Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Haematopoietic cell-fate decisions, chromatin regulation and ikaros

Key Points

  • Heritable chromatin modifications have been described for both DNA and histones. Although our knowledge of DNA modifications is limited to methylation of CpG islands, a range of histone modifications is being revealed as 'codes' that determine chromatin activity.

  • Histone codes can have direct effects on chromatin accessibility and they also provide additional layers of regulation through their interactions with other chromatin regulating factors. This provides an ingenious way to convey genetic information in a lineage-specific manner — information that is required not only to initiate but also to maintain the differentiated state.

  • The activity of ATP-dependent remodellers is crucial in this series of chromatin regulatory events. Remodellers are powerful ATP-driven enzymatic machines that can alter chromatin structure irrespective of its configuration and thereby provide transient access to chromatin modifiers. This might trigger a series of chromatin regulatory events that underlie changes in gene expression required for lineage decisions.

  • Ikaros is a lineage-regulating factor in the haematopoietic system. Lack of Ikaros impairs the production of lymphocyte progenitors/precursors and increases the production of their myeloid counterparts. In addition to an early role in lympho-myeloid cell-fate decisions, Ikaros seems to influence the outcome at a range of branch points of the lymphoid and myeloid pathways.

  • An important mechanism of Ikaros action involves chromatin remodelling. In fact, Ikaros is an integral component of a 2-MDa complex containing both chromatin remodelling and modifying activities. The Ikaros–NURD (nucleosome remodelling and histone deacetylation) complex and its associated activities can trigger a series of chromatin regulatory events by providing accessibility to lineage-determining factors and their chromatin-modifying associates. In this way, Ikaros might support one of two alternative fates in differentiation by potentiating the required events in gene expression.

  • The ability of Ikaros to target genes and nuclear compartments in a sequence-specific manner argues the case for gene-specific and global effects on chromatin regulation.

Abstract

The regulated production of several terminally differentiated cell types of the blood and immune systems (haematopoiesis) has been the focus of many studies on cell-fate determination. Chromatin and the control of its structure have been implicated in the regulation of cell-fate decisions and in the maintenance of the determined states. Here, I review advances in the field, emphasizing the potential role of chromatin in lineage commitment and differentiation. In this context, I discuss Ikaros, an essential regulator of lymphocyte development and an integral component of a functionally diverse chromatin remodelling network that operates from the early stages of haematopoiesis to the mature lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of a nucleosome.
Figure 2: Histone modifications as chromatin codes.
Figure 3: Models for the generation and propagation of histone codes.
Figure 4: Deciphering the histone code.
Figure 5: A model of how histone codes can influence lineage decisions.
Figure 6: Chromatin remodellers in the generation of histone code during development.
Figure 7: The most full-length Ikaros isoform (Ik-1) and its functional domains.
Figure 8: Gene-specific and global targeting of chromatin remodelling by Ikaros.

Similar content being viewed by others

References

  1. Spangrude, G. J., Heimfeld, S. and Weissman, I. L. Purification and characterization of mouse hematopoietic stem cell. Science 241, 58–92 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Lacaud, G., Carlsson, L. & Keller, G. Identification of a fetal hematopoietic precursor with B cell, T cell and macrophage potential. Immunity 9, 827–838 (1998).

    CAS  PubMed  Google Scholar 

  3. Kawamoto, H., Ohmura, K. & Katsura, Y. Presence of progenitors restricted to T, B, or myeloid lineage, but absence of multipotent stem cells, in the murine fetal thymus. J. Immunol. 161, 3799–3802 (1998).

    CAS  PubMed  Google Scholar 

  4. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    CAS  PubMed  Google Scholar 

  5. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Bipotential B-macrophage progenitors are present in adult bone marrow. Nature Immunol. 2, 83–88 (2001).

    CAS  Google Scholar 

  6. Medina, K. L. et al. Identification of very early lymphoid precursors in bone marrow and their regulation by estrogen. Nature Immunol. 2, 718–724 (2001).

    CAS  Google Scholar 

  7. Rolink, A. G., Nutt, S. L., Melchers, F. & Busslinger, M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 401, 603–606 (1999).References 4–7 show that plasticity is apparent in the phenotype of early lymphocyte precursors and can be further exaggerated on loss of lineage-specific transcriptional regulators.

    CAS  PubMed  Google Scholar 

  8. Kawamoto, H., Ikawa, T., Ohmura, K., Fujimoto, S. & Katsura, Y. T cell progenitors emerge earlier than B cell progenitors in the murine fetal liver. Immunity 12, 441–450 (2000).

    CAS  PubMed  Google Scholar 

  9. Busslinger, M., Nutt, S. L. & Rolink, A. G. Lineage commitment in lymphopoiesis. Curr. Opin. Immunol. 12, 151–158 (2000).

    CAS  PubMed  Google Scholar 

  10. Berger, S. L. Gene regulation. Local or global? Nature 408, 412–413, 415 (2000).

    CAS  PubMed  Google Scholar 

  11. Berger, S. L. & Felsenfeld, G. Chromatin goes global. Mol. Cell 8, 263–268 (2001).

    CAS  PubMed  Google Scholar 

  12. Farkas, G., Leibovitch, B. A. & Elgin, S. C. Chromatin organization and transcriptional control of gene expression in Drosophila. Gene 253, 117–136 (2000).

    CAS  PubMed  Google Scholar 

  13. Marmorstein, R. & Roth, S. Y. Histone acetyltransferases: function, structure, and catalysis. Curr. Opin. Genet. Dev. 11, 155–161 (2001).

    CAS  PubMed  Google Scholar 

  14. Cheung, P., Allis, C. D. & Sassone-Corsi, P. Signaling to chromatin through histone modifications. Cell 103, 263–271 (2000).

    CAS  PubMed  Google Scholar 

  15. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Brownell, J. E. et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843–851 (1996).

    CAS  PubMed  Google Scholar 

  17. Kouzarides, T. Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet. Dev. 9, 40–48 (1999).

    CAS  PubMed  Google Scholar 

  18. Chen, H., Tini, M. & Evans, R. M. HATs on and beyond chromatin. Curr. Opin. Cell Biol. 13, 218–224 (2001).

    CAS  PubMed  Google Scholar 

  19. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Luger, K. & Richmond, T. J. The histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8, 140–146 (1998).

    CAS  PubMed  Google Scholar 

  21. Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. McMurry, M. T. & Krangel, M. S. A role for histone acetylation in the developmental regulation of VDJ recombination. Science 287, 495–498 (2000).

    CAS  PubMed  Google Scholar 

  23. McBlane, F. & Boyes, J. Stimulation of V(D)J recombination by histone acetylation. Curr. Biol. 10, 483–486 (2000).

    CAS  PubMed  Google Scholar 

  24. Roth, D. B. & Roth, S. Y. Unequal access: regulating V(D)J recombination through chromatin remodeling. Cell 103, 699–702 (2000).

    CAS  PubMed  Google Scholar 

  25. Cheung, W. L., Briggs, S. D. & Allis, C. D. Acetylation and chromosomal functions. Curr. Opin. Cell Biol. 12, 326–333 (2000).

    CAS  PubMed  Google Scholar 

  26. Turner, B. M., Birley, A. J. & Lavender, J. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69, 375–384 (1992).

    CAS  PubMed  Google Scholar 

  27. Strahl, B. D., Ohba, R., Cook, R. G. & Allis, C. D. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl Acad. Sci. USA 96, 14967–14972 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, H. et al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293, 853–857 (2001).

    CAS  PubMed  Google Scholar 

  29. Noma, K., Allis, C. D. & Grewal, S. I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155 (2001).Using the mating-type locus of fission yeast, they show that histone H3 methylation patterns distinguish euchromatic and heterochromatic chromosomal domains.

    CAS  PubMed  Google Scholar 

  30. Litt, M. D., Simpson, M., Gaszner, M., Allis, C. D. & Felsenfeld, G. Correlation between histone lysine methylation and developmental changes at the chicken β-globin locus. Science 293, 2453–2455 (2001).

    CAS  PubMed  Google Scholar 

  31. Laherty, C. D. et al. Histone deacetylases associated with the mSin3 corepressor mediate Mad transcriptional repression. Cell 89, 349–356 (1997).

    CAS  PubMed  Google Scholar 

  32. Xu, L. et al. Signal-specific co-activator domain requirements for Pit-1 activation. Nature 395, 301–306 (1998).

    CAS  PubMed  Google Scholar 

  33. Utley, R. et al. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394, 498–502 (1998).

    CAS  PubMed  Google Scholar 

  34. Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    CAS  PubMed  Google Scholar 

  35. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    CAS  PubMed  Google Scholar 

  36. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).References 34–36 characterize how a chromatin modification, in this case methylation, can serve as a docking signal for a trans -acting factor.

    Article  CAS  PubMed  Google Scholar 

  37. Winston, F. & Allis, C. D. The bromodomain: a chromatin-targeting module? Nature Struct. Biol. 6, 601–604 (1999).

    CAS  PubMed  Google Scholar 

  38. Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).

    CAS  PubMed  Google Scholar 

  39. Owen, D. J. et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase Gcn5p. EMBO J. 19, 6141–6149 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown, K. E., Baxter, J., Graf, D., Merkenschlager, M. & Fisher, A. G. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol. Cell 3, 207–217 (1999).

    CAS  PubMed  Google Scholar 

  41. Skok, J. A. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nature Immunol. 2, 848–854 (2001).

    CAS  Google Scholar 

  42. Kingston, R. E. & Narlikar, G. J. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 13, 2339–2352 (1999).

    CAS  PubMed  Google Scholar 

  43. Tyler, J. K. & Kadonaga, J. T. The 'dark side' of chromatin remodeling: repressive effects on transcription. Cell 99, 443–446 (1999).

    CAS  PubMed  Google Scholar 

  44. Peterson, C. L. & Workman, J. L. Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr. Opin. Genet. Dev. 10, 187–192 (2000).

    CAS  PubMed  Google Scholar 

  45. Davie, J. R. & Moniwa, M. Control of chromatin remodeling. Crit. Rev. Eukaryot. Gene Expr. 10, 303–325 (2000).

    CAS  PubMed  Google Scholar 

  46. Havas, K., Whitehouse, I. & Owen-Hughes, T. ATP-dependent chromatin remodeling activities. Cell. Mol. Life Sci. 58, 673–682 (2001).

    CAS  PubMed  Google Scholar 

  47. Fyodorov, D. V. & Kadonaga, J. T. The many faces of chromatin remodeling. Switching beyond transcription. Cell 106, 523–525 (2001).

    CAS  PubMed  Google Scholar 

  48. Henikoff, S., Ahmad, K. & Malik, H. S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098–1102 (2001).

    CAS  PubMed  Google Scholar 

  49. Taylor, I. C., Workman, J. L., Schuetz, T. J. & Kingston, R. E. Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev. 5, 1285–1298 (1991).

    CAS  PubMed  Google Scholar 

  50. Cote, J., Quinn, J., Workman, J. L. & Perterson, C. L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53–59 (1994).

    CAS  PubMed  Google Scholar 

  51. Adams, C. C. & Workman, J. L. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol. Cell Biol. 15, 1405–1421 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cosma, M. P., Tanaka, T. & Nasmyth, K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle and developmentally regulated promoter. Cell 97, 299–311 (1999).This ground-breaking paper provided the first insight into the order of factor binding at a eukaryotic promoter. Using the yeast HO endonuclease promoter, they show that the activator Swi5 is the first to bind, followed by the chromatin remodelling complex SWI–SNF, which then recruits the acetylase SAGA.

    CAS  PubMed  Google Scholar 

  53. Yudkovsky, N., Logie, C., Hahn, S. & Peterson, C. Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes Dev. 13, 2369–2374 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Armstrong, J. A., Bieker, J. J. & Emerson, B. M. A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 95, 93–104 (1998).

    CAS  PubMed  Google Scholar 

  55. Hassan, A. H., Neely, K. E. & Workman, J. L. Histone acetyltransferase complexes stabilize SWI/SNF binding to promoter nucleosomes. Cell 104, 817–827 (2001).

    CAS  PubMed  Google Scholar 

  56. Kontaraki, J., Chen, H. H., Riggs, A. & Bonifer, C. Chromatin fine structure profiles for a developmentally regulated gene: reorganization of the lysozyme locus before trans-activator binding and gene expression. Genes Dev. 14, 2106–2122 (2000).In comparing the basic chromatin structure of the gene that encodes lysozyme in non-expressing haematopoietic precursors and in differentiated lysozyme-producing cells, the authors find no significant difference in chromatin pattern. They suggest that most chromatin pattern formation is complete before the binding of end-stage transcriptional activators.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T-cell differentiation. Immunity 9, 765–775 (1998).

    CAS  PubMed  Google Scholar 

  58. Grogan, J. L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).

    CAS  PubMed  Google Scholar 

  59. Koipally, J., Heller, E. J., Seavitt, J. R. & Georgopoulos, K. Unconventional potentiation of gene expression by Ikaros. J. Biol. Chem. Jan 17 2002 [epub ahead of print]This article provides evidence that Ikaros can act as a non-classical transcriptional activator. It is suggested that Ikaros might potentiate gene expression either by the targeted removal of repressors from the vicinity of a gene or by enabling the activity of genes already localized in PC-HC through its chromatin remodelling activities.

  60. Haire, R. N., Miracle, A. L., Rast, J. P. & Litman, G. W. Members of the Ikaros gene family are present in early representative vertebrates. J. Immunol. 165, 306–312 (2000).

    CAS  PubMed  Google Scholar 

  61. Molnár, Á . et al. The Ikaros gene encodes a family of lymphocyte restricted zinc finger DNA binding proteins, highly conserved in human and mouse. J. Immunol. 156, 585–592 (1996).

    PubMed  Google Scholar 

  62. Georgopoulos, K., Moore, D. & Derfler, B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 258, 808–812 (1992).

    CAS  PubMed  Google Scholar 

  63. Morgan, B. et al. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J. 16, 2004–2013 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kelley, C. M. et al. Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr. Biol. 8, 508–515 (1998).

    CAS  PubMed  Google Scholar 

  65. Klug, C. A. et al. Hematopoietic stem cells and lymphoid progenitors express different Ikaros isoforms, and Ikaros is localized to heterochromatin in immature lymphocytes. Proc. Natl Acad. Sci. USA 95, 657–662 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Brown, K. E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997).This study reveals that, on B-cell activation, Ikaros proteins become associated with PC-HC, along with transcriptionally silent genes.

    CAS  PubMed  Google Scholar 

  67. Hahm, K. et al. Helios, a T-cell restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev. 12, 782–796 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, J.-H. et al. Aiolos regulates B cell activation and maturation to effector state. Immunity 9, 543–553 (1998).

    CAS  PubMed  Google Scholar 

  69. Avitahl, N. et al. Ikaros sets thresholds for T cell activation and regulates chromosome propagation. Immunity 10, 333–343 (1999).

    CAS  PubMed  Google Scholar 

  70. Molnár, Á . & Georgopoulos, K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA binding proteins. Mol Cell Biol 14, 8292–303 (1994).

    PubMed  PubMed Central  Google Scholar 

  71. Hahm, K. et al. The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol. Cell. Biol. 14, 7111–7123 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim, J. et al. Ikaros DNA binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10, 345–355 (1999).Describes the biochemical purification of an Ikaros–NURD complex from cycling T cells.

    CAS  PubMed  Google Scholar 

  73. Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).

    CAS  PubMed  Google Scholar 

  74. Sun, L., Liu, A. & Georgopoulos, K. Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J. 15, 5358–5369 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nichogiannopoulou, N., Trevisan, M., Naben, S., Friedrich, C. & Georgopoulos, K. Defects in the activity of hemopoietic stem cells in Ikaros mutant mice. J. Exp. Med. 190, 1201–1214 (1999).Describes the effects of Ikaros mutations (null and dominant negative) in haematopoietic stem cells, myeloid progenitors and precursors. Taken together with previous studies on lymphoid progenitors, these results provide support for a model in which Ikaros functions as a pivotal factor for differentiation at a number of branch-points of the haematopoietic hierarchy.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, J. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549 (1996).

    CAS  PubMed  Google Scholar 

  77. Winandy, S., Wu, L., Wang, J. H. & Georgopoulos, K. Pre-TCR and TCR controlled checkpoints in T cell differentiation are set by Ikaros. J. Exp. Med. 190, 1039–1048 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Honma, Y. et al. Eos: a novel member of the Ikaros gene family expressed predominantly in the developing nervous system. FEBS Lett. 447, 76–80 (1999).

    CAS  PubMed  Google Scholar 

  79. Cobb, B. S. et al. Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev. 14, 2146–2160 (2000).This article shows that the DNA-binding domain of Ikaros is required for PC-HC localization. Ectopic expression of Ikaros and mutant variants in NIH-3T3 fibroblasts shows that an intact Ikaros DNA-binding domain is required for heterochromatin localization. Ikaros is found to bind to Ikaros sites in γ-satellite DNA using in vitro binding assays. This binding indicates that Ikaros localizes to PC-HC through direct binding to its cognate sites in γ-satellite sequences.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Y., LeRoy, G., Seelig, H.-P., Lane, W. S. & Reinberg, D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95, 279–289 (1998).

    CAS  PubMed  Google Scholar 

  81. Xue, Y. et al. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol. Cell 2, 851–861 (1998).

    CAS  PubMed  Google Scholar 

  82. Tong, J., Hassig, C., Schnitzler, G. R., Kingston, R. A. & Schreiber, S. L. Chromatin deacetylation by an ATP-dependent nucleosome remodeling complex. Nature 395, 917–921 (1998).

    CAS  PubMed  Google Scholar 

  83. Koipally, J., Renold, A., Kim, J. & Georgopoulos, K. Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. EMBO J. 18, 3090–3100 (1999).Provides the first molecular evidence that Ikaros and Aiolos can repress transcription. Two repression domains are identified and histone deacetylation is described as the mechanism.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Koipally, J. & Georgopoulos, K. Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity. J. Biol. Chem. 275, 19594–19602 (2000).

    CAS  PubMed  Google Scholar 

  85. Sif, S., Saurin, A. J., Imbalzano, A. N. & Kingston, R. E. Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev. 15, 603–618 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. O'Neill, D. W. et al. An Ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. Mol. Cell. Biol. 20, 7572–7582 (2000).Biochemical purification of the PYR complex that binds to the β-globin locus from an erythroleukaemia cell line reveals the presence of Ikaros, Mi-2 and HDACs.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).

    CAS  PubMed  Google Scholar 

  88. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    CAS  PubMed  Google Scholar 

  89. Sabbattini, P. et al. Binding of Ikaros to the λ5 promoter silences transcription through a mechanism that does not require heterochromatin formation. EMBO J. 20, 2812–2822 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Trinh, L. A. et al. Down-regulation of TDT transcription in CD4+CD8+ thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes Dev. 15, 1817–1832 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. DiFronzo, N. L. et al. Ikaros, a lymphoid-cell-specific transcription factor, contributes to the leukemogenic phenotype of a mink cell focus-inducing murine leukemia virus. J. Virol. 76, 78–87 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Galy, A. et al. Distinct signals control the hematopoiesis of lymphoid related DCs. Blood 95, 128–137 (2000).

    CAS  PubMed  Google Scholar 

  93. Christopherson, I., Piechoki, M., Liu, G., Ratner, S. & Galy, A. Regulation of L-selectin expression by a dominant negative Ikaros protein. J. Leukocyte Biol. 69, 675–683 (2001).

    CAS  PubMed  Google Scholar 

  94. Tucker, S. N., Jessup, H. K., Fujii, H. & Wilson, C. B. Enforced expression of the Ikaros isoform IK5 decreases the numbers of extrathymic intraepithelial lymphocytes and natural killer 1.1+ T cells. Blood 99, 513–519 (2002).

    CAS  PubMed  Google Scholar 

  95. Kehle, J. et al. dMi-2, a Hunchback-interacting protein that functions in polycomb repression. Science 282, 1897–1900 (1998).

    CAS  PubMed  Google Scholar 

  96. Melcher, M. et al. Structure–function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Mol. Cell. Biol. 20, 3728–3741 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Peters, A. H. et al. Loss of the SUV39H histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    CAS  PubMed  Google Scholar 

  98. Perdomo, J., Holmes, M., Chong, B. & Crossley, M. Eos and Pegasus, two members of the Ikaros family of proteins with distinct DNA binding activities. J. Biol. Chem. 275, 38347–38354 (2000).

    CAS  PubMed  Google Scholar 

  99. Momeni, P. et al. Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type I. Nature Genet. 24, 71–74 (2000).

    CAS  PubMed  Google Scholar 

  100. Malik, T. H. et al. Transcriptional repression and developmental functions of the atypical vertebrate GATA protein TRPS1. EMBO J. 20, 1715–1725 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to members of my laboratory and to D. Kioussis for allowing me to cite unpublished results. I am indebted to J. Koipally, E. Wong, B. Heller, T. Yoshida and B. Morgan for constructive discussions and other support that helped to shape this manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

CD4

CD8

c-kit

DNMT3b

FLK2

GM-CSFR

GR1

HDAC1

HDAC2

HP1

Hunchback

Ikaros

IL-2 receptor-β

interferon-γ

interleukin 4

L-selectin

MBD3

Mi-2β

MTA2

Pegasus

Sin3

SUV39H1

TAFII250

 OMIM

tricho-rhino-phalangeal syndrome 1

Glossary

EPIGENETICS

The study of heritable changes in gene expression that occur without a change in DNA sequence.

CHROMATIN REMODELLING

A reversible alteration of chromatin structure mediated by ATP-dependent helicases, such as Mi-2 (NURD) and Brg1/Brm (SWI/SNF) that have an impact on several molecular processes, such as recombination, repair and transcription.

HETEROCHROMATIN

Highly compacted chromatin that is found constitutively in regions such as the centromere and telomere, and is mostly associated with transcriptionally silent genes. It is rich in A+T sequences and can therefore be visualized microscopically by staining of nuclei with DNA-intercalating dyes.

CHROMATIN CODE

A covalent modification on histones and DNA. They occur in different regions of the genome by enzymes such as acetylases, methylases and kinases, and result in alterations of gene transactions in a cell. These could include, for example, changes in transcription, recombination, timing of DNA replication and the degree of compaction of DNA.

CHROMODOMAIN

The chromatin organization modifier domain is an 50 amino-acid motif originally identified as a region of homology shared between the Drosophila Hp1 and Polycomb proteins, and that is now known to exist in plants and animals. Chromodomain-containing proteins are usually components of chromatin remodelling complexes and are also presumed to have a role in genome organization.

BROMODOMAIN

A 120-bp motif found in a variety of proteins, including histone acetyltranferases, kinases, basal transcription factors (TAFII250) and chromatin remodelling factors.

PERICENTROMERIC HETEROCHROMATIN

The heterochromatic regions surrounding centromeres that are postulated to be a site of recruitment of transcriptionally silent genes.

PRIMITIVE HAEMATOPOIESIS

The transient production of large, nucleated erythrocytes that express embryonic haemoglobin, which takes place in the yolk sac. Primitive megakaryocytopoiesis is also reported, but no other types of blood cell have ever been reported to be generated in primitive haematopoiesis.

DEFINITIVE HAEMATOPOIESIS

Haematopoiesis from pluripotent haematopoietic stem cells (HSCs), in which all types of blood cell are produced. HSCs emerge first in the aorta–gonad–mesonephros region, whereas the main sites of definitive haematopoiesis in fetuses and adults are the liver and bone marrow, respectively.

SPLANCHNOPLEURA

The layer formed by the union of splanchnic mesoderm and endoderm that gives rise to muscle, digestive tract and yolk sac.

POSITION EFFECT VARIEGATION

Stochastic silencing of a gene that is adjacent to heterochromatin in a proportion of cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgopoulos, K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol 2, 162–174 (2002). https://doi.org/10.1038/nri747

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing