a sirtuin.

    Article  CAS  PubMed  Google Scholar 

  35. Scheibye-Knudsen, M. et al. A high fat diet and NAD+ rescue premature aging in Cockayne syndrome. Cell Metab. 20, 840–855 (2014). Together with reference 12, establishes a causative link from DNA damage to mitochondrial dysfunction and premature ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gibson, B. A. & Kraus, W. L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Eliasson, M. J. et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat. Med. 3, 1089–1095 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Virag, L. & Szabo, C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375–429 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, D., Gharavi, R., Pitta, M., Gleichmann, M. & Mattson, M. P. Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromolecular Med. 11, 28–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pacher, P. & Szabo, C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am. J. Pathol. 173, 2–13 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bai, P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. DiGiovanna, J. J. & Kraemer, K. H. Shining a light on xeroderma pigmentosum. J. Invest. Dermatol. 132, 785–796 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cleaver, J. E. Defective repair replication of DNA in xeroderma pigmentosum. Nature 218, 652–656 (1968).

    Article  CAS  PubMed  Google Scholar 

  44. Lindenbaum, Y. et al. Xeroderma pigmentosum/Cockayne syndrome complex: first neuropathological study and review of eight other cases. Eur. J. Paediatr. Neurol. 5, 225–242 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Canto, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gomes, A. P. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013). Demonstrates a role for NAD+ in the regulation of nuclear–mitochondrial communication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dobbin, M. M. et al. SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat. Neurosci. 16, 1008–1015 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cohen, H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Li, K. et al. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J. Biol. Chem. 283, 7590–7598 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Uhl, M. et al. Role of SIRT1 in homologous recombination. DNA Repair 9, 383–393 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Yamamori, T. et al. SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucleic Acids Res. 38, 832–845 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Madabushi, A., Hwang, B. J., Jin, J. & Lu, A. L. Histone deacetylase SIRT1 modulates and deacetylates DNA base excision repair enzyme thymine DNA glycosylase. Biochem. J. 456, 89–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Fan, W. & Luo, J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol. Cell 39, 247–258 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Kanfi, Y. et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Sebastian, C. et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151, 1185–1199 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, G. H. et al. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472, 221–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ghosh, S., Liu, B., Wang, Y., Hao, Q. & Zhou, Z. Lamin A is an endogenous SIRT6 activator and promotes SIRT6-mediated DNA repair. Cell Rep. 13, 1396–1406 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Zhong, L. et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140, 280–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kaidi, A., Weinert, B. T., Choudhary, C. & Jackson, S. P. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329, 1348–1353 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mao, Z. et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332, 1443–1446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Michishita, E. et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492–496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McCord, R. A. et al. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging 1, 109–121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Toiber, D. et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol. Cell 51, 454–468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Van Meter, M. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 5, 5011 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Barber, M. F. et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487, 114–118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shin, J. et al. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 5, 654–665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ryu, D. et al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab. 20, 856–869 (2014). Provides evidence that SIRT7 regulates mitochondrial function.

    Article  CAS  PubMed  Google Scholar 

  69. Someya, S. et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brown, K. D. et al. Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab. 20, 1059–1068 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cheng, A. et al. Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges. Cell Metab. 23, 128–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Hirschey, M. D. et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121–125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jeong, S. M. et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23, 450–463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim, H. S. et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 12, 224–236 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Malik, S. et al. SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors. Sci. Rep. 5, 9841 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee, N. et al. Comparative interactomes of SIRT6 and SIRT7: implication of functional links to aging. Proteomics 14, 1610–1622 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Woods, C. G. & Taylor, A. M. Ataxia telangiectasia in the British Isles: the clinical and laboratory features of 70 affected individuals. Q. J. Med. 82, 169–179 (1992).

    CAS  PubMed  Google Scholar 

  78. Merideth, M. A. et al. Phenotype and course of Hutchinson-Gilford progeria syndrome. N. Engl. J. Med. 358, 592–604 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dahl, A. K. et al. Body mass index, change in body mass index, and survival in old and very old persons. J. Am. Geriatr. Soc. 61, 512–518 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Valentin-Vega, Y. A. et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119, 1490–1500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Williamson, D. H., Lund, P. & Krebs, H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103, 514–527 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ross, J. M. et al. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc. Natl Acad. Sci. USA 107, 20087–20092 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sutendra, G. et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Mone, M. J. et al. Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep. 2, 1013–1017 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. & Greenberg, R. A. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141, 970–981 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Longo, V. D. & Mattson, M. P. Fasting: molecular mechanisms and clinical applications. Cell Metab. 19, 181–192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tripathi, D. N. et al. Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc. Natl Acad. Sci. USA 110, E2950–E2957 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Budanov, A. V. & Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451–460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Marino, G., Niso-Santano, M., Baehrecke, E. H. & Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9, 47–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Rubinsztein, D. C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Allen, G. F., Toth, R., James, J. & Ganley, I. G. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep. 14, 1127–1135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chu, C. T. et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257–273 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Biton, S. & Ashkenazi, A. NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling. Cell 145, 92–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Picco, V. & Pages, G. Linking JNK activity to the DNA damage response. Genes Cancer 4, 360–368 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Luo, S. et al. Bim inhibits autophagy by recruiting Beclin 1 to microtubules. Mol. Cell 47, 359–370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maryanovich, M. et al. The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells. Nat. Cell Biol. 14, 535–541 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Mercer, J. R. et al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ. Res. 107, 1021–1031 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Scheibye-Knudsen, M., Scheibye-Alsing, K., Canugovi, C., Croteau, D. L. & Bohr, V. A. A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging. Aging 5, 192–208 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Oda, K. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849–862 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Murray-Zmijewski, F., Slee, E. A. & Lu, X. A complex barcode underlies the heterogeneous response of p53 to stress. Nat. Rev. Mol. Cell Biol. 9, 702–712 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Hoshino, A. et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun. 4, 2308 (2013).

    Article  PubMed  CAS  Google Scholar 

  106. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Xie, X., Le, L., Fan, Y., Lv, L. & Zhang, J. Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition. Autophagy 8, 1071–1084 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Poyurovsky, M. V. & Prives, C. P53 and aging: a fresh look at an old paradigm. Aging 2, 380–382 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Matheu, A. et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448, 375–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Pinkston, J. M., Garigan, D., Hansen, M. & Kenyon, C. Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313, 971–975 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Vaziri, H. et al. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Sampaio-Marques, B. et al. SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2 (Sir2)-mediated mitophagy. Autophagy 8, 1494–1509 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Huang, R. et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol. Cell 57, 456–466 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Price, N. L. et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675–690 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Longo, V. D. et al. Interventions to slow aging in humans: are we ready? Aging Cell 14, 497–510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02300740, (2014).

  118. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02303483, (2014).

  119. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02191462, (2014).

  120. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02678611, (2016).

  121. Wang, G. et al. P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage. Cell 158, 1324–1334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hubbard, B. P. et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339, 1216–1219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sinclair, D. A. & Guarente, L. Small-molecule allosteric activators of sirtuins. Annu. Rev. Pharmacol. Toxicol. 54, 363–380 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. van der Meer, A. J. et al. The selective sirtuin 1 activator SRT2104 reduces endotoxin-induced cytokine release and coagulation activation in humans. Crit. Care Med. 43, e199–202 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Timmers, S. et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14, 612–622 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Kashiwaya, Y. et al. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer's disease. Neurobiol. Aging 34, 1530–1539 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Edwards, C. et al. d-β-hydroxybutyrate extends lifespan in C. elegans. Aging 6, 621–644 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004). Provides the first evidence that compromised autophagy contributes to the pathology of the neurodegenerative disorder Huntington disease.

    Article  CAS  PubMed  Google Scholar 

  130. Leslie, M. A putative antiaging drug takes a step from mice to men. Science 342, 789 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Dai, D. F. et al. Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 13, 529–539 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Soefje, S. A., Karnad, A. & Brenner, A. J. Common toxicities of mammalian target of rapamycin inhibitors. Target Oncol. 6, 125–129 (2011).

    Article  PubMed  Google Scholar 

  133. Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Pavel, M. & Rubinsztein, D. C. in Antitumor Potential and Other Emerging Medicinal Properties of Natural Compounds (eds Fang, E. F. & Ng, T. B.) 227–238 (Springer, 2013).

    Book  Google Scholar 

  135. Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470, 359–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Saretzki, G. Extra-telomeric functions of human telomerase: cancer, mitochondria and oxidative stress. Curr. Pharm. Des. 20, 6386–6403 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Chen, L. Y. et al. Mitochondrial localization of telomeric protein TIN2 links telomere regulation to metabolic control. Mol. Cell 47, 839–850 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mangerich, A. & Burkle, A. Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. Oxid. Med. Cell. Longev. 2012, 321653 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Grube, K. & Burkle, A. Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span. Proc. Natl Acad. Sci. USA 89, 11759–11763 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Luna, A., Aladjem, M. I. & Kohn, K. W. SIRT1/PARP1 crosstalk: connecting DNA damage and metabolism. Genome Integr. 4, 6 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Hoeijmakers, J. H. DNA damage, aging, and cancer. N. Engl. J. Med. 361, 1475–1485 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Cleaver, J. E., Lam, E. T. & Revet, I. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat. Rev. Genet. 10, 756–768 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 9, 958–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lakshmipathy, U. & Campbell, C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 27, 1198–1204 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Alexeyev, M., Shokolenko, I., Wilson, G. & LeDoux, S. The maintenance of mitochondrial DNA integrity — critical analysis and update. Cold Spring Harb. Perspect. Biol. 5, a012641 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Ding, L. & Liu, Y. Borrowing nuclear DNA helicases to protect mitochondrial DNA. Int. J. Mol. Sci. 16, 10870–10887 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Croteau, D. L. et al. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging Cell 11, 456–466 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Dang, W. et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459, 802–807 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Viswanathan, M. & Guarente, L. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 477, E1–E2 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Burnett, C. et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907–918 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Finley, L. W. & Haigis, M. C. Metabolic regulation by SIRT3: implications for tumorigenesis. Trends Mol. Med. 18, 516–523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the valuable work of the many investigators whose published articles they were unable to cite owing to space limitations. They thank Prabhat Khadka and Anne Tseng for critical reading of the manuscript. This research was supported entirely by the Intramural Research Program of the US National Institutes of Health (NIH) National Institute on Ageing (NIA). K.F.C. was supported by the Department of Veterans Affairs (Merit Award), research awards from the Glenn Foundation for Medical Research and the NIH/NIA (R56AG050997).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilhelm A. Bohr.

Ethics declarations

Competing interests

The Bohr laboratory has CRADA arrangements with ChromaDex and GlaxoSmithKline.

PowerPoint slides

Related links

Related links

DATABASES

Mito DB (The mitochondrial disease database)

Glossary

Cockayne syndrome

A rare accelerated-ageing disease with progressive neurodegeneration, caused by mutations in genes encoding two DNA repair proteins, CSA and CSB.

Xeroderma pigmentosum

A rare autosomal-recessive disorder characterized by severe sun sensitivity and skin cancer, associated with mutation of genes encoding a group of DNA repair proteins, XPA to XPG.

Ataxia telangiectasia

A genomic instability disease with progressive cerebellar neurodegeneration caused by mutation of the ataxia telangiectasia mutated (ATM) gene, encoding the kinase ATM, which is a master regulator of DNA damage processing.

Preiss–Handler pathway

A NAD+ biosynthetic process that consumes dietary nicotinic acid.

Salvage pathway

A NAD+ biosynthetic pathway that uses nicotinamide to generate nicotinamide mononucleotide (NMN), which is then transformed into NAD+.

Reactive oxygen species

(ROS). By-products of cellular metabolism, which at low levels provide health benefits, whereas at high levels they become increasingly noxious, with broad pathological consequences.

Ataxia telangiectasia mutated

(ATM). A 350 kDa Ser/Thr protein kinase that is required for activation of the DNA damage response to double-strand breaks through phosphorylation of >700 downstream DNA repair proteins.

Hepatosteatosis

Also known as hepatic steatosis (fatty liver). A common liver abnormality, in which patients have excessive accumulation of triglycerides (lipid droplets) in the liver.

Apurinic and apyrimidinic sites

(AP sites; also known as abasic sites). Sites of DNA sugar without a base, which is a common DNA lesion and is typically repaired by DNA base excision repair through sugar cleavage by AP endonuclease 1 (APE1).

8-oxo-dGuo

(8-oxo-7,8-dihydro-2′- deoxyguanosine). An oxidative DNA lesion, which can be repaired by DNA base excision repair.

NAD+/NADH ratio

NAD exists in cells in both oxidized (NAD+) and reduced (NADH) forms. The ratio of NAD+ and NADH regulates many cellular processes, including energy metabolism and mitochondrial functions.

Ketogenic diet

A diet that is high-fat, high-protein and low-carbohydrate.

Stress response

A cellular response to certain types of stress, such as caloric restriction or increase in reactive oxygen species, in which different stress-counteracting pathways are upregulated.

Autophagosome

A key structure of autophagy, an autophagosome is a spherical, double-membrane vesicle that sequesters cytoplasmic contents for degradation.

Rapamycin

A natural metabolite from the bacterium Streptomyces hygroscopicus, which inhibits mTOR and extends lifespan in species from yeast to fruit flies and mice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, E., Scheibye-Knudsen, M., Chua, K. et al. Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol 17, 308–321 (2016). https://doi.org/10.1038/nrm.2016.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.14

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing