Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reverse-topology membrane scission by the ESCRT proteins

Key Points

  • Endosomal sorting complex required for transport (ESCRT) proteins carry out scission of membrane necks with a topology (or sidedness) opposite to that of the better-understood process carried out by coat proteins, dynamin and BAR (Bin, amphiphysin and Rvs) domain proteins.

  • ESCRT-mediated reverse-topology membrane scission is initiated by two upstream branches: the first comprising ESCRT-I and ESCRT-II, and the second comprising ALIX.

  • The ESCRT-III protein family has 12 different subunits in humans. ESCRT-III monomers are about 200 amino acids in length and have open and closed conformations.

  • ESCRT-III proteins can assemble into flat spirals, helical tubes or conical funnels.

  • ESCRT-III assemblies are taken apart by the AAA+ ATPase vacuolar protein sorting-associated 4 (VPS4), which unfolds ESCRT-III monomers and threads them through a central pore of the VPS4 hexamer.

  • It is currently unresolved whether scission is mediated by the drawing-together of membrane necks by a tapered dome, buckling by the mechanical spring-like action of curved ESCRT filaments or some other means.

Abstract

The narrow membrane necks formed during viral, exosomal and intra-endosomal budding from membranes, as well as during cytokinesis and related processes, have interiors that are contiguous with the cytosol. Severing these necks involves action from the opposite face of the membrane as occurs during the well-characterized formation of coated vesicles. This 'reverse' (or 'inverse')-topology membrane scission is carried out by the endosomal sorting complex required for transport (ESCRT) proteins, which form filaments, flat spirals, tubes and conical funnels that are thought to direct membrane remodelling and scission. Their assembly, and their disassembly by the ATPase vacuolar protein sorting-associated 4 (VPS4) have been intensively studied, but the mechanism of scission has been elusive. New insights from cryo-electron microscopy and various types of spectroscopy may finally be close to rectifying this situation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reverse-topology membrane scission.
Figure 2: The ESCRT pathway.
Figure 3: The ESCRT-I–II and ALIX branches of the upstream ESCRTs.
Figure 4: The ESCRT-III proteins.
Figure 5: ESCRT-III polymer structures.
Figure 6: ESCRT-III disassembly.
Figure 7: Models for ESCRT-mediated scission.

Similar content being viewed by others

References

  1. Votteler, J. & Sundquist, W. I. Virus budding and the ESCRT pathway. Cell Host Microbe 14, 232–241 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Martin-Serrano, J. & Neil, S. J. D. Host factors involved in retroviral budding and release. Nat. Rev. Microbiol. 9, 519–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Olmos, Y. & Carlton, J. G. The ESCRT machinery: new roles at new holes. Curr. Opin. Cell Biol. 38, 1–11 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campsteijn, C., Vietri, M. & Stenmark, H. Novel ESCRT functions in cell biology: spiraling out of control? Curr. Opin. Cell Biol. 41, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Hurley, J. H. ESCRTs are everywhere. EMBO J. 34, 2398–2407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shields, S. B. & Piper, R. C. How ubiquitin functions with ESCRTs. Traffic 12, 1307–1317 (2011).

    Article  CAS  Google Scholar 

  7. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Kostelansky, M. S. et al. Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer. Cell 129, 485–498 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3, 283–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Hierro, A. et al. Structure of the ESCRT-II endosomal trafficking complex. Nature 431, 221–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Teo, H., Perisic, O., Gonzalez, B. & Williams, R. L. ESCRT-II, an endosome-associated complex required for protein sorting: Crystal structure and interactions with ESCRT-III and membranes. Dev. Cell 7, 559–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Im, Y. J. & Hurley, J. H. Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Dev. Cell 14, 902–913 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kostelansky, M. S. et al. Structural and functional organization of the ESCRT-I trafficking complex. Cell 125, 113–126 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gill, D. J. et al. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J. 26, 600–612 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boura, E. et al. Solution structure of the ESCRT-I and -II supercomplex: Implications for membrane budding and scission. Structure 20, 874–886 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wollert, T. & Hurley, J. H. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464, 864–869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carlson, L.-A. & Hurley, J. H. In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proc. Natl Acad. Sci. USA 109, 16928–16933 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morita, E. et al. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe 9, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goliand, I., Nachmias, D., Gershony, O. & Elia, N. Inhibition of ESCRT-II–CHMP6 interactions impedes cytokinetic abscission and leads to cell death. Mol. Biol. Cell 25, 3740–3748 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Meng, B., Ip, N. C. Y., Prestwood, L. J., Abbink, T. E. M. & Lever, A. M. L. Evidence that the endosomal sorting complex required for transport-II (ESCRT-II) is required for efficient human immunodeficiency virus-1 (HIV-1) production. Retrovirology 12, 72 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Christ, L. et al. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J. Cell Biol. 212, 499–513 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang, S. et al. ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. eLife http://dx.doi.org/10.7554/eLife.15507 (2016).

  24. Cashikar, A. G. et al. Structure of cellular ESCRT-III spirals and their relationship to HIV budding. eLife http://dx.doi.org/10.7554/eLife.02184 (2014). Uses EM of ESCRT-III at HIV-1 Gag budding sites and reveals a funnel that nucleates at a narrow part of the membrane neck and widens as the funnel grows away from the bud.

  25. Ladinsky, M. S. et al. Electron tomography of HIV-1 infection in gut-associated lymphoid tissue. PLoS Pathog. 10, e1003899 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Rozycki, B., Boura, E., Hurley, J. H. & Hummer, G. Membrane-elasticity model of coatless vesicle budding induced by ESCRT complexes. PLoS Comput. Biol. 8, e1002736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mercker, M. & Marciniak-Czochra, A. Bud-neck scaffolding as a possible driving force in ESCRT-induced membrane budding. Biophys. J. 108, 833–843 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Teis, D., Saksena, S., Judson, B. L. & Emr, S. D. ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO J. 29, 871–883 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Im, Y. J., Wollert, T., Boura, E. & Hurley, J. H. Structure and function of the ESCRT-II–III interface in multivesicular body biogenesis. Dev. Cell 17, 234–243 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H. G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. von Schwedler, U. K. et al. The protein network of HIV budding. Cell 114, 701–713 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, J. et al. Structural basis for endosomal targeting by the Bro1 domain. Dev. Cell 8, 937–947 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, S., Joshi, A., Nagashima, K., Freed, E. O. & Hurley, J. H. Structural basis for viral late-domain binding to Alix. Nat. Struct. Mol. Biol. 14, 194–199 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fisher, R. D. et al. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128, 841–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Pires, R. et al. A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 17, 843–856 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McCullough, J., Fisher, R. D., Whitby, F. G., Sundquist, W. I. & Hill, C. P. ALIX-CHMP4 interactions in the human ESCRT pathway. Proc. Natl Acad. Sci. USA 105, 7687–7691 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dowlatshahi, D. P. et al. ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding. Dev. Cell 23, 1247–1254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keren-Kaplan, T. et al. Structure-based in silico identification of ubiquitin-binding domains provides insights into the ALIX-V:ubiquitin complex and retrovirus budding. EMBO J. 32, 538–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pashkova, N. et al. The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes. Dev. Cell 25, 520–533 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhai, Q. T. et al. Activation of the retroviral budding factor ALIX. J. Virol. 85, 9222–9226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ali, N. et al. Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB. Curr. Biol. 23, 453–461 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Loncle, N., Agromayor, M., Martin-Serrano, J. & Williams, D. W. An ESCRT module is required for neuron pruning. Sci. Rep. 5, 8461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parkinson, M. D. J. et al. A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I. Biochem. J. 471, 79–88 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Muziol, T. et al. Structural basis for budding by the ESCRT-III factor CHMP3. Dev. Cell 10, 821–830 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Tang, S. et al. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. eLife http://dx.doi.org/10.7554/eLife.12548 (2015).

  46. Bajorek, M. et al. Structural basis for ESCRT-III protein autoinhibition. Nat. Struct. Mol. Biol. 16, 754–762 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiao, J. Y. et al. Structural basis of Ist1 function and Ist1–Did2 interaction in the multivesicular body pathway and cytokinesis. Mol. Biol. Cell 20, 3514–3524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McCullough, J. et al. Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350, 1548–1551 (2015). Reveals that the atomic resolution structure of a CHMP1B–IST1 tube shows marked structural rearrangements in CHMP1B and that this particular combination of ESCRTs carries out normal-topology scission.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zamborlini, A. et al. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc. Natl Acad. Sci. USA 103, 19140–19145 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shim, S., Kimpler, L. A. & Hanson, P. I. Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. Traffic 8, 1068–1079 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Lata, S. et al. Structural basis for autoinhibition of ESCRT-III CHMP3. J. Mol. Biol. 378, 818–827 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Henne, W. M., Buchkovich, N. J., Zhao, Y. & Emr, S. D. The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell 151, 356–371 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Róz˙ycki, B., Kim, Y. C. & Hummer, G. SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure 19, 109–116 (2011).

    Article  CAS  Google Scholar 

  54. Schuh, A. L. et al. The VPS-20 subunit of the endosomal sorting complex ESCRT-III exhibits an open conformation in the absence of upstream activation. Biochem. J. 466, 625–637 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shen, Q.-T. et al. Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. J. Cell Biol. 206, 763–777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chiaruttini, N. et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163, 866–879 (2015). Shows that the mechanical properties of ESCRTs are consistent with the action of these proteins as spiral springs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lata, S. et al. Helical structures of ESCRT-III are disassembled by VPS4. Science 321, 1354–1357 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Effantin, G. et al. ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding. Cell. Microbiol. 15, 213–226 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Bodon, G. et al. Charged multivesicular body protein 2B (CHMP2B) of the endosomal sorting complex required for transport-III (ESCRT-III) polymerizes into helical structures deforming the plasma membrane. J. Biol. Chem. 286, 40276–40286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Allison, R. et al. An ESCRT–spastin interaction promotes fission of recycling tubules from the endosome. J. Cell Biol. 202, 527–543 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dobro, M. J. et al. Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission. Mol. Biol. Cell 24, 2319–2327 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guizetti, J. et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331, 1616–1620 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Baumgartel, V. B. V. et al. Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nat. Cell Biol. 13, 469–474 (2011).

    Article  PubMed  CAS  Google Scholar 

  65. Jouvenet, N. J. N., Zhadina, M., Bieniasz, P. D. & Simon, S. M. Dynamics of ESCRT protein recruitment during retroviral assembly. Nat. Cell Biol. 13, 394–401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: A role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Agromayor, M. & Martin-Serrano, J. Knowing when to cut and run: Mechanisms that control cytokinetic abscission. Trends Cell Biol. 23, 433–441 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Elia, N., Sougrat, R., Spurlin, T., Hurley, J. H. & Lippincott-Schwartz, J. Dynamics of ESCRT machinery during cytokinesis and its role in abscission. Proc. Natl Acad. Sci. USA 108, 4846–4851 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, I. H., Kai, H., Carlson, L. A., Groves, J. T. & Hurley, J. H. Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly. Proc. Natl Acad. Sci. USA 112, 15892–15897 (2015). Uses real-time and super-resolution imaging of ESCRT-III polymerization on nanofabricated concave templates to show that ESCRT-III nucleation has a negative curvature preference.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Teis, D., Saksena, S. & Emr, S. D. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev. Cell 15, 578–589 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Monroe, N. & Hill, C. P. Meiotic clade AAA ATPases: protein polymer disassembly machines. J. Mol. Biol. 428, 1897–1911 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Hurley, J. H. & Yang, D. MIT domainia. Dev. Cell 14, 6–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Monroe, N. et al. The oligomeric state of the active Vps4 AAA ATPase. J. Mol. Biol. 426, 510–525 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Caillat, C. et al. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly. Nat. Commun. 6, 8781 (2015). Provides the first structure of the active hexameric form of Vps4.

    Article  CAS  PubMed  Google Scholar 

  76. Obita, T. et al. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735–739 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Stuchell-Brereton, M. et al. ESCRT-III recognition by VPS4 ATPases. Nature 449, 740–744 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Guo, E. Z. & Xu, Z. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains. J. Biol. Chem. 290, 8396–8408 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kieffer, C. et al. Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. Dev. Cell 15, 62–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shim, S., Merrill, S. A. & Hanson, P. I. Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly. Mol. Biol. Cell 19, 2661–2672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xiao, J. et al. Structural basis of Vta1 function in the multi-vesicular body sorting pathway. Dev. Cell 14, 37–49 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Solomons, J. et al. Structural basis for ESCRT-III CHMP3 recruitment of AMSH. Structure 19, 1149–1159 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Merrill, S. A. & Hanson, P. I. Activation of human VPS4A by ESCRT-III proteins reveals ability of substrates to relieve enzyme autoinhibition. J. Biol. Chem. 285, 35428–35438 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Norgan, A. P. et al. Relief of autoinhibition enhances Vta1 activation of Vps4 via the Vps4 stimulatory element. J. Biol. Chem. 288, 26147–26156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Davies, B. A. et al. Vps4 stimulatory element of the cofactor Vta1 contacts the ATPase Vps4 α7 and α9 to stimulate ATP hydrolysis. J. Biol. Chem. 289, 28707–28718 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Han, H. et al. Binding of substrates to the central pore of the Vps4 ATPase is autoinhibited by the microtubule interacting and trafficking (MIT) domain and activated by MIT interacting motifs (MIMs). J. Biol. Chem. 290, 13490–13499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Scott, A. et al. Structural and mechanistic studies of VPS4 proteins. EMBO J. 24, 3658–3669 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gonciarz, M. D. et al. Biochemical and structural studies of yeast Vps4 oligomerization. J. Mol. Biol. 384, 878–895 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hartmann, C. et al. Vacuolar protein sorting: Two different functional states of the AAA-ATPase Vps4p. J. Mol. Biol. 377, 352–363 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Yu, Z. H., Gonciarz, M. D., Sundquist, W. I., Hill, C. P. & Jensen, G. J. Cryo-EM structure of dodecameric Vps4p and its 2:1 complex with Vta1p. J. Mol. Biol. 377, 364–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Landsberg, M. J., Vajjhala, P. R., Rothnagel, R., Munn, A. L. & Hankamer, B. Three-dimensional structure of AAA ATPase Vps4: Advancing structural insights into the mechanisms of endosomal sorting and enveloped virus budding. Structure 17, 427–437 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Yang, B., Stjepanovic, G., Shen, Q. T., Martin, A. & Hurley, J. H. Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nat. Struct. Mol. Biol. 22, 492–498 (2015). Shows that Vps4 disassembles ESCRT-III by unfolding the subunits and pulling them through the central pore.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Azmi, I. F. et al. ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1. Dev. Cell 14, 50–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Yang, D. & Hurley, J. H. Structural role of the Vps4-Vta1 interface in ESCRT-III recycling. Structure 18, 976–984 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Fabrikant, G. et al. Computational model of membrane fission catalyzed by ESCRT-III. PLoS Comput. Biol. 5, e1000575 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J. H. Membrane scission by the ESCRT-III complex. Nature 458, 172–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Van Engelenburg, S. B. et al. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 343, 653–656 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Prescher, J. et al. Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites. PLoS Pathog. 11, e1004677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Henne, W. M., Buchkovich, N. J. & Emr, S. D. The ESCRT pathway. Dev. Cell 21, 77–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Hurley, J. H. & Hanson, P. I. Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nat. Rev. Mol. Cell Biol. 11, 556–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McCullough, J., Colf, L. A. & Sundquist, W. I. Membrane fission reactions of the mammalian ESCRT pathway. Annu. Rev. Biochem. 82, 663–692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lenz, M., Crow, D. J. G. & Joanny, J. F. Membrane buckling induced by curved filaments. Phys. Rev. Lett. 103, 038101 (2009).

    Article  PubMed  CAS  Google Scholar 

  103. Carlson, L.-A., Shen, Q.-T., Pavlin, M. R. & Hurley, J. H. ESCRT filaments as spiral springs. Dev. Cell 35, 397–398 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Nickerson, D. P., Russell, D. W. & Odorizzi, G. A concentric circle model of multivesicular body cargo sorting. EMBO Rep. 8, 644–650 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Odorizzi, G. Membrane manipulations by the ESCRT machinery. F1000Res. 4, 516 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Vietri, M. et al. Spastin and ESCRT-III coordinates mitotic spindle disassembly and nuclear envelope resealing. Nature 522, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Zhai, Q. et al. Structural and functional studies of ALIX interactions with YPXnL late domains of HIV-1 and EIAV. Nat. Struct. Mol. Biol. 15, 43–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Bauer, I., Brune, T., Preiss, R. & Kölling, R. Evidence for a nonendosomal function of the Saccharomyces cerevisiae ESCRT-III-like protein Chm7. Genetics 201, 1439–1452 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research on endosomal sorting complexes required for transport (ESCRTs) in the Hurley laboratory is supported by the US National Institutes of Health, grant AI112442. J.H.I. is supported by the Center for the Structural Biology of Cellular Host Elements in Egress, Trafficking, and Assembly of HIV (CHEETAH), US National Institutes of Health, grant GM082545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Hurley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

ESCRT subunit nomenclature (PDF 77 kb)

Supplementary information S2 (movie)

Animation of the dome model of ESCRT-mediated reverse-topology membrane scission. See legend to Fig. 7a for explanation of features. ESCRT-I (green), ESCRT-II (orange), ESCRT-III (yellow), ALIX (purple), VPS4 (pink), Gag (blue). (MOV 50707 kb)

Supplementary information S3 (movie)

Animation of the reverse dome model of ESCRT-mediated reverse-topology membrane scission. See Fig. 7b. ESCRT-I (green), ESCRT-II (orange), ESCRT-III (yellow), ALIX (purple), VPS4 (pink), Gag (blue). (MOV 51580 kb)

Supplementary information S4 (movie)

Animation of the buckling model of ESCRT-mediated reverse-topology membrane scission. See Fig. 7c. ESCRT-I (green), ESCRT-II (orange), ESCRT-III (yellow), ALIX (purple), VPS4 (pink), Gag (blue). (MOV 52453 kb)

Supplementary information S5 (movie)

Animation of the possible role of ESCRT proteins in endocytic cargo sorting. Cargo proteins (red) recruit ESCRT-I (green) and ESCRT-II (orange). ESCRT-III (yellow) is recruited by ESCRT-II and grows in concentric rings of increasing diameter, forming a flat disc. The addition of a second type of ESCRT-III protein (teal) causes buckling of the ESCRT-III disc, forming a cone. Depolymerization of second ESCRT-III rings by VPS4 (pink) allows ESCRT-III to return to a flattened disc morphology and for membrane fission to occur. (MOV 117858 kb)

PowerPoint slides

Glossary

Membrane necks

Narrow membranous connections linking two entities, including: nascent endosomes, exosomes, enveloped viruses and intraluminal vesicles to their membranes of origin; daughter cell to mother cell or another daughter cell; and the cytosol to the lumen of a double-membrane structure, such as the nucleus or a nascent autophagosome.

Reverse-topology scission

The severing of membrane necks when the scission factors function from the membrane face contiguous with the interior of the neck.

Multivesicular bodies

(MVBs). Late endosomes containing internal vesicles.

Cytokinesis

The separation of daughter cells, which is the final stage in cell division, in which the membrane and microtubules connecting the two cells are severed.

Ubiquitin

A 76-amino-acid protein whose covalent conjugation to target proteins can (among many other fates) mark them as substrates for the endosomal sorting complex required for transport (ESCRT) system.

Giant unilamellar vesicles

Synthetic vesicles of 5–50 μm in diameter; a popular model system for in vitro studies of membrane remodelling.

Nucleation

The kinetic step in which an initial seed unit is assembled that, when formed, can readily grow into a larger structure.

Intercellular bridge

The narrow membranous and microtubule-containing structure connecting two daughter cells immediately before their separation in cytokinesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schöneberg, J., Lee, IH., Iwasa, J. et al. Reverse-topology membrane scission by the ESCRT proteins. Nat Rev Mol Cell Biol 18, 5–17 (2017). https://doi.org/10.1038/nrm.2016.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing