Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alloreactive killer cells: hindrance and help for haematopoietic transplants

Key Points

  • Success in the use of haematopoietic-cell transplantation (HCT) as a treatment for cancer has come from using allogeneic donors with the maximum possible HLA match. This reduces the severity of graft-versus-host disease (GVHD) caused by alloreactive, donor-derived T cells in the graft.

  • Some degree of T-cell alloreactivity is beneficial for engraftment and for curing the primary disease, as seen from the increased rates of graft rejection and tumour relapse that are observed with autologous transplants and T-cell-depleted allogeneic transplants. New modifications to protocols aim to preserve the benefit of an alloreactive T-cell response in facilitating engraftment and eliminating tumour cells, but to reduce the probability of causing GVHD.

  • For those patients for whom an appropriately HLA-matched donor cannot be found, an HLA-mismatched haploidentical transplant is becoming an increasingly viable option. Recent success with this approach has come from increasing the size of the graft, depleting it of T cells and conditioning the recipient to prevent graft rejection.

  • In recipients of haploidentical transplants, GVHD does not occur, but alloreactive natural killer (NK) cells with specificity for the HLA class I molecules of the recipient can be detected for a period of up to four months after transplantation. The predominant alloreactive NK cells are HLA-C specific, and their presence depends on the precise HLA-C mismatch between donor and recipient and is controlled by the inhibitory HLA-C-specific killer-cell immunoglobulin-like receptor (KIR) that is expressed by NK cells.

  • For patients who receive HCT for acute myelogenous leukaemia, the presence of an alloreactive NK-cell response is correlated with longer disease-free survival and with the capacity of the alloreactive NK cells to kill cells from the patient's tumour. By contrast, the presence of alloreactive NK cells confers no benefit to patients with acute lymphoid leukaemia (ALL), correlating with the failure of NK cells to kill ALL cells owing to their lack of expression of the adhesion molecule leukocyte function-associated antigen 1.

  • In addition to eliminating tumour cells from transplant recipients, alloreactive NK cells might also reduce the severity of GVHD by killing dendritic cells of the recipient that are necessary for presenting antigens to the alloreactive T cells that cause GVHD.

  • Retrospective analysis of 'conventional' transplants across HLA-C mismatches has been carried out to look for beneficial effects. So far, the results have shown that HLA-C incompatibility is a risk factor for graft rejection and GVHD.

  • In addition to HLA-C ligands, it is possible that KIR differences between donor and recipient can affect the specificity of alloreactive NK cells that are present after haploidentical transplantation. A large majority of transplants involve a KIR mismatch, and initial studies indicate that when donors have more genes encoding activating KIRs than do recipients, then the probability of GVHD is increased.

  • The protocols that are used in conventional HLA-matched HCT and in HLA-mismatched haploidentical HCT differ, and they seem to create a different immunological environment in the recipient after transplantation. Future research will need to explain the seemingly discordant effects of HLA-C differences and the role of alloreactive NK cells in the different types of transplant.

Abstract

Haematopoietic-cell transplantation is a treatment for leukaemia and lymphoma. To reduce the incidence of graft-versus-host disease (GVHD) caused by transplanted T cells, donors and recipients are HLA matched. For patients for whom a matched donor is not available, one option is transplantation from an HLA-mismatched relative who shares one HLA haplotype. This procedure is distinguished by the use of a stronger conditioning regimen for the patient and of a T-cell-depleted graft containing numerous stem cells. After transplantation, natural killer cells are prevalent, and they can include alloreactive cells that kill tumour cells and prevent GVHD. The alloreactions seem to be determined by the mismatched HLA class I ligands and their killer-cell immunoglobulin-like receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haematopoietic-cell transplantation and graft-versus-host disease.
Figure 2: MHC class I receptors of human natural killer cells.
Figure 3: Patterns of NK-cell alloreactivity owing to differences in HLA-C type between transplant donor and recipient.
Figure 4: Alloreactive NK cells might prevent GVHD in allogeneic haematopoietic-cell transplantation by killing DCs in susceptible tissues.
Figure 5: Gene organization of the KIR locus.
Figure 6: Representive human KIR genotypes.

Similar content being viewed by others

References

  1. Godin, I. & Cumano, A. The hare and the tortoise: an embryonic haematopoietic race. Nature Rev. Immunol. 2, 593–604 (2002).

    Article  CAS  Google Scholar 

  2. Buckley, R. H. Primary cellular immunodeficiencies. J. Allergy Clin. Immunol. 109, 747–757 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Thomas, E. D. & Blume, K. G. Historical markers in the development of allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 5, 341–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Little, M. T. & Storb, R. History of haematopoietic stem-cell transplantation. Nature Rev. Cancer 2, 231–238 (2002).

    Article  CAS  Google Scholar 

  5. van Rood, J. J. & Oudshoorn, M. The quest for a bone-marrow donor — optimal or maximal HLA matching? N. Engl. J. Med. 339, 1238–1239 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Korbling, M. & Anderlini, P. Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood 98, 2900–2908 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Bensinger, W. I. & Storb, R. Allogeneic peripheral blood stem-cell transplantation. Rev. Clin. Exp. Hematol. 5, 67–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Barker, J. N. & Wagner, J. E. Umbilical cord-blood transplantation: current state of the art. Curr. Opin. Oncol. 14, 160–164 (2002).

    Article  PubMed  Google Scholar 

  9. Thomas, E. D., Blume, K. G. & Forman, S. J. (eds) Hematopoietic Cell Transplantation (Blackwell Science Inc., Malden, Massachusetts, 1999).

    Google Scholar 

  10. Germain, R. N. et al. Processing and presentation of endocytically acquired protein antigens by MHC class II and class I molecules. Immunol. Rev. 151, 5–30 (1996).

    Article  CAS  Google Scholar 

  11. Deeg, H. J. in A Guide to Blood and Marrow Transplantation (eds Deeg, H. J., Klingemann, H. G., Phillips, G. L. & Van Zant, G.) 127–141 (Springer–Verlag, Berlin, 1999).

    Book  Google Scholar 

  12. Bortin, M. M., Horowitz, M. M. & Rimm, A. A. Increasing utilization of allogeneic bone marrow transplantation. Results of the 1988–1990 survey. Ann. Intern. Med. 116, 505–512 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Horowitz, M. H. in Hematopoietic Cell Transplantation (eds Thomas, E. D., Blume, K. G. & Forman, S. J.) 12–18 (Blackwell Science Inc., Malden, Massachusetts, 1999).

    Google Scholar 

  14. Goulmy, E. et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N. Engl. J. Med. 334, 281–285 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, W. et al. Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science 269, 1588–1590 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Gratwohl, A. et al. Female donors influence transplant-related mortality and relapse incidence in male recipients of sibling blood and marrow transplants. Hematol. J. 2, 363–370 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Goulmy, E. Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy. Immunol. Rev. 157, 125–140 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Dickinson, A. M. et al. In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens. Nature Med. 8, 410–414 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Mutis, T. & Goulmy, E. Hematopoietic system-specific antigens as targets for cellular immunotherapy of hematological malignancies. Semin. Hematol. 39, 23–31 (2002).

    Article  PubMed  Google Scholar 

  20. Blume, K. G. & Thomas, E. D. A review of autologous hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 6, 1–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Craddock, C. Haemopoietic stem-cell transplantation: recent progress and future promise. Lancet Oncol. 1, 227–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Gorin, N. C. Autologous stem-cell transplantation for adult acute leukemia. Curr. Opin. Oncol. 14, 152–159 (2002).

    Article  PubMed  Google Scholar 

  23. Fefer, A. in Cellular Immunotherapy of Cancer (eds Truitt, R., Gale, R. P. & Bortin, M.) 401–408 (Alan R. Liss, New York, 1987).

    Google Scholar 

  24. Martin, P. J. et al. Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. Blood 66, 664–672 (1985).

    CAS  PubMed  Google Scholar 

  25. Patterson, J. et al. Graft rejection following HLA-matched T-lymphocyte depleted bone-marrow transplantation. Br. J. Haematol. 63, 221–230 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Horowitz, M. M. et al. Graft-versus-leukemia reactions after bone-marrow transplantation. Blood 75, 555–562 (1990).

    CAS  PubMed  Google Scholar 

  27. den Haan, J. M. et al. Identification of a graft-versus-host disease-associated human minor histocompatibility antigen. Science 268, 1476–1480 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Barrett, A. J. & Malkovska, V. Graft-versus-leukaemia: understanding and using the alloimmune response to treat haematological malignancies. Br. J. Haematol. 93, 754–761 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Fefer, A. in Hematopoietic Cell Transplantation (eds Thomas, E. D., Blume, K. G. & Forman, S. J.) 316–326 (Blackwell Science Inc., Malden, Massachusetts, 1999).

    Google Scholar 

  30. Storb, R. F. et al. Non-myeloablative transplants for malignant disease. Hematology (Am. Soc. Hematol. Educ. Program) 375–391 (2001).

  31. Kolb, H. J. et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76, 2462–2465 (1990).

    CAS  PubMed  Google Scholar 

  32. Kolb, H. J. et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow-grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 86, 2041–2050 (1995).

    CAS  PubMed  Google Scholar 

  33. Dazzi, F., Szydlo, R. M. & Goldman, J. M. Donor lymphocyte infusions for relapse of chronic myeloid leukemia after allogeneic stem-cell transplant: where we now stand. Exp. Hematol. 27, 1477–1486 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Baron, F. & Beguin, Y. Preemptive cellular immunotherapy after T-cell-depleted allogeneic hematopoietic stem-cell transplantation. Biol. Blood Marrow Transplant. 8, 351–359 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Ferrara, J. L., Levy, R. & Chao, N. J. Pathophysiologic mechanisms of acute graft-vs-host disease. Biol. Blood Marrow Transplant. 5, 347–356 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Sykes, M. et al. Mixed lymphohaemopoietic chimerism and graft-versus-lymphoma effects after non-myeloablative therapy and HLA-mismatched bone-marrow transplantation. Lancet 353, 1755–1759 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Marmont, A. M. et al. T-cell depletion of HLA-identical transplants in leukemia. Blood 78, 2120–2130 (1991).

    CAS  PubMed  Google Scholar 

  38. Mapara, M. Y. et al. Donor lymphocyte infusions mediate superior graft-versus-leukemia effects in mixed compared to fully allogeneic chimeras: a critical role for host antigen-presenting cells. Blood 100, 1903–1909 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Bensinger, W. I. & Deeg, H. J. Blood or marrow? Lancet 355, 1199–1200 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Rachamim, N. et al. Tolerance induction by 'megadose' hematopoietic transplants: donor-type human CD34+ stem cells induce potent specific reduction of host anti-donor cytotoxic T-lymphocyte precursors in mixed lymphocyte culture. Transplantation 65, 1386–1393 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Gur, H. et al. Tolerance induction by megadose hematopoietic progenitor cells: expansion of veto cells by short-term culture of purified human CD34+ cells. Blood 99, 4174–4181 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Gluckman, E. et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N. Engl. J. Med. 337, 373–381 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Rocha, V. et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood 97, 2962–2971 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Broxmeyer, H. E. et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc. Natl Acad. Sci. USA 86, 3828–3832 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rubinstein, P. et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone-marrow reconstitution. Proc. Natl Acad. Sci. USA 92, 10119–10122 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martelli, M. F. & Reisner, Y. Haploidentical 'megadose' CD34+ cell transplants for patients with acute leukemia. Leukemia 16, 404–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Reisner, Y. Stem-cell transplantation across major genetic barriers. Ann. NY Acad. Sci. 938, 322–327 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Aversa, F. et al. Successful engraftment of T-cell-depleted haploidentical 'three-loci' incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood 84, 3948–3955 (1994).

    CAS  PubMed  Google Scholar 

  49. Reisner, Y. & Martelli, M. F. Stem-cell escalation enables HLA-disparate haematopoietic transplants in leukaemia patients. Immunol. Today 20, 343–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Aversa, F. et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N. Engl. J. Med. 339, 1186–1193 (1998). This paper reports successful haploidentical haematopoietic-cell transplantation (HCT) in a cohort of 43 patients, using myeloablative conditioning, high numbers of stem cells and T-cell depletion. The incidence of leukaemia relapse was higher in patients with acute lymphocytic leukaemia (ALL) than in patients with acute myeloid leukaemia (AML).

    Article  CAS  PubMed  Google Scholar 

  51. Ruggeri, L. et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem-cell transplantation. Blood 94, 333–339 (1999). The discovery of natural killer (NK)-cell alloreactivity after HLA-mismatched transplantation when the donor has killer-cell immunoglobulin-like receptor (KIR) epitopes that are absent from the recipient. Alloreactive NK-cell clones were mainly HLA-C specific, they could kill AML cells but not ALL cells, they correlated with higher engraftment rates and they did not cause graft-versus-host disease (GVHD).

    CAS  PubMed  Google Scholar 

  52. Valiante, N. M. et al. Functionally and structurally distinct NK-cell receptor repertoires in the peripheral blood of two human donors. Immunity 7, 739–751 (1997). Individual humans vary in terms of the KIR genes that they express. Patterns of NK-cell alloreactivity are determined by differences between KIR epitopes. This study describes the application of Klas Karre's principle of 'missing self'.

    Article  CAS  PubMed  Google Scholar 

  53. Ciccone, E. et al. Evidence of a natural killer (NK)-cell repertoire for (allo) antigen recognition: definition of five distinct NK-determined allospecificities in humans. J. Exp. Med. 175, 709–718 (1992). An appreciation of the complexity and specificity of human alloreactive NK cells.

    Article  CAS  PubMed  Google Scholar 

  54. Dohring, C., Scheidegger, D., Samaridis, J., Cella, M. & Colonna, M. A human killer inhibitory receptor specific for HLA-A1,2. J. Immunol. 156, 3098–3101 (1996).

    CAS  PubMed  Google Scholar 

  55. D'Andrea, A. et al. Molecular cloning of NKB1. A natural killer-cell receptor for HLA-B allotypes. J. Immunol. 155, 2306–2310 (1995).

    CAS  PubMed  Google Scholar 

  56. Gumperz, J. E., Litwin, V., Phillips, J. H., Lanier, L. L. & Parham, P. The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer-cell clones that express NKB1, a putative HLA receptor. J. Exp. Med. 181, 1133–1144 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Litwin, V., Gumperz, J., Parham, P., Phillips, J. H. & Lanier, L. L. NKB1: a natural killer cell receptor involved in the recognition of polymorphic HLA-B molecules. J. Exp. Med. 180, 537–543 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Colonna, M. & Samaridis, J. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 268, 405–408 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Wagtmann, N., Rajagopalan, S., Winter, C. C., Peruzzi, M. & Long, E. O. Killer-cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity 3, 801–809 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Lee, N. et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl Acad. Sci. USA 95, 5199–5204 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Borrego, F., Ulbrecht, M., Weiss, E. H., Coligan, J. E. & Brooks, A. G. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J. Exp. Med. 187, 813–818 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Braud, V. M. et al. HLA-E binds to natural killer-cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Ljunggren, H. G. & Karre, K. In search of the 'missing self': MHC molecules and NK-cell recognition. Immunol. Today 11, 237–244 (1990). This article reviews Klas Karre's 'missing self' hypothesis, which brought order to much of the phenomenology of NK-cell function. This seminal theory led to the identification of NK-cell receptors for MHC class I molecules and to other recent advances in NK-cell biology.

    Article  CAS  PubMed  Google Scholar 

  64. Karre, K. A perfect mismatch. Science 295, 2029–2031 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Colonna, M., Brooks, E. G., Falco, M., Ferrara, G. B. & Strominger, J. L. Generation of allospecific natural killer cells by stimulation across a polymorphism of HLA-C. Science 260, 1121–1124 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Moretta, A. et al. P58 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displaying different specificities. J. Exp. Med. 178, 597–604 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Moretta, A. et al. Major histocompatibility complex class I-specific receptors on human natural killer and T lymphocytes. Immunol. Rev. 155, 105–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Colonna, M. Specificity and function of immunoglobulin superfamily NK-cell inhibitory and stimulatory receptors. Immunol. Rev. 155, 127–133 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Long, E. O. et al. Killer-cell inhibitory receptors: diversity, specificity and function. Immunol. Rev. 155, 135–144 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Reyburn, H. et al. Human NK cells: their ligands, receptors and functions. Immunol. Rev. 155, 119–125 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Winter, C. C. & Long, E. O. A single amino acid in the p58 killer-cell inhibitory receptor controls the ability of natural killer cells to discriminate between the two groups of HLA-C allotypes. J. Immunol. 158, 4026–4028 (1997).

    CAS  PubMed  Google Scholar 

  72. Winter, C. C., Gumperz, J. E., Parham, P., Long, E. O. & Wagtmann, N. Direct binding and functional transfer of NK-cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition. J. Immunol. 161, 571–577 (1998).

    CAS  PubMed  Google Scholar 

  73. Mandelboim, O. et al. Protection from lysis by natural killer cells of group 1 and 2 specificity is mediated by residue 80 in human histocompatibility leukocyte antigen C alleles and also occurs with empty major histocompatibility complex molecules. J. Exp. Med. 184, 913–922 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Mandelboim, O. et al. The binding site of NK receptors on HLA-C molecules. Immunity 6, 341–350 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Fan, Q. R., Long, E. O. & Wiley, D. C. Crystal structure of the human natural killer cell inhibitory receptor KIR2DL1–HLA-Cw4 complex. Nature Immunol. 2, 452–460 (2001).

    Article  CAS  Google Scholar 

  76. Boyington, J. C., Motyka, S. A., Schuck, P., Brooks, A. G. & Sun, P. D. Crystal structure of an NK-cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature 405, 537–543 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Boyington, J. C., Brooks, A. G. & Sun, P. D. Structure of killer-cell immunoglobulin-like receptors and their recognition of the class I MHC molecules. Immunol. Rev. 181, 66–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Sawicki, M. W. et al. Structural basis of MHC class I recognition by natural killer cell receptors. Immunol. Rev. 181, 52–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002). Data from 92 haploidentical transplants show that mismatching of HLA-C, which generates an alloreactive NK-cell response in the GVH direction, correlates with a much higher probability of event-free five-year survival for patients with AML, but not ALL. In a mouse model of haploidentical transplantation, alloreactive NK cells did not cause GVHD, but did kill tumour cells and recipient dendritic cells (DCs).

    Article  CAS  PubMed  Google Scholar 

  80. Trinchieri, G. Biology of natural killer cells. Adv. Immunol. 47, 187–376 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cudkowicz, G. & Bennett, M. Peculiar immunobiology of bone-marrow allografts. II. Rejection of parental grafts by resistant F1 hybrid mice. J. Exp. Med. 134, 1513–1528 (1971). A description of hybrid resistance, whereby F 1 mice reject bone marrow of parental origin. Although this is a phenomenon of a non-biological situation — allogeneic transplantation — these authors correctly interpreted that the underlying mechanism is of biological importance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cudkowicz, G. & Bennett, M. Peculiar immunobiology of bone-marrow allografts. I. Graft rejection by irradiated responder mice. J. Exp. Med. 134, 83–102 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bennett, M. Biology and genetics of hybrid resistance. Adv. Immunol. 41, 333–445 (1987).

    Article  CAS  PubMed  Google Scholar 

  84. Murphy, W. J., Kumar, V. & Bennett, M. Rejection of bone-marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. J. Exp. Med. 165, 1212–1217 (1987).

    Article  CAS  PubMed  Google Scholar 

  85. Seaman, W. E., Sleisenger, M., Eriksson, E. & Koo, G. C. Depletion of natural killer cells in mice by monoclonal antibody to NK-1.1. Reduction in host defense against malignancy without loss of cellular or humoral immunity. J. Immunol. 138, 4539–4544 (1987).

    CAS  PubMed  Google Scholar 

  86. Kumar, V., George, T., Yu, Y. Y., Liu, J. & Bennett, M. Role of murine NK cells and their receptors in hybrid resistance. Curr. Opin. Immunol. 9, 52–56 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Yu, Y. Y. et al. The role of Ly49A and 5E6(Ly49C) molecules in hybrid resistance mediated by murine natural killer cells against normal T-cell blasts. Immunity 4, 67–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Gumperz, J. E. & Parham, P. The enigma of the natural killer cell. Nature 378, 245–248 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Shlomchik, W. D. et al. Prevention of graft-versus-host disease by inactivation of host antigen-presenting cells. Science 285, 412–415 (1999). In a mouse model, GVHD is shown to require presentation of antigen by recipient DCs to donor-derived T cells.

    Article  CAS  PubMed  Google Scholar 

  90. Fernandez, N. C. et al. Dendritic cells directly trigger NK-cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nature Med. 5, 405–411 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Yu, Y. et al. Enhancement of human cord blood CD34+ cell-derived NK-cell cytotoxicity by dendritic cells. J. Immunol. 166, 1590–1600 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Nishioka, Y., Hirao, M., Robbins, P. D., Lotze, M. T. & Tahara, H. Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin-12. Cancer Res. 59, 4035–4041 (1999).

    CAS  PubMed  Google Scholar 

  93. Osada, T. et al. Peripheral-blood dendritic cells, but not monocyte-derived dendritic cells, can augment human NK-cell function. Cell. Immunol. 213, 14–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Wilson, J. L. et al. Targeting of human dendritic cells by autologous NK cells. J. Immunol. 163, 6365–6370 (1999).

    CAS  PubMed  Google Scholar 

  95. Carbone, E. et al. Recognition of autologous dendritic cells by human NK cells. Eur. J. Immunol. 29, 4022–4029 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Spaggiari, G. M. et al. NK-cell-mediated lysis of autologous antigen-presenting cells is triggered by the engagement of the phosphatidylinositol 3-kinase upon ligation of the natural cytotoxicity receptors NKp30 and NKp46. Eur. J. Immunol. 31, 1656–1665 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N. M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002). This study shows that contact-dependent interactions between activated human NK cells and immature DCs lead either to death or maturation of the DCs, depending on the ratio of NK cells to DCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zitvogel, L. Dendritic and natural killer cells cooperate in the control/switch of innate immunity. J. Exp. Med. 195, F9–F14 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med. 195, 343–351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ruggeri, L., Capanni, M., Martelli, M. F. & Velardi, A. Cellular therapy: exploiting NK-cell alloreactivity in transplantation. Curr. Opin. Hematol. 8, 355–359 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Velardi, A., Ruggeri, L., Moretta, A. & Moretta, L. NK cells: a lesson from mismatched hematopoietic transplantation. Trends Immunol. 23, 438–444 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Martelli, M. F. et al. Transplants across human leukocyte antigen barriers. Semin. Hematol. 39, 48–56 (2002).

    Article  PubMed  Google Scholar 

  103. Champlin, R. et al. Haploidentical 'megadose' stem-cell transplantation in acute leukemia: recommendations for a protocol agreed upon at the Perugia and Chicago meetings. Leukemia 16, 427–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Petersdorf, E. W. et al. Association of HLA-C disparity with graft failure after marrow transplantation from unrelated donors. Blood 89, 1818–1823 (1997). For 556 North-American transplant recipients who received bone marrow from unrelated donors, HLA-C differences between donor and recipient were a risk factor for graft rejection.

    CAS  PubMed  Google Scholar 

  105. Morishima, Y. et al. The clinical significance of human leukocyte antigen (HLA) allele compatibility in patients receiving a marrow transplant from serologically HLA-A, HLA-B and HLA-DR matched unrelated donors. Blood 99, 4200–4206 (2002). For 1,298 Japanese transplant recipients who received haematopoietic cells from unrelated donors, HLA-C differences were an independent risk factor for GVHD.

    Article  CAS  PubMed  Google Scholar 

  106. El Kassar, N. et al. High resolution HLA class I and II typing and CTLp frequency in unrelated donor transplantation: a single-institution retrospective study of 69 BMTs. Bone Marrow Transplant. 27, 35–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. De Santis, D. et al. HLA-C KIR ligands and donor recipient KIR genotypes influence outcome of haploidentical stem-cell transplantation. Hum. Immunol. 63, S17 (2002).

    Article  Google Scholar 

  108. De Santis, D. et al. Compatibility of HLA-C KIR ligands and donor recipient KIR genotypes influence outcome following single-haplotype-matched stem-cell transplantation. Tissue Antigens 59, 26s11.1 (2002).

    Google Scholar 

  109. Schaffer, M., Remberger, M., Ringden, O. & Olerup, O. Role of HLA-C incompatibilities in unrelated donor hematopoetic stem-cell transplantation. Tissue Antigens 59, 18s7.2 (2002).

    Google Scholar 

  110. Davies, S. M. et al. An evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Blood 100, 3825–3827 (2002). A retrospective analysis that found no advantage of KIR–ligand incompatibilities in terms of the outcome of unrelated HCT with some HLA incompatibility.

    Article  CAS  PubMed  Google Scholar 

  111. Giebel, S. et al. KIR ligand incompatibility is associated with prolonged survival and lower transplant-related mortality in URD-HSCT recipients. Blood 100, 639 (2002).

    Google Scholar 

  112. Wende, H., Colonna, M., Ziegler, A. & Volz, A. Organization of the leukocyte receptor cluster (LRC) on human chromosome 19q13.4. Mamm. Genome 10, 154–160 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Wilson, M. J. et al. Plasticity in the organization and sequences of human KIR/ILT gene families. Proc. Natl Acad. Sci. USA 97, 4778–4783 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Uhrberg, M. et al. Human diversity in killer-cell inhibitory receptor genes. Immunity 7, 753–763 (1997). Human genomes differ in the number of KIR genes that they contain and in the balance between the number of genes encoding inhibitory and activating receptors.

    Article  CAS  PubMed  Google Scholar 

  115. Trowsdale, J. et al. The genomic context of natural killer receptor extended gene families. Immunol. Rev. 181, 20–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Shilling, H. G. et al. Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype. J. Immunol. 168, 2307–2315 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Rajalingam, R. et al. Distinctive KIR and HLA diversity in a panel of north Indian Hindus. Immunogenetics 53, 1009–1019 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Shilling, H. G. et al. Genetic control of human NK-cell repertoire. J. Immunol. 169, 239–247 (2002). An individual's pattern of KIR expression by NK cells is determined mainly by the KIR type and then modified slightly by the HLA type. In HCT, KIR incompatibility is indicated for 75% of transplants from an HLA-identical, related donor and for 100% of transplants from an HLA-matched, unrelated donor.

    Article  CAS  PubMed  Google Scholar 

  119. Martin, M. P. et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nature Genet. 31, 429–434 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Shilling, H. G. et al. Reconstitution of NK-cell receptor repertoire following HLA-matched hematopoietic-cell transplantation. Blood 2 January 2003 (DOI: 10.1182/blood-2002-08-2568).

  121. Rajagopalan, S. & Long, E. O. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J. Exp. Med. 189, 1093–1100 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rajagopalan, S., Fu, J. & Long, E. O. Cutting edge: induction of IFN-γ production but not cytotoxicity by the killer-cell Ig-like receptor KIR2DL4 (CD158d) in resting NK cells. J. Immunol. 167, 1877–1881 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Faure, M. & Long, E. O. KIR2DL4 (CD158d), an NK-cell-activating receptor with inhibitory potential. J. Immunol. 168, 6208–6214 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Long, E. O. et al. Inhibition of natural killer cell activation signals by killer cell immunoglobulin-like receptors (CD158). Immunol. Rev. 181, 223–233 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Vales-Gomez, M., Reyburn, H. T., Erskine, R. A. & Strominger, J. Differential binding to HLA-C of p50-activating and p58-inhibitory natural killer cell receptors. Proc. Natl Acad. Sci. USA 95, 14326–14331 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Vilches, C. & Parham, P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu. Rev. Immunol. 20, 217–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Norman, P. J., Stephens, H. A., Verity, D. H., Chandanayingyong, D. & Vaughan, R. W. Distribution of natural killer cell immunoglobulin-like receptor sequences in three ethnic groups. Immunogenetics 52, 195–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Norman, P. J. et al. Natural killer cell immunoglobulin-like receptor (KIR) locus profiles in African and South Asian populations. Genes Immun. 3, 86–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Toneva, M. et al. Genomic diversity of natural killer cell receptor genes in three populations. Tissue Antigens 57, 358–362 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Uhrberg, M., Parham, P. & Wernet, P. Definition of gene content for nine common group B haplotypes of the Caucasoid population: KIR haplotypes contain between seven and eleven KIR genes. Immunogenetics 54, 221–229 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Gomez-Lozano, N., Gardiner, C. M., Parham, P. & Vilches, C. Some human KIR haplotypes contain two KIR2DL5 genes: KIR2DL5A and KIR2DL5B. Immunogenetics 54, 314–319 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Gagne, K. et al. Relevance of KIR gene polymorphisms in bone-marrow transplantation outcome. Hum. Immunol. 63, 271–280 (2002). For HLA-matched, unrelated transplants, the incidence of GVHD was increased when the donor had a greater number of activating KIRs than the recipient. This effect was not seen for HLA-identical, related transplants.

    Article  CAS  PubMed  Google Scholar 

  133. Loiseau, P. et al. Impact of KIR gene polymorphism on HLA geno-identical haematopoietic cell transplantation outcome. Tissue Antigens 59, 27s11.3 (2002).

    Google Scholar 

  134. Chida, S., Yamashita, T., Guthrie, B., Hansen, J. A. & Geraghty, D. E. An association study between killer cell immunoglobulin-like receptor (KIR) genes and unrelated bone marrow transplant graft rejection. Tissue Antigens 59, 27s11.4 (2002).

    Google Scholar 

  135. Mingari, M. C., Ponte, M., Vitale, C., Bellomo, R. & Moretta, L. Expression of HLA class I-specific inhibitory receptors in human cytolytic T lymphocytes: a regulated mechanism that controls T-cell activation and function. Hum. Immunol. 61, 44–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Namekawa, T. et al. Killer-cell activating receptors function as co-stimulatory molecules on CD4+CD28null T cells clonally expanded in rheumatoid arthritis. J. Immunol. 165, 1138–1145 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Yen, J. H. et al. Major histocompatibility complex class I-recognizing receptors are disease-risk genes in rheumatoid arthritis. J. Exp. Med. 193, 1159–1167 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shilling, H. G., Lienert-Weidenbach, K., Valiante, N. M., Uhrberg, M. & Parham, P. Evidence for recombination as a mechanism for KIR diversification. Immunogenetics 48, 413–416 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Gardiner, C. M. et al. Different NK-cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism. J. Immunol. 166, 2992–3001 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Witt, C. S., Martin, A. & Christiansen, F. T. Detection of KIR2DL4 alleles by sequencing and SSCP reveals a common allele with a shortened cytoplasmic tail. Tissue Antigens 56, 248–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Scott, I. et al. Molecular typing shows a high level of HLA class I incompatibility in serologically well matched donor/patient pairs: implications for unrelated bone marrow donor selection. Blood 92, 4864–4871 (1998).

    CAS  PubMed  Google Scholar 

  142. Gerlach, J. A. Human lymphocyte antigen molecular typing: how to identify the 1250+ alleles out there. Arch. Pathol. Lab. Med. 126, 281–284 (2002).

    PubMed  Google Scholar 

  143. Szydlo, R. et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J. Clin. Oncol. 15, 1767–1777 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Petersdorf, E. et al. Genomics of unrelated-donor hematopoietic-cell transplantation. Curr. Opin. Immunol. 13, 582–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Petersdorf, E. W. et al. Optimizing outcome after unrelated marrow transplantation by comprehensive matching of HLA class I and II alleles in the donor and recipient. Blood 92, 3515–3520 (1998).

    CAS  PubMed  Google Scholar 

  146. Sasazuki, T. et al. Effect of matching of class I HLA alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor. Japan Marrow Donor Program. N. Engl. J. Med. 339, 1177–1185 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Petersdorf, E. W. et al. Major histocompatibility complex class I alleles and antigens in hematopoietic-cell transplantation. N. Engl. J. Med. 345, 1794–1800 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Yawata, M. Yawata and J. Shizuru for their help. Research in our laboratory was supported by grants from the National Institutes of Health and the Cancer Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Parham.

Related links

Related links

DATABASES

Cancer.gov

ALL

AML

CML

LocusLink

CD94

G-CSF

HLA-A

HLA-B

HLA-C

HLA-E

HLA-DP

HLA-DQ

HLA-DR

IFN-γ

KIR2DL1

KIR2DL2

KIR2DL3

KIR2DL4

KIR2DL5

KIR2DS1

KIR2DS2

KIR2DS3

KIR2DS4

KIR2DS5

KIR3DL1

KIR3DL2

KIR3DL3

KIR3DS1

NKG2A

FURTHER INFORMATION

IMGT/HLA Database

Anthony Nolan Trust HLA class I and II sequence alignments

Glossary

MYELOABLATIVE CHEMOTHERAPY

The administration of high-dose chemotherapy, with or without total body irradiation, to patients before haematopoietic-cell transplantation (HCT) to eradicate the underlying disease and/or ablate the immune system of the patient. HCT is required after this conditioning regimen for recovery and complete chimerism on engraftment.

CYTOKINE STORM

The high-level secretion of cytokines and growth factors induced by the pre-transplant conditioning regimen, which damages dividing cells, that leads to downstream immune effects such as graft-versus-host disease.

NON-MYELOABLATIVE CONDITIONING

A mild regimen of low toxicity that involves the administration of myelotoxic or immunosuppressive, but not myeloablative, agents to patients before HCT. Conditioning does not eradicate host haematopoiesis and should allow prompt haematopoietic recovery (within 28 < days) without a transplant.

VETO CELLS

Cells in the CD34+ population that can specifically suppress cytotoxic T-cell precursors specific for antigens that are presented by the veto cells themselves, but not those that are specific for third-party antigens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parham, P., McQueen, K. Alloreactive killer cells: hindrance and help for haematopoietic transplants. Nat Rev Immunol 3, 108–122 (2003). https://doi.org/10.1038/nri999

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri999

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing