Key Points
-
Beyond gene editing, the CRISPR–Cas9 technology offers a versatile sequence-specific gene regulation 'toolset', by utilizing the nuclease-deficient dCas9, which was designed not to cleave DNA but to precisely and specifically bind DNA when guided by a single guide RNA (sgRNA).
-
In CRISPR interference (CRISPRi), dCas9 is targeted to block transcription and thereby silence genes. Improvements include the fusion of dCas9 to transcriptional repressors for increased repression efficiency.
-
CRISPR activation (CRISPRa) uses dCas9 fusion proteins to recruit transcription activators for targeted gene activation. The use of enhanced dCas9 activation systems allows recruitment of multiple activators with one sgRNA.
-
dCas9 can direct epigenetic modifications at specific genomic locations, through the use of dCas9 fusion proteins that recruit epigenetic modifiers that can alter epigenetic marks at enhancers and other regulatory elements.
-
Rational engineering of the sgRNA molecule by the addition of aptamers allows for the recruitment of transcription repressors or activators, and the simultaneous activation of one gene target and repression of another gene target, using one dCas9 protein.
-
CRISPRi and CRISPRa are highly gene-specific.
-
Applications of dCas9 currently include genome-wide loss-of-function or gain-of function screens, inducible and reversible gene regulation and cell fate engineering.
Abstract
The bacterial CRISPR–Cas9 system has emerged as a multifunctional platform for sequence-specific regulation of gene expression. This Review describes the development of technologies based on nuclease-deactivated Cas9, termed dCas9, for RNA-guided genomic transcription regulation, both by repression through CRISPR interference (CRISPRi) and by activation through CRISPR activation (CRISPRa). We highlight different uses in diverse organisms, including bacterial and eukaryotic cells, and summarize current applications of harnessing CRISPR–dCas9 for multiplexed, inducible gene regulation, genome-wide screens and cell fate engineering. We also provide a perspective on future developments of the technology and its applications in biomedical research and clinical studies.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Mohr, S. E., Smith, J. A., Shamu, C. E., Neumuller, R. A. & Perrimon, N. RNAi screening comes of age: improved techniques and complementary approaches. Nat. Rev. Mol. Cell Biol. 15, 591–600 (2014).
Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).
Gaj, T. & Gersbach, C. A. & Barbas, C. F. 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).
Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763–763 (2003).
Miller, J. C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785 (2007).
Sander, J. D. et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat. Methods 8, 67–69 (2011).
Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757–761 (2010).
Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149–153 (2011).
Kabadi, A. M. & Gersbach, C. A. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression. Methods 69, 188–197 (2014).
Wolfe, S. A., Nekludova, L. & Pabo, C. O. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29, 183–212 (2000).
Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).
Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012). This paper shows that Cas9, when paired with a tracrRNA–crRNA complex or a chimeric sgRNA, can recognize and cut specific DNA sequences.
Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).
Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013). This paper describes the nuclease-deficient Cas9 (dCas9) and its use as an RNA-guided DNA-binding platform for gene repression in bacteria and mammalian cells.
Makarova, K. S. et al. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13, 1–15 (2015).
Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).
Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).
Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39, 9275–9282 (2011).
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31, 233–239 (2013).
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).
Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013). Along with references 21 and 22, this paper demonstrates the use of the nuclease Cas9 for genome editing in mammalian cells.
Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR–Cas system. Nat. Biotechnol. 31, 227–229 (2013).
Cho, S. W., Kim, S., Kim, J. M. & Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).
Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).
Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).
Sander, J. D. & Joung, J. K. CRISPR–Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).
Mali, P., Esvelt, K. M. & Church, G. M. Cas9 as a versatile tool for engineering biology. Nat. Methods 10, 957–963 (2013).
Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).
Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).
Ma, H. et al. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl Acad. Sci. USA 112, 3002–3007 (2015).
Fujita, T. & Fujii, H. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem. Biophys. Res. Commun. 439, 132–136 (2013).
Fujita, T. et al. Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP). Sci. Rep. 3, 3171 (2013).
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014). This paper demonstrates an optimized dCas9 system fused with a tandem peptide array (SunTag) for enhanced transcription activation.
Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR–Cas system. Nucleic Acids Res. 41, 7429–7437 (2013).
Ji, W. et al. Specific gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synth. Biol. 3, 929–931 (2014).
Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).
Lawhorn, I. E., Ferreira, J. P. & Wang, C. L. Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53. PLoS ONE 9, e113232 (2014).
Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).
Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014). This paper describes the use of dCas9 fusion proteins for gain-of-function and loss-of-function screens.
Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR–Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013).
Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).
Farzadfard, F., Perli, S. D. & Lu, T. K. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2, 604–613 (2013).
Gao, X. et al. Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res. 42, e155–e155 (2014).
Cheng, A. W. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23, 1163–1171 (2013). This paper, together with references 38 and 42–45, describes the use of dCas9 fused with the repressor KRAB or the activator VP64 for manipulating gene expression in mammalian and yeast cells.
Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015). This paper demonstrates the use of a tripartite system (VPR) for efficient transcription activation.
Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).
Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2014). This paper describes the use of an engineered activator system (SAM) for efficient transcription activation and for genome-wide activation screening.
Kearns, N. A. et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12, 401–403 (2015).
Yeom, Y. I. et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881–894 (1996).
Thakore, P. I. et al. Highly specific epigenome editing by CRISPR–Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).
Hilton, I. B. et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015). Along with reference 50, this paper describes the fusion of dCas9 with a histone-modifying enzyme for targeted epigenetic modifications.
Keung, A. J., Bashor, C. J., Kiriakov, S., Collins, J. J. & Khalil, A. S. Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation. Cell 158, 110–120 (2014).
Zalatan, J. G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339–350 (2015). This paper describes the development of scRNAs with dCas9 for multiplexed and parallel transcription activation and repression in mammalian cells.
Briner, A. E. et al. Guide RNA functional modules direct cas9 activity and orthogonality. Mol. Cell 56, 333–339 (2014).
Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl Acad. Sci. USA 110, 15644–15649 (2013).
Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).
Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).
Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676 (2014).
Kuscu, C., Arslan, S., Singh, R., Thorpe, J. & Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32, 677–683 (2014).
O'Geen, H., Henry, I. M., Bhakta, M. S., Meckler, J. F. & Segal, D. J. A genome-wide analysis of Cas9 binding specificity using ChIP–seq and targeted sequence capture. Nucleic Acids Res. 43, 3389–3404 (2015).
Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).
Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).
Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).
Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).
Cradick, T. J., Fine, E. J., Antico, C. J. & Bao, G. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 41, 9584–9592 (2013).
Polstein, L. R. et al. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res. 25, 1158–1169 (2015).
Bassik, M. C. et al. A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 152, 909–922 (2013).
Koike-Yusa, H., Li, Y., Tan, E. P., Velasco-Herrera Mdel, C. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267–273 (2014).
Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).
Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014).
Zhou, Y. et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509, 487–491 (2014).
Kampmann, M. et al. Next-generation libraries for robust RNA interference-based genome-wide screens. Proc. Natl Acad. Sci. USA 112, E3384–E3391 (2015).
Polstein, L. R. & Gersbach, C. A. A light-inducible CRISPR–Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11, 198–200 (2015).
Nihongaki, Y., Yamamoto, S., Kawano, F., Suzuki, H. & Sato, M. CRISPR–Cas9-based photoactivatable transcription system. Chem. Biol. 22, 169–174 (2015).
Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).
Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR–Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).
Hu, J. et al. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res. 42, 4375–4390 (2014).
Balboa, D. et al. Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep. 5, 448–594 (2015).
Chakraborty, S. et al. A CRISPR/Cas9-Based system for reprogramming cell lineage specification. Stem Cell Rep. 3, 940–947 (2014).
Kearns, N. A. et al. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141, 219–223 (2014).
Xue, W. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380–384 (2014).
Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).
Swiech, L. et al. In vivo interrogation of gene function in the mammalian brain using CRISPR–Cas9. Nat. Biotechnol. 33, 102–106 (2014).
Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32, 551–553 (2014).
Niu, Y. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843 (2014).
Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).
Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).
Acknowledgements
The authors thank the members of the Qi lab for advice and helpful discussions. L.S.Q. acknowledges support from the U.S. National Institutes of Health (NIH) Office of the Director (OD) and National Institute of Dental & Craniofacial Research (NIDCR). A.A.D. acknowledges support through the Milton Safenowitz Post Doctoral Fellowship for ALS Research. This work was supported by NIH R01 DA036858 (to W.A.L. and L.S.Q.), the Howard Hughes Medical Institute (grant to W.A.L.) and NIH DP5 OD017887 (to A.A.D. and L.S.Q.).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Glossary
- CRISPR–Cas
-
(Clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins). CRISPR are bacterial DNA loci containing short repeat segments that match foreign DNA elements. Together with Cas proteins, they form an adaptive immune system in bacteria and archaea, which can acquire sequence segments from foreign DNA and use these sequences to recognize and destroy the foreign target DNA.
- Type II CRISPR system
-
CRISPR–Cas system that encodes cas9, cas1 and cas2 within the CRISPR–cas loci, in addition to a tracrRNA, which is partially complementary to repeats in the CRISPR array.
- Single guide RNA
-
(sgRNA). A synthetic RNA chimera containing a hairpin that links the transactivating CRISPR RNA (tracrRNA) to the crRNA and functions similarly to the native crRNA–tracrRNA duplex, directing Cas9 to a specific genomic locus.
- Protospacer-adjacent motif
-
(PAM). A short sequence in the target DNA (not in the guide RNA) that is necessary for the successful targeting of Cas9. The PAM sequence varies between bacterial species. In Streptococcus pyogenes, it is NGG (which is more effective) or NAG (less effective).
- Transactivating CRISPR RNA
-
(tracrRNA). A small RNA encoded upstream of the CRISPR locus in type II CRISPR systems, with a 24-nucleotide sequence complementary to repeats of the CRISPR RNA (crRNA) precursor transcripts. Essential for the processing of pre-crRNA to mature crRNA.
- CRISPR RNA
-
(crRNA). Small RNAs transcribed from the protospacer within the CRISPR array. Together with the transactivating crRNA (tracrRNA), crRNA guides Cas9 to a specific genomic locus.
- Krüppel-associated box
-
(KRAB). A conserved domain of a transcription repressor that can be fused to DNA-binding proteins for targeted transcription repression.
- mSin3 interaction domains
-
Interaction domains that are present on multiple transcriptional repressor proteins.
- VP64
-
A transcription activator composed of four tandem copies of the herpes simplex virus VP16 activation domain connected by Gly-Ser linkers. VP64 is often fused to DNA-binding proteins for targeted transcription activation.
- p65 activation domain
-
(p65AD). The principal transactivation domain of the 65 kDa polypeptide of the nuclear form of the NF-κB transcription factor.
- Single-chain variable fragment
-
(scFV). A fusion protein in which the epitope-binding regions of the heavy and light chains of an antibody are connected by a short linker peptide and are expressed in soluble form in cells.
- Mediator complex
-
A multi-subunit complex that is required for the transcription of most RNA polymerase II transcripts.
- RNA aptamers
-
RNA molecules that have high affinity and specificity for target molecules.
- Optogenetics
-
A technique that utilizes optics for achieving spatiotemporal gene regulation of cells in living tissues.
- CRY–CIB heterodimerizing domains
-
A light-inducible protein interaction between the blue light-sensitive cryptochrome 2 protein (CRY2) and its interacting partner CIB1 from Arabidopsis thaliana.
- Direct lineage reprogramming
-
The conversion of fully differentiated cells of a certain type into another cell type, while bypassing the intermediate pluripotent state.
- Adeno-associated virus (AAV) vectors
-
Viral vectors with small packaging capacity, commonly used in gene therapy, which can infect both dividing and non-dividing cells and do not integrate into the host genome. AAV vectors have been approved for clinical use.
Rights and permissions
About this article
Cite this article
Dominguez, A., Lim, W. & Qi, L. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17, 5–15 (2016). https://doi.org/10.1038/nrm.2015.2
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrm.2015.2