HIGHLIGHTS

HIGHLIGHT ADVISORS

CEZMI AKDIS

SWISS INSTITUTE OF ALLERGY AND ASTHMA RESEARCH, SWITZERLAND

MARCO BAGGIOLINI

UNIVERSITA DELLA SVIZZERA ITALIANA, SWITZERLAND

BRUCE BEUTLER

SCRIPPS RESEARCH INSTITUTE, USA

ANDREW CHAN GENENTECH, INC., USA

ANNE COOKE

UNIVERSITY OF CAMBRIDGE, UK

JAMES DI SANTO

PASTEUR INSTITUTE, FRANCE

TASUKU HONJO

KYOTO UNIVERSITY, JAPAN

GARY KORETZKY UNIVERSITY OF PENNSYLVANIA, USA

CHARLES MACKAY

GARVAN INSTITUTE OF MEDICAL RESEARCH, AUSTRALIA

FIONA POWRIE

UNIVERSITY OF OXFORD, UK

CAETANO REIS E SOUSA IMPERIAL CANCER RESEARCH FUND. UK

ALAN SHER

NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES, USA

ANDREAS STRASSER

THE WALTER AND ELIZA HALL INSTITUTE, MELBOURNE, AUSTRALIA

ERIC VIVIER

CENTRE D'IMMUNOLOGIE DE MARSEILLE-LUMINY, FRANCE

IMMUNE REGULATION

Competitive success

Affinity maturation is a well-understood process by which the affinity of antibodies produced by B cells increases during an immune response. It has recently become evident that T-cell responses can also undergo affinity maturation - repeated exposure to antigen results in the development of an increasingly restricted T-cell repertoire consisting of T cells with greater affinity for antigen. Reporting in Nature Immunology, Kedl and colleagues now describe a mechanism for affinity maturation in T cells. High-affinity T cells successfully compete with low-affinity T cells by inducing the loss of peptide-MHC complexes from antigen-presenting cells (APCs), therefore reducing the likelihood of APC interaction with the low-affinity cells.

Competition between T cells was shown in vivo using transgenic T cells in adoptive-transfer experiments. T cells with the OT1 T-cell receptor (TCR) specific for an ovalbumin (OVA) peptide were transferred into non-transgenic animals, and the mice were challenged with dendritic cells (DCs) loaded with OVA. OVA-MHC tetramers were used to assess the response of the endogenous T cells ----the transferred OT1 T cells almost completely blocked the host T-cell response. The group then evaluated the ability of high- and low-affinity T cells, generated in vivo, to modulate host T-cell responses. C57BL/6 mice were challenged with OVA-expressing vaccinia virus and left to rest for 25 days to allow a memory response

to develop. Transfer of high-affinity T cells followed by challenge with OVA-pulsed DCs resulted in almost complete inhibition of the host T-cell response, but transfer of lowaffinity T cells produced much less inhibition. The competition between cells of the same peptide–MHC specificity was more efficient than competition between T cells with differing specificity.

Next, Kedl and colleagues examined whether removal of MHC-peptide complexes from the APC surface had a role in T-cell competition. DCs from GFP (green fluorescent protein) transgenic mice were pulsed with OVA and transferred intradermally into C57/BL6 mice. A monoclonal antibody was used to measure the amount of OVA-MHC expressed on DCs after transfer in the presence or absence of OT1 T cells. When OT1 T cells were co-transferred, expression of OVA–MHC on the DC surface decreased rapidly and was virtually undetectable after 48 hours.

These results support a model of T-cell competition that ensures the success of high-affinity T cells and improved immune responses. So, although current research emphasises the importance of APCs in controlling immune responses, it seems that the T cells themselves might have an important role.

Elaine Bell

References and links ORIGINAL RESEARCH PAPER Kedl, R. M., Schaefer, B. C., Kappler, J. W. & Marrack, P. T cells down-modulate peptide–MHC complexes on APCs in vivo. Nature Immunol. 3, 27-32 (2002)