Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unravelling the pathogenesis of myasthenia gravis

Abstract

Myasthenia gravis is a relatively rare neurological disease that is associated with loss of the acetylcholine receptors that initiate muscle contraction. This results in muscle weakness, which can be life-threatening. The story of how both the physiological basis of the disease and the role of acetylcholine-receptor-specific antibodies were determined is a classic example of the application of basic science to clinical medicine, and it has provided a model for defining other antibody-mediated disorders of the peripheral and central nervous systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Notable faces in myasthenia gravis research.
Figure 2: Fetal and adult forms of the acetylcholine receptor.
Figure 3: Pathology of myasthenia gravis.
Figure 4: The importance of divalency in the antibody-induced loss of AChRs.

References

  1. 1

    Willis, T. in De Anima Brutorum 404–407 (Oxonii Theatro Sheldoniano, Oxford, 1672).

    Google Scholar 

  2. 2

    Erb, W. Zur casuistik der bulbären lähmungen. Arch. Psychiatr. Nervenkr. 9, 336–350 (1879).

    Google Scholar 

  3. 3

    Goldflam, S. Ueber einen scheinbar heilbaren bulbär paralytischen Symptomencomplex mit Betheiligung der Extremitäten. Dtsch. Z. Nervenheilkd 4, 312–352 (1893).

    Article  Google Scholar 

  4. 4

    Jolly, F. Ueber Myasthenia gravis pseudoparalytica. Berl. Klin. Wochenschr. 32, 1–7 (1895).

    Google Scholar 

  5. 5

    Campbell, H. & Bramwell, E. Myasthenia gravis. Brain 23, 277–336 (1900).

    Article  Google Scholar 

  6. 6

    Oppenheim, H. Die myasthenische Paralyse (Bulbarparalyse ohne anatomischen Befund) (JHH Karger, Berlin, 1901).

    Google Scholar 

  7. 7

    Keesey, J. C. Myasthenia Gravis. An Illustrated History. (Publishers Design Group, Roseville, California, 2002).

    Google Scholar 

  8. 8

    Loewi, O. Über humorale Übertragbarkeit der Herznervenwirkung. Pflügers Arch. ges Physiol. 189, 239–242 (1921).

    Article  Google Scholar 

  9. 9

    Dale, H. H., Feldburg, W. & Vogt, M. Release of acetylcholine at voluntary motor nerve endings. J. Physiol. 86, 353–380 (1936).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Fatt, P. & Katz, B. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).

    CAS  Google Scholar 

  11. 11

    Elmqvist, D., Hofmann, W., Kugelberg, J. & Quastel, D. An electrophysiological investigation of neuromuscular transmission in myasthenia gravis. J. Physiol. (Lond.) 174, 417–434 (1964).

    CAS  Article  Google Scholar 

  12. 12

    Chang, C. & Lee, C. Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action. Arch. Pharmacodyn. Ther. 144, 241–257 (1962).

    Google Scholar 

  13. 13

    Miledi, R. & Potter, L. T. Acetylcholine receptors in muscle fibres. Nature 233, 599–603 (1971).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Fambrough, D. M., Drachman, D. B. & Satyamurti, S. Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors. Science 182, 293–295 (1973).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Noda, M. et al. Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299, 793–797 (1982).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Beeson, D. et al. Primary structure of the human muscle acetylcholine receptor. cDNA cloning of the γ and ɛ subunits. Eur. J. Biochem. 215, 229–238 (1993).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Buzzard, E. F. The clinical history and postmorten examination of five cases of myasthenia gravis. Brain 28, 438–483 (1905).

    Article  Google Scholar 

  18. 18

    Weigert, C. Pathologisch-anatomischer Beiträg zur Erb'schen Krankheit (Myasthenia Gravis). Neurologisches Zentralblatt 20, 597–601 (1901).

    Google Scholar 

  19. 19

    Nastuk, W. L., Plescia, O. J. & Osserman, K. E. Changes in serum complement activity in patients with myasthenia gravis. Proc. Soc. Exp. Biol. Med. 105, 177–184 (1960).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Strauss, A. J. L., Seegal, B. C., Hsu, K. C., Burkholder, P. M., Nastuk, W. L. & Osserman, K. E. Immunofluorescence demonstration of muscle binding, complement fixing serum globulin fraction in myasthenia gravis. Proc. Soc. Exp. Biol. Med. 105, 184–191 (1960).

    CAS  Article  Google Scholar 

  21. 21

    Simpson, J. A. Myasthenia gravis, a new hypothesis. Scott. Med. J. 5, 419–436 (1960).

    Article  Google Scholar 

  22. 22

    Roitt, I. M., Doniach, D., Campbell, R. & Hudson, R. V. Auto-antibodies in Hashimoto's disease (lymphoadenoid goiter). Lancet ii, 820–821 (1956).

    Article  Google Scholar 

  23. 23

    Cuatrecasas, P. Affinity chromatography. Annu. Rev. Biochem. 40, 259–278 (1971).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Patrick, J. & Lindstrom, J. Autoimmune response to acetylcholine receptor. Science 180, 871–872 (1973).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Yang, H. et al. Mapping myasthenia gravis-associated T-cell epitopes on human acetylcholine receptors in HLA transgenic mice. J. Clin. Invest. 109, 1111–1120 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Link, H. & Xiao, B. G. Rat models as tool to develop new immunotherapies. Immunol. Rev. 184, 117–128 (2001).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Barchan, D., Souroujon, M. C., Im, S. H., Antozzi, C. & Fuchs, S. Antigen-specific modulation of experimental myasthenia gravis: nasal tolerization with recombinant fragments of the human acetylcholine receptor α-subunit. Proc. Natl Acad. Sci. USA 96, 8086–8091 (1999).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Paas-Rozner, M., Sela, M. & Mozes, E. The nature of the active suppression of responses associated with experimental autoimmune myasthenia gravis by a dual altered peptide ligand administered by different routes. Proc. Natl Acad. Sci. USA 98, 12642–12647 (2001).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Almon, R. R., Andrews, C. G. & Appel, S. H. Serum globulin in myasthenia gravis: inhibition of α-bungarotoxin binding to acetylcholine receptors. Science 186, 55–57 (1974).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Lindstrom, J. M., Seybold, M. E., Lennon, V. A., Whittingham, S. & Duane, D. D. Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates and diagnostic value. Neurology 26, 1054–1059 (1976).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Toyka, K. V., Drachman, D. B., Pestronk, A. & Kao, I. Myasthenia gravis: passive transfer from man to mouse. Science 190, 397–399 (1975).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Pinching, A., Peters, D. & Newsom-Davis, J. Remission of myasthenia gravis following plasma exchange. Lancet 2, 1373–1376 (1976).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Newsom-Davis, J., Pinching, A. J., Vincent, A. & Wilson, S. G. Function of circulating antibody to acetylcholine receptor in myasthenia gravis investigated by plasma exchange. Neurology 28, 266–272 (1978).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Engel, A. G., Lambert, E. H., Howard, F. M. Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations. Mayo Clin. Proc. 52, 267–280 (1977).

    CAS  PubMed  Google Scholar 

  35. 35

    Sahashi, K., Engel, A. G., Lambert, E. H., Howard, F. M. Jr. Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J. Neuropathol. Exp. Neurol. 39, 160–172 (1980).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Tzartos, S. J. et al. Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunol. Rev. 163, 89–120 (1998).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Tzartos, S. J., Seybold, M. E. & Lindstrom, J. M. Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc. Natl Acad. Sci. USA 79, 188–192 (1982).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Drachman, D. B., Angus, C. W., Adams, R. N., Michelson, J. D. & Hoffman, G. J. Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N. Engl. J. Med. 298, 1116–1122 (1978).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Hohlfeld, R., Toyka, K. V., Heininger, K., Grosse-Wilde, H. & Kalies, I. Autoimmune human T lymphocytes specific for acetylcholine receptor. Nature 310, 244–246 (1984).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Link, H. et al. Acetylcholine receptor-reactive T and B cells in myasthenia gravis and controls. J. Clin. Invest. 87, 2191–2195 (1991).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Protti, M. P., Manfredi, A. A., Horton, R. M., Bellone, M. & Conti-Tronconi, B. M. Myasthenia gravis: recognition of a human autoantigen at the molecular level. Immunol. Today 14, 363–368 (1993).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Hawke, S. et al. Autoimmune T cells in myasthenia gravis: heterogeneity and potential for specific immunotargeting. Immunol. Today 17, 307–311 (1996).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Sauerbruch, H., Schumacher, C. H. & Roth, P. Thymektomie bei einem Fall von Morbus Basedowi mit Myastheine. Mitteil. Grenzgeb. Med. Chir. 25, 746–765 (1913).

    Google Scholar 

  44. 44

    Blalock, A., Mason, M. F., Morgan, H. J. & Riven, S. S. Myasthenia gravis and tumors of the thymic region. Report of a case in which the tumor was removed. Ann. Surg. 110, 544–559 (1939).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Gronseth, G. S. & Barohn, R. J. Practice parameter: thymectomy for autoimmune myasthenia gravis (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 55, 7–15 (2000).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Walker, M. B. Treatment of myasthenia gravis with physostigmine. Lancet 1, 1200–1201 (1934).

    Article  Google Scholar 

  47. 47

    Cornelio, F. et al. Immunosuppressive treatments. Their efficacy on myasthenia gravis patients' outcome and on the natural course of the disease. Ann. NY Acad. Sci. 681, 594–602 (1993).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Drachman, D. B. in Current Therapy in Neurologic Disease (eds Johnson, R. & Griffin, J. W.) 379–384 (B. C. Decker, St Louis, 1993).

    Google Scholar 

  49. 49

    Pirskanen, R. Genetic associations between myasthenia gravis and the HL-A system. J. Neurol. Neurosurg. Psychiatry 39, 23–33 (1976).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Compston, D. A. S., Vincent, A., Newsom-Davis, J. & Batchelor, J. R. Clinical, pathological, HLA antigen and immunological evidence for disease heterogeneity in myasthenia gravis. Brain 103, 579–601 (1980).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Aarli, J. A., Stefansson, K., Marton, L. S. & Wollmann, R. L. Patients with myasthenia gravis and thymoma have in their sera IgG autoantibodies against titin. Clin. Exp. Immunol. 82, 284–288 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Mygland, A. et al. Ryanodine receptor autoantibodies in myasthenia gravis patients with a thymoma. Ann. Neurol. 32, 589–591 (1992).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Buckley, C., Newsom-Davis, J., Willcox, N. & Vincent, A. Do titin and cytokine antibodies in MG patients predict thymoma or thymoma recurrence? Neurology 57, 1579–1582 (2001).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Alpert, L. I., Papatestas, A., Kark, A., Osserman, R. S. & Osserman, K. A histologic reappraisal of the thymus in myasthenia gravis. A correlative study of thymic pathology and response to thymectomy. Arch. Pathol. 91, 55–61 (1971).

    CAS  PubMed  Google Scholar 

  55. 55

    Melms, A. et al. Thymus in myasthenia gravis. Isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients. J. Clin. Invest. 81, 902–908 (1988).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Schluep, M., Willcox, N., Vincent, A., Dhoot, G. K. & Newsom-Davis, J. Acetylcholine receptors in human thymic myoid cells in situ: an immunohistological study. Ann. Neurol. 22, 212–222 (1987).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Salmon, A. M., Bruand, C., Cardona, A., Changeux, J. P. & Berrih-Aknin, S. An acetylcholine receptor α-subunit promoter confers intrathymic expression in transgenic mice. Implications for tolerance of a transgenic self-antigen and for autoreactivity in myasthenia gravis. J. Clin. Invest. 101, 2340–2350 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Scadding, G. K., Vincent, A., Newsom-Davis, J. & Henry, K. Acetylcholine receptor antibody synthesis by thymic lymphocytes: correlation with thymic histology. Neurology 31, 935–943 (1981).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Kuks, J. B., Oosterhuis, H. J., Limburg, P. C. & The, T. H. Anti-acetylcholine receptor antibodies decrease after thymectomy in patients with myasthenia gravis. Clinical correlations. J. Autoimmun. 4, 197–211 (1991).

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Aoki, T. et al. Attempts to implicate viruses in myasthenia gravis. Neurology 35, 185–192 (1985).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Muller-Hermelink, H. K. & Marx, A. Thymoma. Curr. Opin. Oncol. 12, 426–433 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Marx, A. et al. Proteins with epitopes of the acetylcholine receptor in epithelial cell cultures of thymomas in myasthenia gravis. Am. J. Pathol. 134, 865–877 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Kornstein, M. J., Asher, O. & Fuchs, S. Acetylcholine receptor α-subunit and myogenin mRNAs in thymus and thymomas. Am. J. Pathol. 146, 1320–1324 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Buckley, C., Dueck, D., Newsom-Davis, J., Vincent, A. & Willcox, N. Mature, long-lived CD4 and CD8 T cells are generated by thymoma in myasthenia gravis. Ann. Neurol. 50, 64–73 (2001).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Hoffacker, V. et al. Thymomas alter the T-cell subset composition in the blood: a potential mechanism for thymoma-associated autoimmune disease. Blood 96, 3872–3879 (2000).

    CAS  PubMed  Google Scholar 

  66. 66

    Vincent, A. et al. Determinant spreading and immune responses to acetylcholine receptors in myasthenia gravis. Immunol. Rev. 164, 157–168 (1998).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Dwyer, D. S., Bradley, R. J., Urquhart, C. K. & Kearney, J. F. Naturally occurring anti-idiotypic antibodies in myasthenia gravis patients. Nature 301, 611–614 (1983).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Jerne, N. K. The generative grammar of the immune system. Nobel lecture, 8 December (1984). Biosci. Rep. 5, 439–451 (1985).

    Article  Google Scholar 

  69. 69

    Schwimmbeck, P. L., Dyrberg, T., Drachman, D. B. & Oldstone, M. B. Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor α-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J. Clin. Invest. 84, 1174–1180 (1989).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70

    Stefansson, K., Dieperink, M. E., Richman, D. P., Gomez, C. M. & Marton, L. S. Sharing of antigenic determinants between the nicotinic acetylcholine receptor and proteins in Escherichia coli, Proteus vulgaris and Klebsiella pneumoniae. Possible role in the pathogenesis of myasthenia gravis. N. Engl. J. Med. 312, 221–225 (1985).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Mossman, S., Vincent, A. & Newsom-Davis, J. Myasthenia gravis without acetylcholine-receptor antibody: a distinct disease entity. Lancet 1, 116–119 (1986).

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Evoli, A. et al. Clinical heterogeneity of seronegative myasthenia gravis. Neuromuscul. Disord. 6, 155–161 (1996).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Hoch, W. et al. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nature Med. 7, 365–368 (2001).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Liyanage, Y., Hoch, W., Beeson, D. & Vincent, A. The agrin/muscle-specific kinase pathway: new targets for autoimmune and genetic disorders at the neuromuscular junction. Muscle Nerve 25, 4–16 (2002).

    CAS  Article  PubMed  Google Scholar 

  75. 75

    Vincent, A. et al. Seronegative myasthenia gravis. Evidence for plasma factor(s) interfering with acetylcholine-receptor function. Ann. NY Acad. Sci. 681, 529–538 (1993).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Riemersma, S. et al. Association of arthrogryposis multiplex congenita with maternal antibodies inhibiting fetal acetylcholine-receptor function. J. Clin. Invest. 98, 2358–2363 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Jacobson, L., Polizzi, A., Morriss-Kay, G. M. & Vincent, A. An animal model of antibody-mediated neurodevelopmental disease: arythrogryposis multiplex congenita caused by antibodies to fetal acetylcholine receptor. J. Clin. Invest. 103, 1031–1038 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Lang, B. & Newsom-Davis, J. Immunopathology of the Lambert–Eaton myasthenic syndrome. Springer Semin. Immunopathol. 17, 3–15 (1995).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Hart, I. K. Acquired neuromyotonia: a new autoantibody-mediated neuronal potassium channelopathy. Am. J. Med. Sci. 319, 209–216 (2000).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Buckley, C. et al. Potassium channel antibodies in two patients with reversible limbic encephalitis. Ann. Neurol. 50, 73–78 (2001).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Liguori, R. et al. Morvan's syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain 124, 2417–2426 (2001).

    CAS  Article  PubMed  Google Scholar 

  82. 82

    Rogers, S. W. et al. Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. Science 265, 648–651 (1994).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Wiendl, H. et al. GluR3 antibodies: prevalence in focal epilepsy but no specificity for Rasmussen's encephalitis. Neurology 57, 1511–1514 (2001).

    CAS  Article  PubMed  Google Scholar 

  84. 84

    O'Leary, C. P., Willison, H. J. The role of antiglycolipid antibodies in peripheral neuropathies. Curr. Opin. Neurol. 13, 583–588 (2000).

    CAS  PubMed  Article  Google Scholar 

  85. 85

    Dale, R. C. et al. Poststreptococcal acute disseminated encephalomyelitis with basal ganglia involvement and auto-reactive antibasal ganglia antibodies. Ann. Neurol. 50, 588–595 (2001).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Vernino, S. et al. Autoantibodies to ganglionic acetylcholine receptors in autoimmune autonomic neuropathies. N. Engl. J. Med. 343, 847–855 (2000).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nature Immunol. 2, 1032–1039 (2001).

    CAS  Article  Google Scholar 

  88. 88

    Hughes, J. T. Thomas Willis 1621–1675: His Life and Work (Royal society of Medicine, London, 1991).

    Google Scholar 

Download references

Acknowledgements

I would like to thank the colleagues who have helped to shape my views, particularly J. Newsom-Davis FRS, N. Wilcox, B. Lang and D. Beeson. Equally important are the many others around the world who have made important contributions to the topic; I am sorry that I have not been able to do justice to all of their work. My own research on myasthenia gravis over the past 30 years has been generously funded by the Medical Research Council, the Myasthenia Gravis Association, the Muscular Dystrophy Campaign, Action Research and the National Lotteries Charity Board.

Author information

Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

lung cancer

thymoma

LocusLink

AChR

C9

GLUR3

IFN-α

IL-12

MuSK

ryanodine receptor

titin

Medscape DrugInfo

azathioprine

physostigmine

OMIM

Hashimoto's thyroiditis

Lambert–Eaton myasthenic syndrome

myasthenia gravis

Rasmussen's encephalitis

FURTHER INFORMATION

Mary Walker

Myasthenia Gravis Foundation Educational Services

Myasthenia Gravis Links

The Myasthenia Gravis Association

Thomas Willis

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vincent, A. Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol 2, 797–804 (2002). https://doi.org/10.1038/nri916

Download citation

Further reading

Search

Quick links