Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Do short, frequent DNA sequence motifs mould the epigenome?

Abstract

'Epigenome' refers to the panoply of chemical modifications borne by DNA and its associated proteins that locally affect genome function. Epigenomic patterns are thought to be determined by external constraints resulting from development, disease and the environment, but DNA sequence is also a potential influence. We propose that domains of relatively uniform DNA base composition may modulate the epigenome through cell type-specific proteins that recognize short, frequent sequence motifs. Differential recruitment of epigenomic modifiers may adjust gene expression in multigene blocks as an alternative to tuning the activity of each gene separately, thus simplifying gene expression programming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differences in DNA methylation in a region of the human brain reflect base composition.
Figure 2: Long-range depletion of DNA methylation in cancer.
Figure 3: Does sharply changing base composition in CpG island (CGI) shores cause variable DNA methylation?
Figure 4: Small differences in base composition cause large differences in the frequency of AT-run motifs.

Similar content being viewed by others

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalez-Perez, A., Jene-Sanz, A. & Lopez-Bigas, N. The mutational landscape of chromatin regulatory factors across 4,623 tumor samples. Genome Biol. 14, r106 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holmquist, G. P. Chromosome bands, their chromatin flavors, and their functional features. Am. J. Hum. Genet. 51, 17–37 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bickmore, W. A. & Sumner, A. T. Mammalian chromosome banding — an expression of genome organization. Trends Genet. 5, 144 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Caron, H. et al. The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291, 1289–1292 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Nora, E. P., Dekker, J. & Heard, E. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods? Bioessays 35, 818–828 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bickmore, W. A. & van Steensel, B. Genome architecture: domain organization of interphase chromosomes. Cell 152, 1270–1284 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  10. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meuleman, W. et al. Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res. 23, 270–280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bernardi, G. The isochore organization of the human genome. Annu. Rev. Genet. 23, 637–661 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Costantini, M., Clay, O., Auletta, F. & Bernardi, G. An isochore map of human chromosomes. Genome Res. 16, 536–541 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bernardi, G. et al. The mosaic genome of warm-blooded vertebrates. Science 228, 953–958 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Voo, K. S., Carlone, D. L., Jacobsen, B. M., Flodin, A. & Skalnik, D. G. Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl-CpG binding domain protein 1. Mol. Cell. Biol. 20, 2108–2121 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Thomson, J. P. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blackledge, N. P. et al. CpG islands recruit a histone H3 lysine 36 demethylase. Mol. Cell 38, 179–190 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Denissov, S. et al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 141, 526–537 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Tate, C. M., Lee, J. H. & Skalnik, D. G. CXXC finger protein 1 restricts the Setd1A histone H3K4 methyltransferase complex to euchromatin. FEBS J. 277, 210–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, X., Johansen, J. V. & Helin, K. Fbxl10/Kdm2b recruits Polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 49, 1134–1146 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Farcas, A. M. et al. KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. eLife 1, e00205 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cohen, N. M., Kenigsberg, E. & Tanay, A. Primate CpG islands are maintained by heterogeneous evolutionary regimes involving minimal selection. Cell 145, 773–786 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Illingworth, R. S. et al. Inter-individual variability contrasts with regional homogeneity in the human brain DNA methylome. Nucleic Acids Res. 43, 732–744 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berman, B. P. et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet. 44, 40–46 (2012).

    Article  CAS  Google Scholar 

  29. Doi, A. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350–1353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jeong, M. et al. Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat. Genet. 46, 17–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Krebs, A. R., Dessus-Babus, S., Burger, L. & Schubeler, D. High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions. eLife 3, e04094 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wachter, E. et al. Synthetic CpG islands reveal DNA sequence determinants of chromatin structure. eLife 3, e03397 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Tazi, J. & Bird, A. Alternative chromatin structure at CpG islands. Cell 60, 909–920 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Ramirez-Carrozzi, V. R. et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138, 114–128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aravind, L. & Landsman, D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 26, 4413–4421 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fonfria-Subiros, E. et al. Crystal structure of a complex of DNA with one AT-hook of HMGA1. PLoS ONE 7, e37120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reeves, R. Molecular biology of HMGA proteins: hubs of nuclear function. Gene 277, 63–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Fedele, M. & Fusco, A. HMGA and cancer. Biochim. Biophys. Acta 1799, 48–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Hood, R. L. et al. Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause Floating-Harbor syndrome. Am. J. Hum. Genet. 90, 308–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Patsialou, A., Wilsker, D. & Moran, E. DNA-binding properties of ARID family proteins. Nucleic Acids Res. 33, 66–80 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Webb, C. F. et al. The ARID family transcription factor bright is required for both hematopoietic stem cell and B lineage development. Mol. Cell. Biol. 31, 1041–1053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takebe, A. et al. Microarray analysis of PDGFRα+ populations in ES cell differentiation culture identifies genes involved in differentiation of mesoderm and mesenchyme including ARID3b that is essential for development of embryonic mesenchymal cells. Dev. Biol. 293, 25–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Lahoud, M. H. et al. Gene targeting of Desrt, a novel ARID class DNA-binding protein, causes growth retardation and abnormal development of reproductive organs. Genome Res. 11, 1327–1334 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Samyesudhas, S. J., Roy, L. & Cowden Dahl, K. D. Differential expression of ARID3B in normal adult tissue and carcinomas. Gene 543, 174–180 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Baba, A. et al. PKA-dependent regulation of the histone lysine demethylase complex PHF2–ARID5B. Nat. Cell Biol. 13, 668–675 (2011).

    Article  PubMed  Google Scholar 

  47. Yamashita, K., Sato, A., Asashima, M., Wang, P. C. & Nishinakamura, R. Mouse homolog of SALL1, a causative gene for Townes–Brocks syndrome, binds to A/T-rich sequences in pericentric heterochromatin via its C-terminal zinc finger domains. Genes Cells 12, 171–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Kohlhase, J., Wischermann, A., Reichenbach, H., Froster, U. & Engel, W. Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat. Genet. 18, 81–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Sakaki-Yumoto, M. et al. The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development. Development 133, 3005–3013 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Gao, C., Kong, N. R. & Chai, L. The role of stem cell factor SALL4 in leukemogenesis. Crit. Rev. Oncog. 16, 117–127 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lauberth, S. M. & Rauchman, M. A conserved 12-amino acid motif in Sall1 recruits the nucleosome remodeling and deacetylase corepressor complex. J. Biol. Chem. 281, 23922–23931 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Hu, G., & Wade, P. A. NuRD and pluripotency: a complex balancing act. Cell Stem Cell 10, 497–503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cai, Y. et al. The NuRD complex cooperates with DNMTs to maintain silencing of key colorectal tumor suppressor genes. Oncogene 33, 2157–2168 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Latos, P. A. et al. NuRD-dependent DNA methylation prevents ES cells from accessing a trophectoderm fate. Biol. Open 1, 341–352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ptashne, M. Regulation of transcription: from lambda to eukaryotes. Trends Biochem. Sci. 30, 275–279 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Programme grant (091580) and Centre Core Grant (092076) from the Wellcome Trust to A.B.. T.Q. is an EU Marie Curie Fellow. The authors thank Kashyap Chhatbar for help with bioinformatic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Bird.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Related links

Related links

FURTHER INFORMATION

ENCODE

UCSC Genome Browser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quante, T., Bird, A. Do short, frequent DNA sequence motifs mould the epigenome?. Nat Rev Mol Cell Biol 17, 257–262 (2016). https://doi.org/10.1038/nrm.2015.31

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2015.31

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing