Key Points
-
Interferons (IFNs) — the body's first line of antiviral defence — are cytokines that are secreted by host cells in response to virus infection. By inducing the expression of hundreds of IFN-stimulated genes, several of which have antiviral functions, IFNs block virus replication at many levels.
-
The global antiviral state of the cell involves cross-talk between IFN signalling and pathways that regulate apoptosis, inflammation and cellular stress-response programmes.
-
Viruses counteract the antiviral response by encoding mechanisms to control IFN signalling, block the actions of IFN-stimulated gene products and disrupt the various levels of cross-talk between IFNs and other cellular pathways. Studies of influenza virus, hepatitis C virus, herpes simplex virus and vaccinia virus highlight the importance of IFNs for the control of virus replication and pathogenesis.
-
Studies of both host antiviral pathways and viral-counteracting strategies will greatly benefit from the recent development of functional-genomic technologies, such as microarrays, proteomics and DNA shuffling. Our 'virus compendium' — a multi-faceted, functional genomics effort focusing in the field of virus–host interactions — will be useful to assimilate these data.
Abstract
The action of interferons (IFNs) on virus-infected cells and surrounding tissues elicits an antiviral state that is characterized by the expression and antiviral activity of IFN-stimulated genes. In turn, viruses encode mechanisms to counteract the host response and support efficient viral replication, thereby minimizing the therapeutic antiviral power of IFNs. In this review, we discuss the interplay between the IFN system and four medically important and challenging viruses — influenza, hepatitis C, herpes simplex and vaccinia — to highlight the diversity of viral strategies. Understanding the complex network of cellular antiviral processes and virus–host interactions should aid in identifying new and common targets for the therapeutic intervention of virus infection. This effort must take advantage of the recent developments in functional genomics, bioinformatics and other emerging technologies.
Access options
Subscribe to Journal
Get full journal access for 1 year
66,34 €
only 5,53 € per issue
All prices include VAT for Germany.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.






References
- 1
Samuel, C. E. Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809 (2001).
- 2
Levy, D. E. & Garcia-Sastre, A. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev. 12, 143–156 (2001).
- 3
Grander, D., Sangfelt, O. & Erickson, S. How does interferon exert its cell growth inhibitory effect? Eur. J. Haematol. 59, 129–135 (1997).
- 4
Biron, C. A. Interferons-α and -β as immune regulators — a new look. Immunity 14, 661–664 (2001).
- 5
Doly, J., Civas, A., Navarro, S. & Uze, G. Type I interferons: expression and signalization. Cell. Mol. Life Sci. 54, 1109–1121 (1998).
- 6
Hwang, S. Y. et al. A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons-α and -β and alters macrophage responses. Proc. Natl Acad. Sci. USA 92, 11284–11288 (1995).Mice with a null mutation in the Ifnar1 gene were generated and it was shown that the type I IFN system is an important acute antiviral defence.
- 7
Kamijo, R. et al. Biological functions of IFN-γ and IFN-α/β: lessons from studies in gene knockout mice. Hokkaido Igaku Zasshi. 69, 1332–1338 (1994).
- 8
Barnes, B., Lubyova, B. & Pitha, P. M. Review: on the role of IRF in host defense. J. Interferon Cytokine Res. 22, 59–71 (2002).
- 9
Barnes, B. J., Moore, P. A. & Pitha, P. M. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon-α genes. J. Biol. Chem. 276, 23382–23390 (2001).
- 10
Juang, Y. et al. Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3. Proc. Natl Acad. Sci. USA 95, 9837–9842 (1998).This study identified IRF3 and CBP/p300 as integral components of the virus-induced complex that stimulates type I IFN gene transcription, and indicated a new mechanism by which adenovirus might overcome the antiviral effects of the IFN pathway.
- 11
Levy, D. E., Marie, I., Smith, E. & Prakash, A. Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback. J. Interferon Cytokine Res. 22, 87–93 (2002).
- 12
Yeow, W. S. et al. Reconstitution of virus-mediated expression of interferon-α genes in human fibroblast cells by ectopic interferon regulatory factor-7. J. Biol. Chem. 275, 6313–6320 (2000).
- 13
Biron, C. A. & Sen, G. C. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 321–352 (Lippincott, Williams & Wilkins, Philadelphia, 2001).
- 14
de Veer, M. J. et al. Functional classification of interferon-stimulated genes identified using microarrays. J. Leukocyte Biol. 69, 912–920 (2001).
- 15
Der, S. D., Zhou, A., Williams, B. R. & Silverman, R. H. Identification of genes differentially regulated by interferon-α, -β or -γ using oligonucleotide arrays. Proc. Natl Acad. Sci. USA 95, 15623–15628 (1998).Using microarray-based mRNA profiling of IFN-treated human cells, this study showed the usefulness of oligonucleotide arrays for monitoring mammalian gene expression and provided new insights into the basic mechanisms of IFN actions.
- 16
Meurs, E. et al. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62, 379–390 (1990).
- 17
Gale, M. Jr & Katze, M. G. Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol. Ther. 78, 29–46 (1998).
- 18
Ghosh, S. K. et al. Cloning, sequencing and expression of two murine 2′-5′-oligoadenylate synthetases. Structure–function relationships. J. Biol. Chem. 266, 15293–15299 (1991).
- 19
Zhou, A., Hassel, B. A. & Silverman, R. H. Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell 72, 753–765 (1993).
- 20
Zhou, A. et al. Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO J. 16, 6355–6363 (1997).
- 21
Staeheli, P. & Haller, O. Interferon-induced Mx protein: a mediator of cellular resistance to influenza virus. Interferon 8, 1–23 (1987).
- 22
Kochs, G., Janzen, C., Hohenberg, H. & Haller, O. Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. Proc. Natl Acad. Sci. USA 99, 3153–3158 (2002).
- 23
Patterson, J. B., Thomis, D. C., Hans, S. L. & Samuel, C. E. Mechanism of interferon action: double-stranded RNA-specific adenosine deaminase from human cells is inducible by α- and γ-interferons. Virology 210, 508–511 (1995).
- 24
Biron, C. A. Role of early cytokines, including α- and β-interferons (IFN-α/β), in innate and adaptive immune responses to viral infections. Semin. Immunol. 10, 383–390 (1998).
- 25
Guidotti, L. G. & Chisari, F. V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19, 65–91 (2001).
- 26
Taniguchi, T. & Takaoka, A. The interferon-α/β system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr. Opin. Immunol. 14, 111–116 (2002).
- 27
Nguyen, H., Hiscott, J. & Pitha, P. M. The growing family of interferon regulatory factors. Cytokine Growth Factor Rev. 8, 293–312 (1997).
- 28
Zimring, J. C., Goodbourn, S. & Offermann, M. K. Human herpesvirus 8 encodes an interferon regulatory factor (IRF) homolog that represses IRF-1-mediated transcription. J. Virol. 72, 701–707 (1998).
- 29
Cebulla, C. M., Miller, D. M. & Sedmak, D. D. Viral inhibition of interferon signal transduction. Intervirology 42, 325–330 (1999).
- 30
Goodbourn, S., Didcock, L. & Randall, R. E. Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J. Gen. Virol. 81, 2341–2364 (2000).
- 31
Garcia-Sastre, A. Mechanisms of inhibition of the host interferon-α/β-mediated antiviral responses by viruses. Microbes Infect. 4, 647–655 (2002).
- 32
Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B 147, 258–267 (1957).
- 33
Haller, O., Frese, M. & Kochs, G. Mx proteins: mediators of innate resistance to RNA viruses. Rev. Sci. Tech. 17, 220–230 (1998).
- 34
Bergmann, M. et al. Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J. Virol. 74, 6203–6206 (2000).
- 35
Garcia-Sastre, A. et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252, 324–330 (1998).
- 36
Garcia-Sastre, A. Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 279, 375–384 (2001).
- 37
Lee, T. G., Tang, N., Thompson, S., Miller, J. & Katze, M. G. The 58,000-dalton cellular inhibitor of the interferon-induced double-stranded RNA-activated protein kinase (PKR) is a member of the tetratricopeptide-repeat family of proteins. Mol. Cell. Biol. 14, 2331–2342 (1994).
- 38
Gale, M. Jr et al. Regulation of interferon-induced protein kinase PKR: modulation of P58IPK inhibitory function by a novel protein, P52rIPK. Mol. Cell. Biol. 18, 859–871 (1998).
- 39
Melville, M. W. et al. The cellular inhibitor of the PKR protein kinase, P58(IPK), is an influenza virus-activated co-chaperone that modulates heat-shock protein 70 activity. J. Biol. Chem. 274, 3797–3803 (1999).
- 40
Polyak, S. J., Tang, N., Wambach, M., Barber, G. N. & Katze, M. G. The P58 cellular inhibitor complexes with the interferon-induced, double-stranded RNA-dependent protein kinase, PKR, to regulate its autophosphorylation and activity. J. Biol. Chem. 271, 1702–1707 (1996).
- 41
Wang, X. Z. et al. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell. Biol. 16, 4273–4280 (1996).
- 42
Geiss, G. K. et al. Cellular transcriptional profiling in influenza virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc. Natl Acad. Sci. USA 99, 10736–10741 (2002).This study examined the effects of NS1 protein expression during influenza A virus infection on global cellular mRNA levels using high-density microarrays. It indicated that the cellular IFN response to influenza A virus infection in lung epithelial cells is influenced markedly by the sequence of the NS1 gene, and it characterized a virus that contains the 1918 pandemic influenza NS1 gene.
- 43
Krebs, D. L. & Hilton, D. J. SOCS proteins: negative regulators of cytokine signaling. Stem Cells 19, 378–387 (2001).
- 44
He, Y. & Katze, M. G. To interfere and to anti-interfere: the interplay between hepatitis C virus and interferon. Viral Immunol. 15, 95–119 (2002).
- 45
Tan, S. L. & Katze, M. G. How hepatitis C virus counteracts the interferon response: the jury is still out on NS5A. Virology 284, 1–12 (2001).
- 46
Taylor, D. R. Hepatitis C virus and interferon resistance: it's more than just PKR. Hepatology 33, 1547–1549 (2001).
- 47
Bartenschlager, R. & Lohmann, V. Novel cell-culture systems for the hepatitis C virus. Antiviral Res. 52, 1–17 (2001).
- 48
Gale, M. Jr & Beard, M. R. Molecular clones of hepatitis C virus: applications to animal models. ILAR J. 42, 139–151 (2001).
- 49
Pawlotsky, J. M. Hepatitis C virus resistance to antiviral therapy. Hepatology 32, 889–896 (2000).
- 50
Bukh, J., Miller, R. H. & Purcell, R. H. Genetic heterogeneity of hepatitis C virus: quasispecies and genotypes. Semin. Liver Dis. 15, 41–63 (1995).
- 51
Enomoto, N. et al. Comparison of full-length sequences of interferon-sensitive and -resistant hepatitis C virus 1b. Sensitivity to interferon is conferred by amino-acid substitutions in the NS5A region. J. Clin. Invest. 96, 224–230 (1995).
- 52
Enomoto, N. et al. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N. Engl. J. Med. 334, 77–81 (1996).This study analysed the HCV NS5A ISDR sequences in patients with chronic HCV1b infection before and after IFN therapy, and concluded that there was a substantial correlation between responses to IFN and mutations in the NS5A gene.
- 53
Nakano, I. et al. Why is the interferon sensitivity-determining region (ISDR) system useful in Japan? J. Hepatol. 30, 1014–1022 (1999).
- 54
Witherell, G. W. & Beineke, P. Statistical analysis of combined substitutions in nonstructural 5A region of hepatitis C virus and interferon response. J. Med. Virol. 63, 8–16 (2001).
- 55
Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113 (1999).
- 56
Blight, K. J., Kolykhalov, A. A. & Rice, C. M. Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).
- 57
Frese, M., Pietschmann, T., Moradpour, D., Haller, O. & Bartenschlager, R. Interferon-α inhibits hepatitis C virus subgenomic RNA replication by an MxA-independent pathway. J. Gen. Virol. 82, 723–733 (2001).
- 58
Guo, J. T., Bichko, V. V. & Seeger, C. Effect of α-interferon on the hepatitis C virus replicon. J. Virol. 75, 8516–8523 (2001).
- 59
Sumpter, R. Jr & Gale, M. Jr. in American Society for Virology 21st Annual Meeting W33-3 (Lexington, Kentucky, 2002).
- 60
Whitley, R. J. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2461–2509 (Lippincott, Williams & Wilkins, Philadelphia, 2001).
- 61
Tan, S. L. & Katze, M. G. HSV.com: maneuvering the internetworks of viral neuropathogenesis and evasion of the host defense. Proc. Natl Acad. Sci. USA 97, 5684–5686 (2000).
- 62
Roizman, B. & Knipe, D. M. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2399–2460 (Lippincott, Williams & Wilkins, Philadelphia, 2001).
- 63
Ankel, H., Westra, D. F., Welling-Wester, S. & Lebon, P. Induction of interferon-α by glycoprotein D of herpes simplex virus: a possible role of chemokine receptors. Virology 251, 317–326 (1998).
- 64
Kumar-Sinha, C., Varambally, S., Sreekumar, A. & Chinnaiyan, A. M. Molecular cross-talk between the TRAIL and interferon signaling pathways. J. Biol. Chem. 277, 575–585 (2002).
- 65
Preston, C. M., Harman, A. N. & Nicholl, M. J. Activation of interferon response factor-3 in human cells infected with herpes simplex virus type 1 or human cytomegalovirus. J. Virol. 75, 8909–8916 (2001).
- 66
Eidson, K. M., Hobbs, W. E., Manning, B. J., Carlson, P. & DeLuca, N. A. Expression of herpes simplex virus ICP0 inhibits the induction of interferon-stimulated genes by viral infection. J. Virol. 76, 2180–2191 (2002).
- 67
Mossman, K. L. & Smiley, J. R. Herpes simplex virus ICP0 and ICP34.5 counteract distinct interferon-induced barriers to virus replication. J. Virol. 76, 1995–1998 (2002).
- 68
Harle, P., Sainz, B. Jr, Carr, D. J. & Halford, W. P. The immediate-early protein, ICP0, is essential for the resistance of herpes simplex virus to interferon-α/β. Virology 293, 295–304 (2002).
- 69
He, B., Gross, M. & Roizman, B. The γ(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the α-subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc. Natl Acad. Sci. USA 94, 843–848 (1997).This study indicated a unique mechanism by which HSV γ(1)34.5 interacts with and redirects protein phosphatase 1α to dephosphorylate eIF-2α to allow continued protein synthesis despite the presence of activated PKR.
- 70
Cassady, K. A. & Gross, M. The herpes simplex virus type 1 U(S)11 protein interacts with protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase substrate domain. J. Virol. 76, 2029–2035 (2002).
- 71
Leib, D. A., Machalek, M. A., Williams, B. R., Silverman, R. H. & Virgin, H. W. Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc. Natl Acad. Sci. USA 97, 6097–6101 (2000).Using recombinant viruses to infect animals that have null mutations in host-defence genes, this study showed that a virus that was attenuated by deletion of ICP34.5 showed wild-type replication and virulence in a host from which the PKR gene had been deleted, exemplifying a formal genetic test for identifying in vivo mechanisms and targets of microbial virulence genes.
- 72
Poppers, J., Mulvey, M., Khoo, D. & Mohr, I. Inhibition of PKR activation by the proline-rich RNA-binding domain of the herpes simplex virus type 1 US11 protein. J. Virol. 74, 11215–11221 (2000).
- 73
Esposito, J. J. & Fenner, F. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2849–2884 (Lippincott, Williams & Wilkins, Philadelphia, 2001).
- 74
Moss, B. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2885–2922 (Lippincott, Williams & Wilkins, Philadelphia, 2001).
- 75
Cohen, J. Bioterrorism. Smallpox vaccinations: how much protection remains? Science 294, 985 (2001).
- 76
Smith, G. L. & McFadden, G. Smallpox: anything to declare? Nature Rev. Immunol. 2, 521–527 (2002).
- 77
Alcami, A. & Smith, G. L. Receptors for γ-interferon encoded by poxviruses: implications for the unknown origin of vaccinia virus. Trends Microbiol. 4, 321–326 (1996).
- 78
Alcami, A. & Smith, G. L. Soluble interferon-α receptors encoded by poxviruses. Comp. Immunol. Microbiol. Infect. Dis. 19, 305–317 (1996).
- 79
McFadden, G. & Murphy, P. M. Host-related immunomodulators encoded by poxviruses and herpesviruses. Curr. Opin. Microbiol. 3, 371–378 (2000).
- 80
Lalani, A. S. et al. Use of chemokine receptors by poxviruses. Science 286, 1968–1971 (1999).
- 81
Alcami, A. & Smith, G. L. Vaccinia, cowpox and camelpox viruses encode soluble γ-interferon receptors with novel broad species specificity. J. Virol. 69, 4633–4639 (1995).
- 82
Alcami, A. & Smith, G. L. Cytokine receptors encoded by poxviruses: a lesson in cytokine biology. Immunol. Today 16, 474–478 (1995).
- 83
McFadden, G., Lalani, A., Everett, H., Nash, P. & Xu, X. Virus-encoded receptors for cytokines and chemokines. Semin. Cell Dev. Biol. 9, 359–368 (1998).
- 84
Colamonici, O. R., Domanski, P., Sweitzer, S. M., Larner, A. & Buller, R. M. Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon-α transmembrane signaling. J. Biol. Chem. 270, 15974–15978 (1995).
- 85
Symons, J. A., Alcami, A. & Smith, G. L. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81, 551–560 (1995).This study characterized the vaccinia-virus soluble type I IFN receptor encoded by the B18R gene, which has broad species specificity and might have aided vaccinia-virus replication in many host species during evolution.
- 86
Verardi, P. H., Jones, L. A., Aziz, F. H., Ahmad, S. & Yilma, T. D. Vaccinia virus vectors with an inactivated γ-interferon receptor homolog gene (B8R) are attenuated in vivo without a concomitant reduction in immunogenicity. J. Virol. 75, 11–18 (2001).
- 87
Sroller, V., Ludvikova, V., Maresova, L., Hainz, P. & Nemeckova, S. Effect of IFN-γ receptor gene deletion on vaccinia-virus virulence. Arch. Virol. 146, 239–249 (2001).
- 88
Akkaraju, G. R., Whitaker-Dowling, P., Youngner, J. S. & Jagus, R. Vaccinia-specific kinase inhibitory factor prevents translational inhibition by double-stranded RNA in rabbit reticulocyte lysate. J. Biol. Chem. 264, 10321–10325 (1989).
- 89
Watson, J. C., Chang, H. W. & Jacobs, B. L. Characterization of a vaccinia virus-encoded double-stranded RNA-binding protein that may be involved in inhibition of the double-stranded RNA-dependent protein kinase. Virology 185, 206–216 (1991).
- 90
Chang, H. W., Watson, J. C. & Jacobs, B. L. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc. Natl Acad. Sci. USA 89, 4825–4829 (1992).
- 91
Beattie, E., Paoletti, E. & Tartaglia, J. Distinct patterns of IFN sensitivity observed in cells infected with vaccinia K3L- and E3L-mutant viruses. Virology 210, 254–263 (1995).
- 92
Beattie, E., Tartaglia, J. & Paoletti, E. Vaccinia virus-encoded eIF-2α homolog abrogates the antiviral effect of interferon. Virology 183, 419–422 (1991).
- 93
Davies, M. V., Elroy-Stein, O., Jagus, R., Moss, B. & Kaufman, R. J. The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the α-subunit of eukaryotic initiation factor 2. J. Virol. 66, 1943–1950 (1992).
- 94
Massung, R. F. et al. Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology 201, 215–240 (1994).
- 95
Shchelkunov, S. N. et al. Comparison of the genetic maps of variola and vaccinia viruses. FEBS Lett. 327, 321–324 (1993).
- 96
Davies, M. V., Chang, H. W., Jacobs, B. L. & Kaufman, R. J. The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms. J. Virol. 67, 1688–1692 (1993).
- 97
Sharp, T. V. et al. The vaccinia virus E3L gene product interacts with both the regulatory and the substrate-binding regions of PKR: implications for PKR autoregulation. Virology 250, 302–315 (1998).
- 98
Carroll, K., Elroy-Stein, O., Moss, B. & Jagus, R. Recombinant vaccinia virus K3L gene product prevents activation of double-stranded RNA-dependent, initiation factor 2α-specific protein kinase. J. Biol. Chem. 268, 12837–12842 (1993).
- 99
Rivas, C., Gil, J., Melkova, Z., Esteban, M. & Diaz-Guerra, M. Vaccinia virus E3L protein is an inhibitor of the interferon (IFN)-induced 2–5A synthetase enzyme. Virology 243, 406–414 (1998).
- 100
Smith, E. J., Marie, I., Prakash, A., Garcia-Sastre, A. & Levy, D. E. IRF3 and IRF7 phosphorylation in virus-infected cells does not require double-stranded RNA-dependent protein kinase R or IκB kinase but is blocked by vaccinia virus E3L protein. J. Biol. Chem. 276, 8951–8957 (2001).
- 101
Liu, Y., Wolff, K. C., Jacobs, B. L. & Samuel, C. E. Vaccinia virus E3L interferon resistance protein inhibits the interferon-induced adenosine deaminase A-to-I editing activity. Virology 289, 378–387 (2001).
- 102
Brandt, T. A. & Jacobs, B. L. Both carboxy- and amino-terminal domains of the vaccinia virus interferon resistance gene, E3L, are required for pathogenesis in a mouse model. J. Virol. 75, 850–856 (2001).
- 103
Najarro, P., Traktman, P. & Lewis, J. A. Vaccinia virus blocks γ-interferon signal transduction: viral VH1 phosphatase reverses Stat1 activation. J. Virol. 75, 3185–3196 (2001).
- 104
Cummings, C. A. & Relman, D. A. Using DNA microarrays to study host–microbe interactions. Emerg. Infect. Dis. 6, 513–525 (2000).
- 105
Fruh, K., Simmen, K., Luukkonen, B. G., Bell, Y. C. & Ghazal, P. Virogenomics: a novel approach to antiviral drug discovery. Drug Discov. Today 6, 621–627 (2001).
- 106
Manger, I. D. & Relman, D. A. How the host 'sees' pathogens: global gene expression responses to infection. Curr. Opin. Immunol. 12, 215–218 (2000).
- 107
Dongre, A. R., Opiteck, G., Cosand, W. L. & Hefta, S. A. Proteomics in the post-genome age. Biopolymers 60, 206–211 (2001).
- 108
Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).
- 109
Kellam, P. Post-genomic virology: the impact of bioinformatics, microarrays and proteomics on investigating host and pathogen interactions. Rev. Med. Virol. 11, 313–329 (2001).
- 110
Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).
- 111
Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).
- 112
Simmen, K. A. et al. Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B. Proc. Natl Acad. Sci. USA 98, 7140–7145 (2001).Using high-density microarrays, this study identified the specific viral component that triggers the cellular IFN response as the envelope glycoprotein B (gB), highlighting a pioneering paradigm for the consequences of virus–receptor interactions.
- 113
Mossman, K. L. et al. Herpes simplex virus triggers and then disarms a host antiviral response. J. Virol. 75, 750–758 (2001).
- 114
Geiss, G. K. et al. Global impact of influenza virus on cellular pathways is mediated by both replication-dependent and -independent events. J. Virol. 75, 4321–4331 (2001).
- 115
Geiss, G. et al. A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J. Biol. Chem. 276, 30178–30182 (2001).
- 116
Gale, M. Jr et al. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol. Cell. Biol. 18, 5208–5218 (1998).This study investigated the mechanisms of NS5A-mediated PKR regulation and the effect of ISDR mutations on this regulatory process, and proposed a model of PKR regulation by NS5A, which might have implications for therapeutic strategies against HCV.
- 117
Gale, M. J. Jr et al. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology 230, 217–227 (1997).
- 118
Noguchi, T. et al. Effects of mutation in hepatitis C virus nonstructural protein 5A on interferon resistance mediated by inhibition of PKR kinase activity in mammalian cells. Microbiol. Immunol. 45, 829–840 (2001).
- 119
Polyak, S. J. et al. Hepatitis C virus nonstructural 5A protein induces interleukin-8, leading to partial inhibition of the interferon-induced antiviral response. J. Virol. 75, 6095–6106 (2001).
- 120
Girard, S. et al. An altered cellular response to interferon and up-regulation of interleukin-8 induced by the hepatitis C viral protein NS5A uncovered by microarray analysis. Virology 295, 272–283 (2002).
- 121
Bigger, C. B., Brasky, K. M. & Lanford, R. E. DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J. Virol. 75, 7059–7066 (2001).
- 122
Toshchakov, V. et al. TLR4, but not TLR2, mediates IFN-β-induced STAT1α/β-dependent gene expression in macrophages. Nature Immunol. 3, 392–398 (2002).This study highlighted the cross-talk between TLRs and IFN — two pivotal host anti-microbial pathways — and provided the first explanation for the mechanistic basis of the differential patterns of gene expression that are activated by different TLR agonists.
- 123
Mita, Y., Dobashi, K., Shimizu, Y., Nakazawa, T. & Mori, M. Toll-like receptor 2 and 4 surface expressions on human monocytes are modulated by interferon-γ and macrophage colony-stimulating factor. Immunol. Lett. 78, 97–101 (2001).
- 124
Miettinen, M., Sareneva, T., Julkunen, I. & Matikainen, S. IFNs activate toll-like receptor gene expression in viral infections. Genes Immun. 2, 349–355 (2001).
- 125
Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).
- 126
Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).This study showed that mammalian TLR3 recognizes dsRNA and TLR3 activation induces type I IFN production. It was also found that TLR3-deficient mice have reduced responses to poly(inosine:cytosine).
- 127
Zhou, A., Paranjape, J. M., Der, S. D., Williams, B. R. & Silverman, R. H. Interferon action in triply deficient mice reveals the existence of alternative antiviral pathways. Virology 258, 435–440 (1999).
- 128
Horng, T., Barton, G. M. & Medzhitov, R. TIRAP: an adapter molecule in the Toll signaling pathway. Nature Immunol. 2, 835–841 (2001).
- 129
O'Shea, J. J., Gadina, M. & Schreiber, R. D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109, S121–S131 (2002).
- 130
Aaronson, D. S. & Horvath, C. M. A road map for those who know JAK–STAT. Science 296, 1653–1655 (2002).
- 131
Heim, M. H. The Jak–STAT pathway: cytokine signalling from the receptor to the nucleus. J. Recept. Signal Transduct. Res. 19, 75–120 (1999).
- 132
Yeh, T. C. & Pellegrini, S. The Janus kinase family of protein tyrosine kinases and their role in signaling. Cell. Mol. Life Sci. 55, 1523–1534 (1999).
- 133
Meraz, M. A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK–STAT signaling pathway. Cell 84, 431–442 (1996).This study generated and characterized Stat1-deficient mice, which have a complete lack of response to IFNs and are highly sensitive to microbial and viral infection, showing that STAT1 has an obligate and dedicated role in mediating IFN-dependent biological responses.
- 134
Cox, N. J. & Subbarao, K. Global epidemiology of influenza: past and present. Annu. Rev. Med. 51, 407–421 (2000).
- 135
Patterson, K. D. & Pyle, G. F. The geography and mortality of the 1918 influenza pandemic. Bull. Hist. Med. 65, 4–21 (1991).
- 136
Basler, C. F. et al. Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc. Natl Acad. Sci. USA 98, 2746–2751 (2001).By generating recombinant influenza viruses from cloned cDNAs, the group tested the 1918 pandemic flu NS1 gene in a mouse model. The results indicate that interaction of the NS1 protein with host-cell factors is important for viral pathogenesis.
- 137
Taubenberger, J. K., Reid, A. H., Janczewski, T. A. & Fanning, T. G. Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. Phil. Trans. R. Soc. Lond. B 356, 1829–1839 (2001).
- 138
Patten, P. A., Howard, R. J. & Stemmer, W. P. Applications of DNA shuffling to pharmaceuticals and vaccines. Curr. Opin. Biotechnol. 8, 724–733 (1997).
- 139
Harayama, S. Artificial evolution by DNA shuffling. Trends Biotechnol. 16, 76–82 (1998).
- 140
Pekrun, K. et al. Evolution of a human immunodeficiency virus type 1 variant with enhanced replication in pig-tailed macaque cells by DNA shuffling. J. Virol. 76, 2924–2935 (2002).
- 141
Chang, C. C. et al. Evolution of a cytokine using DNA family shuffling. Nature Biotechnol. 17, 793–797 (1999).This study used DNA shuffling of a family of human IFN-α genes to derive variants that have increased antiviral activities in mouse cells, and showed that diverse cytokine gene families can be used as starting material to rapidly evolve cytokines that are more active than the native form.
- 142
Weber, H., Valenzuela, D., Lujber, G., Gubler, M. & Weissmann, C. Single amino-acid changes that render human IFN-α2 biologically active on mouse cells. EMBO J. 6, 591–598 (1987).
Acknowledgements
This work was supported by grants from the National Institutes of Health to M.G.K. and M.G. We thank M. J. Korth for editorial assistance and N.-W. Soong for helpful discussions.
Author information
Related links
Related links
DATABASES
Entrez
LocusLink
Medscape DrugInfo
Glossary
- NEGATIVE STRAND RNA GENOME
-
Genomic viral RNA that is complementary to the messenger RNA that is produced during infection.
- QUASISPECIES
-
A family of closely related, but slightly different, viral genomes. Viral genetics variants, derived from the original infecting virus, that are present during an infection.
- META-ANALYSIS
-
A large-scale comparison of NS5A sequences isolated from IFN-resistant or IFN-sensitive HIV-infected patients.
Rights and permissions
About this article
Cite this article
Katze, M., He, Y. & Gale, M. Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2, 675–687 (2002). https://doi.org/10.1038/nri888
Issue Date:
Further reading
-
Cholesterol 25-hydroxylase inhibits encephalomyocarditis virus replication through enzyme activity-dependent and independent mechanisms
Veterinary Microbiology (2020)
-
αvβ8 integrin-expression by BATF3-dependent dendritic cells facilitates early IgA responses to Rotavirus
Mucosal Immunology (2020)
-
CD8 T Cells and STAT1 Signaling Are Essential Codeterminants in Protection from Polyomavirus Encephalopathy
Journal of Virology (2020)
-
Advanced biomaterials for cancer immunotherapy
Acta Pharmacologica Sinica (2020)
-
Viral MicroRNAs: Interfering the Interferon Signaling
Current Pharmaceutical Design (2020)