IMMUNE REGULATION

# Making a commitment

T-bet, a member of the T-box family of transcription factors, has been implicated in the regulation of T-helper type 1 and 2 ( $T_H 1$  and  $T_H 2$ ) lineage commitment of CD4<sup>+</sup> T cells. Two papers in *Science* by Laurie Glimcher and co-workers now show that mice lacking T-bet spontaneously develop an asthma-like phenotype and that T-bet is required for the control of interferon- $\gamma$  (IFN- $\gamma$ ) production in CD4<sup>+</sup> T cells and natural killer (NK) cells but, unexpectedly, not in CD8<sup>+</sup> T cells.

Human asthma is characterized by airway inflammation, airway hyper-responsiveness (AHR) and airway remodelling, and is associated with infiltration by  $T_{H}^{2}$  cells. T-bet transactivates the gene that encodes IFN- $\gamma$  in T<sub>H</sub>1 cells and suppresses the development of  $\rm T_{\rm H}2$  cells. In the first paper, the group looked at the role of T-bet in asthma and observed that patients with allergic asthma had lower expression of T-bet in their lungs than non-asthmatics. To investigate the role of T-bet in asthma, T-betdeficient mice were generated and examined for signs of asthma. *T-bet<sup>-/-</sup>* mice, in the absence of any immunogenic stimulation, spontaneously developed AHR and exhibited features of airway remodelling.

The second paper focused on the role of T-bet in the transcriptional control of IFN- $\gamma$ production. Previous studies showed that T-bet production correlates with IFN-y production in all cells examined but the mechanisms of control remain poorly understood. To investigate the role of endogenous T-bet in controlling IFN-y production in CD4<sup>+</sup> T cells, cells were isolated from *T-bet*<sup>-/-</sup> mice and stimulated with anti-CD3 and anti-CD28 antibodies. IFN-y production was decreased in cells lacking T-bet, even in the presence of interleukin-12 (IL-12), which is a potent stimulator of IFN-7 production. Next, they addressed the role of T-bet in  $\rm T_{\rm H}1\text{--}T_{\rm H}2$ polarization. CD4+ T cells were cultured under neutral or polarizing conditions and the phenotype of the effector T cells was examined by detecting cytokine production. When stimulated under T<sub>H</sub>1-inducing conditions, T-bet<sup>-/-</sup> cells produced less IFN- $\gamma$ and more IL-4 and IL-5, indicating that they had instead developed a  $T_{\mu}^2$  phenotype.



Further evidence of defective  $T_H 1$ development in *T-bet*<sup>-/-</sup> mice came from experiments in which they were infected with *Leishmania major*, a protozoan that requires a  $T_H 1$  response to resolve infection. C57BL/6 mice can control infection but BALB/c mice develop a  $T_H 2$  response and are susceptible to infection. When T-bet was knocked out in the resistant C57BL/6 background, the mice became infected and failed to control the infection.

Is T-bet essential for IFN- $\gamma$  production in cells other than CD4<sup>+</sup> T cells? NK cells produce IFN- $\gamma$  in response to stimulation with IL-12 and IL-18, but *T-bet<sup>-/-</sup>* NK cells produce less IFN- $\gamma$  than wild-type cells and their effector function is also impaired. In contrast to CD4<sup>+</sup> and NK cells, *T-bet<sup>-/-</sup>* CD8<sup>+</sup> T cells stimulated with cytokines produced similar amounts of IFN- $\gamma$  to wild-type CD8<sup>+</sup> T cells. This result was surprising, because a previous study had shown that retroviral transduction of T-bet into type-2 CD8<sup>+</sup> T cells. Converted them into type-1 cells.

These results indicate that the *T-bet*<sup>-/-</sup> mouse is a new model for asthma, and confirm the crucial role of T-bet in  $T_{\rm H}1$ lineage commitment. However, surprisingly, the transcriptional control of IFN- $\gamma$ production seems to be different in CD4<sup>+</sup> and CD8<sup>+</sup> T cells.

## Elaine Bell

## References and links

**ORIGINAL RESEARCH PAPERS:** Finotto, S. *et al.* Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. *Science* **295**, 336–338 (2002) | Szabo, S. J. *et al.* Distinct effects of T-bet in  $T_{\mu}$ 1 lineage commitment and IFN- $\gamma$  production in CD4 and CD8 T cells. *Science* **295**, 338–342 (2002). **FURTHER READING:** Rengarajan, J. Szabo, S. J. &

Glimcher, L. H. Transcriptional regulation of  $T_{\rm H} 1/T_{\rm H} 2$  polarization. *Immunol. Today* **21**, 479–483 (2000) **WEB SITE** 

Laurie Glimcher's laboratory: http://www.hsph. harvard.edu/facres/glmchr.html

## IMMUNE REGULATION

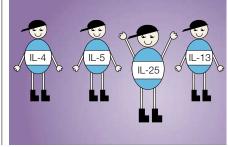
## IL-25 joins $T_{H}^{2}$ team

T-helper type 2 (T<sub>H</sub>2) cell responses have a new star player. In the January issue of *Immunity*, Madeline Fort and co-workers report the discovery of a new cytokine — IL-25 — and show that it promotes  $T_H^2$ -associated pathology.

IL-25 was identified in database searches for new molecules with homology to the proinflammatory cytokine IL-17. *Il25* mRNA is produced by polarized  $T_{\rm H}2$  cells but not by naive T cells,  $T_{\rm H}1$  cells or other cell types. To test the biological functions of IL-25, mice were treated with the purified protein. Unlike IL-17, IL-25 treatment leads to characteristic  $T_{\rm H}2$  effects increased serum IgG1 and IgE concentrations, increased eosinophil production, and inflammation of the lungs and gut.

So, does IL-25 mediate these effects by inducing the production of  $T_{H}^{2}$ -type cytokines (IL-4, IL-5 and IL-13)? Quantitative PCR analysis of whole tissues confirmed that IL-25 treatment induces T<sub>H</sub>2-type, but not T<sub>H</sub>1-type, cytokine production. The roles of IL-4, IL-5 and IL-13 in mediating the effects of IL-25 were verified in vivo. However, identifying the responder cells was more difficult. In vitro assays of fractionated cell populations ruled out CD4<sup>+</sup> T cells, B cells, monocytes, macrophages, eosinophils and NK cells. Instead, IL-5 and IL-13 production in response to IL-25 was attributed to a rare, lineage-negative cell that expresses high levels of MHC-class-II molecules. However, the source of IL-25-induced IL-4 was not identified.

This study indicates that IL-25 might be involved in promoting  $T_H^2$  responses and could be a target for the treatment of allergy and asthma.


### Jennifer Bell

## **W** References and links

ORIGINAL RESEARCH PAPER Fort M.M. et al. IL-25 induces IL-4, IL-5, and IL-13 and  $T_{\mu}2$ -associated pathologies in vivo. Immunity **15**, 985–995 (2001). WEBSITE

Immunology department at DNAX:

http://www.dnaxresearch.com/department-immunology.html



## HIGHLIGHTS