Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipid rafts and B-cell activation

Key Points

  • Lipid rafts act as platforms in B cells for B-cell receptor (BCR) signalling and antigen targeting.

  • Rafts concentrate the Src-family kinase Lyn and exclude the BCR and receptors that negatively regulate BCR signalling.

  • BCR oligomerization results in association of the BCR with lipid rafts and its phosphorylation by Lyn, initiating signalling.

  • The association of the BCR with lipid rafts changes during B-cell development, which might contribute to the differences in the outcome of antigen encounter.

  • B-cell co-receptors, including CD19–CD21 and FcγRII influence the association of the BCR with rafts, which might represent a new mechanism for co-receptor function.

  • Epstein–Barr-virus-encoded gene products LMP1 and LMP2A are constitutively associated with rafts and act within rafts to block BCR signalling, providing signals for longevity and inducing latency.

Abstract

The B-cell antigen receptor acts during B-cell activation both to initiate signalling cascades and to transport antigen into the cell for subsequent processing and presentation. Recent evidence indicates that membrane microdomains, termed lipid rafts, have a role in B-cell activation as platforms for B-cell receptor (BCR) signalling and might also act in antigen trafficking. Lipid rafts might facilitate the regulation of the BCR during B-cell development by B-cell co-receptors, and during viral infection. So, lipid rafts seem to be an important new piece of the B-cell signalling puzzle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The function of the BCR in B-cell activation.
Figure 2: Model of the role for lipid rafts in B-cell activation.
Figure 3: The B-cell receptor (BCR) and rafts in B-cell development.
Figure 4: Rafts and immune synapses.

Similar content being viewed by others

References

  1. Benschop, R. J. & Cambier, J. C. B cell development: signal transduction by antigen receptors and their surrogates. Curr. Opin. Immunol. 11, 143–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Reth, M. & Wienands, J. Initiation and processing of signals from the B cell antigen receptor. Annu. Rev. Immunol. 15, 453–479 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Parker, D. C. T cell-dependent B cell activation. Annu. Rev. Immunol. 11, 331–360 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Wagle, N. M. et al. B lymphocyte signaling receptors and the control of class II antigen processing. Curr. Top. Microbiol. Immunol. 245, 101–126 (2000).

    CAS  PubMed  Google Scholar 

  5. Schamel, W. & Reth, M. Monomeric and oligomeric complexes of the B cell antigen receptor. Immunity 13, 5–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–41 (2000).

    Article  CAS  Google Scholar 

  7. Casey, P. J. Protein lipidation in cell signaling. Science 268, 221–224 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Cheng, P. C., Dykstra, M. L., Mitchell, R. N. & Pierce, S. K. A role for lipid rafts in BCR signaling and antigen targeting. J. Exp. Med. 190, 1549–1560 (1999).First description of the association of the BCR with rafts after crosslinking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aman, M. J. & Ravichandran, K. S. A requirement for lipid rafts in B cell receptor induced Ca2+ flux. Curr. Biol. 10, 393–396 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Weintraub, B. C. et al. Entry of B cell receptor into signaling domains is inhibited in tolerant B cells. J. Exp. Med. 191, 1443–1448 (2000).Evidence that the BCR does not become raft associated in anergic B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Petrie, R. J., Schnetkamp, P. P. M., Patel, K. D., Awasthi-Kalia, M. & Deans, J. P. Transient translocation of the B cell receptor and Src homology 2 domain-containing inositol phosphatase to lipid rafts: evidence toward a role in calcium regulation. J. Immunol. 165, 1220–1227 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Zipfel, P. A. et al. The c-Abl tyrosine kinase is regulated downstream of the B cell receptor and interacts with CD19. J. Immunol. 165, 6872–6879 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Kawabuchi, M. et al. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 404, 999–1003 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Brdicka, T. et al. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase Csk and is involved in regulation of T cell activation. J. Exp. Med. 191, 1591–1604 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo, B., Kato, R. M., Garcia-Lloret, M., Wahl, M. I. & Rawlings, D. J. Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13, 243–253 (2000).Shows the constitutive presence of the pre-BCR in lipid rafts during development.

    Article  CAS  PubMed  Google Scholar 

  16. Cheng, P., Brown, B. K., Song, W. & Pierce, S. K. Translocation of the B cell antigen receptor into lipid rafts reveals a novel step in signaling. J. Immunol. 166, 3693–3701 (2001).Evidence that BCR signalling and the actin cytoskeleton are not required for BCR–raft association.

    Article  CAS  PubMed  Google Scholar 

  17. Langlet, C., Bernard, A.-M., Drevot, P. & He, H.-T. Membrane rafts and signaling by the multichain immune recognition receptors. Curr. Opin. Immunol. 12, 250–255 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Schutz, G. J., Kada, G., Pastushenko, V. P. & Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pralle, A., Keller, P., Florin, E.-L., Simons, K. & Horber, J. K. H. Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1007 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brown, D. A. & Jacobson, K. Microdomains, lipid rafts and caveolae. Traffic 2, 668–672 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Field, K. A., Holowka, D. & Baird, B. Structural aspects of the association of FcɛRI with detergent-resistant membranes. J. Biol. Chem. 274, 1753–1758 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. DeFranco, A. L. The complexity of signaling pathways activated by the BCR. Curr. Opin. Immunol. 9, 296–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Nussenzweig, M. C. Immune receptor editing: revise and select. Cell 95, 875–878 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Sproul, T. W., Malapati, S., Kim, J. & Pierce, S. K. B cell antigen receptor signaling occurs outside lipid rafts in immature B cells. J. Immunol. 165, 6020–6023 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Chung, J. B., Baumeister, M. A. & Monroe, J. G. Differential sequestration of plasma membrane-associated B cell antigen receptor in mature and immature B cells into glycosphingolipid-enriched domains. J. Immunol. 166, 736–740 (2001).References 25 and 26 provide evidence that the BCR in immature B cells does not stably associate with lipid rafts.

    Article  CAS  PubMed  Google Scholar 

  27. Saint-Ruf, C. et al. Different initiation of pre-TCR and γδTCR signaling. Nature 406, 524–527 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Ebert, P. J. R., Baker, J. F. & Punt, J. A. Immature CD4+CD8+ thymocytes do not polarize lipid rafts in response to TCR-mediated signals. J. Immunol. 165, 5435–5442 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Fearon, D. T. & Carroll, M. C. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu. Rev. Immunol. 18, 393–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Dempsey, P. W., Allison, M. E. D., Akkaraju, S., Goodnow, C. C. & Fearon, D. T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Cherukuri, A., Cheng, P. C., Sohn, H. W. & Pierce, S. K. The CD19/CD21 complex functions to prolong B cell antigen receptor signaling from lipid rafts. Immunity 14, 169–179 (2001).Provides evidence that the CD19–CD21 complex prolongs the residence of the BCR in rafts when ligated by complement-coupled antigens.

    Article  CAS  PubMed  Google Scholar 

  32. Ravetch, J. V. & Bolland, S. IgG Fc Receptors. Annu. Rev. Immunol. 19, 275–290 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Minskoff, S. A., Matter, K. & Mellman, I. FcγRII-B1 regulates the presentation of B cell receptor-bound antigens. J. Immunol. 161, 2079–2083 (1998).

    CAS  PubMed  Google Scholar 

  34. Wagle, N. M., Faassen, A. E., Kim, J. H. & Pierce, S. K. Regulation of BCR-mediated MHC class II antigen processing by FCγRIIB1. J. Immunol. 162, 2732 (1999).

    CAS  PubMed  Google Scholar 

  35. Pearse, R. N. et al. SHIP recruitment attenuates FcγRIIB-induced B cell apoptosis. Immunity 10, 753–760 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Aman, M. J., Tosello-Trampont, A. C. & Ravichandran, K. FcγRIIB1/SHIP-mediated inhibitory signaling in B cells involves lipid rafts. J Biol Chem. 276, 46371–46378 (2001).Shows that the FcγRIIB functions from within lipid rafts to block BCR signalling.

    Article  CAS  PubMed  Google Scholar 

  37. Bromley, S. K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Anderson, H. A., Hiltbold, E. M. & Roche, P. A. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nature Immunol. 1, 156–162 (2000).Describes the association of the MHC class II molecules with rafts.

    Article  CAS  Google Scholar 

  41. Huby, R. D. J., Dearman, R. J. & Kimber, I. Intracellular phosphotyrosine induction by major histocompatibility complex class II requires co-aggregation with membrane rafts. J. Biol. Chem. 274, 22591–22596 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Batista, F. D., Iber, D. & Neuberger, M. S. B cells acquire antigen from target cells after synapse formation. Nature 411, 489–494 (2001).Describes a membrane structure on B cells that is analogous to the T-cell immunological synapse.

    Article  CAS  PubMed  Google Scholar 

  43. Phee, H., Rodgers, W. & Coggeshall, K. M. Visualization of negative signaling in B cells by quantitative confocal microscopy. Mol. Cell. Biol. 21, 8615–8625 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taylor, R. B., Duffus, W. P. H., Raff, M. C. & de Petris, S. Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by anti-immunoglobulin antibody. Nature New Biology 233, 225–227 (1971). | ISI |

    Article  CAS  PubMed  Google Scholar 

  45. Krummel, M. F., Sjaastad, M. D., Wulfing, C. & Davis, M. M. Differential clustering of CD4 and CD3 during T cell recognition. Science 289, 1349–1352 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. von Haller, P. D., Donohoe, S., Goodlett, D. R., Aebersold, R. & Watts, D. Mass spectrometric characterization of proteins extracted from Jurkat T cell detergent-resistant membrane domains. Proteomics (in the press).

  47. Friedrichson, T. & Kurzchalla, T. V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Rickinson, A. B. & Kieff, E. in Fields Virology (eds Fields, B. N., Knipe, D. M. & Howley, P. M.) 2397–2446 (Lippincott–Raven, Philadelphia, 1996).

  49. Longnecker, R. & Miller, C. L. Regulation of Epstein–Barr virus latency by latent membrane protein 2. Trends Microbiol. 4, 38–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Caldwell, R. G., Wilson, J. B., Anderson, S. J. & Longnecker, R. Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9, 405–411 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Dykstra, M. L., Longnecker, R. & Pierce, S. K. Epstein–Barr virus co-opts lipid rafts to block the signaling and antigen transport functions of the BCR. Immunity 14, 57–67 (2001).Shows that the EBV-encoded gene product LMP2A constitutively resides in rafts and blocks BCR–raft association.

    Article  CAS  PubMed  Google Scholar 

  52. Higuchi, M., Izumi, K. M. & Kieff, E. Epstein–Barr virus latent-infection membrane proteins are palmitoylated and raft-associated: protein 1 binds to the cytoskeleton through TNF receptor cytoplasmic factors. Proc. Natl Acad. Sci. USA 98, 4675–4680 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, D., Liebowitz, D. & Kieff, E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43, 831–840 (1985).

    Article  CAS  PubMed  Google Scholar 

  54. Uchida, J. et al. Mimicry of CD40 signals by Epstein–Barr virus LMP1 in B lymphocyte responses. Science 286, 300–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Hostager, B. S., Catlett, I. M. & Bishop, G. A. Recruitment of CD40 and tumor necrosis factor receptor-associated factors 2 and 3 to membrane microdomains during CD40 signaling. J. Biol. Chem. 275, 15392–15398 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Kaykas, A., Worringer, K. & Sugden, B. CD40 and LMP-1 both signal from lipid rafts but LMP-1 assembles a distinct, more efficient signaling complex. EMBO J. 20, 2641–2654 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

Btk

c-Abl

CD154

CD19

CD21

CD22

CD40

CD45

Lyn

PAG

phospholipase Cγ2

SHIP

SHP1

Syk

TRAF3

Vav

FURTHER INFORMATION

B lymphocytes: receptors

antibody responses: development

Glossary

ITAM

Immunoreceptor tyrosine-based activation motif, which is present in the cytoplasmic domains of the BCR Igα–Igβ complex and becomes tyrosine phosphorylated by Lyn after BCR activation.

FLUORESCENCE RESONANCE ENERGY TRANSFER

A method to determine whether proteins are close to one another by measuring the loss of fluorescence anisotropy between fluorophores that are associated with the proteins.

SINGLE FLUOROPHORE TRACKING MICROSCOPY

A method to measure the lateral motion of a single fluorescently labelled molecule in the plasma membrane using single dye tracking. It yields information about the diffusion and dynamics of individual raft proteins and lipids.

PHOTONIC FORCE MICROSCOPY

A method to measure the local viscous drag of a single membrane protein using a laser trap. It yields information about the size and dynamics of individual rafts.

ANERGY

A state of non-reactivity in B cells that is induced by antigen exposure, commonly in immature B cells

ITIM

Immunoreceptor tyrosine-based inhibitory motif that is present in the cytoplasmic domain of several inhibitory receptors that become tyrosine phosphorylated and recruits the phosphatases SHP1 and SHIP.

GERMINAL CENTRE

A specialized microenvironment in lymph nodes and spleens that forms after antigenic stimulation and is a site of extensive B-cell proliferation and somatic hypermutation of the immunoglobulin genes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierce, S. Lipid rafts and B-cell activation. Nat Rev Immunol 2, 96–105 (2002). https://doi.org/10.1038/nri726

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri726

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing