Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The enemy within: keeping self-reactive T cells at bay in the periphery

Key Points

  • Thymic deletion clearly fails to eliminate all self-reactive T cells; therefore, peripheral tolerance mechanisms are required to prevent autoimmune disease.

  • Peripheral tolerance mechanisms can be subdivided into those that act directly on the responding T cell (T-cell intrinsic) and those with an indirect effect (T-cell extrinsic).

  • T-cell intrinsic mechanisms of tolerance to self-antigens include ignorance, anergy, phenotypic skewing and activation induced cell death.

  • T-cell extrinsic mechanisms of self-tolerance have received much recent press, and include control of the phenotype of the dendritic cell presenting self-antigen, and the involvement of regulatory T cells.

  • How infections might interfere with pathways of tolerance and permit induction of autoimmune disorders is an ongoing area of research.

Abstract

The remarkable capacity of the mammalian immune system to coordinate deadly attacks against numerous invading pathogens, yet turn a blind eye to self-tissues continues to fascinate immunologists. It has been clear for some time that immune cells capable of recognizing self-proteins exist in normal individuals without seemingly causing harm. The 'peripheral tolerance' mechanisms that keep these cells in check are the focus of intense research, not least because defects in these pathways might cause autoimmune diseases. In this review, new developments in our understanding of peripheral tolerance are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways to tolerance.
Figure 2: T-cell-intrinsic mechanisms of peripheral tolerance.
Figure 3: Role of dendritic cells in the choice between immunity and tolerance.
Figure 4: Links between infection and autoimmunity.

Similar content being viewed by others

References

  1. Arstila, T. P. et al. A direct estimate of the human αβT cell receptor diversity. Science 286, 958–961 (1999).

    CAS  PubMed  Google Scholar 

  2. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    CAS  PubMed  Google Scholar 

  3. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nature Immunol. 2, 1032–1039 (2001).

    CAS  Google Scholar 

  4. Lohmann, T., Leslie, R. D. & Londei, M. T cell clones to epitopes of glutamic acid decarboxylase 65 raised from normal subjects and patients with insulin-dependent diabetes. J. Autoimmun. 9, 385–389 (1996).

    CAS  PubMed  Google Scholar 

  5. Semana, G., Gausling, R., Jackson, R. A. & Hafler, D. A. T cell autoreactivity to proinsulin epitopes in diabetic patients and healthy subjects. J. Autoimmun. 12, 259–267 (1999).

    CAS  PubMed  Google Scholar 

  6. Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13, 829–840 (2000).

    CAS  PubMed  Google Scholar 

  7. Alferink, J. et al. Control of neonatal tolerance to tissue antigens by peripheral T cell trafficking. Science 282, 1338–1341 (1998).

    CAS  PubMed  Google Scholar 

  8. Zinkernagel, R. M. Immunology taught by viruses. Science 271, 173–178 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Kurts, C., Miller, J. F., Subramaniam, R. M., Carbone, F. R. & Heath, W. R. Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction. J. Exp. Med. 188, 409–414 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoglund, P. et al. Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J. Exp. Med.. 189, 331–339 (1999).Pancreatic, but not renal, antigen presentation is compromised in juvenile mice, probably explaining the delay in onset of disease in diabetes-prone mouse strains.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Andre, I. et al. Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc. Natl Acad. Sci. USA 93, 2260–2263 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jenkins, M. K. & Schwartz, R. H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 165, 302–319 (1987).

    CAS  PubMed  Google Scholar 

  13. Lane, P., Haller, C. & McConnell, F. Evidence that induction of tolerance in vivo involves active signaling via a B7 ligand-dependent mechanism: CTLA4–Ig protects Vβ8+ T cells from tolerance induction by the superantigen staphylococcal enterotoxin B. Eur. J. Immunol. 26, 858–862 (1996).

    CAS  PubMed  Google Scholar 

  14. Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

    CAS  PubMed  Google Scholar 

  15. Walunas, T. L., Bakker, C. Y. & Bluestone, J. A. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med. 183, 2541–2550 (1996).

    CAS  PubMed  Google Scholar 

  16. Perez, V. L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).

    CAS  PubMed  Google Scholar 

  17. Walunas, T. L. & Bluestone, J. A. CTLA-4 regulates tolerance induction and T cell differentiation in vivo. J. Immunol. 160, 3855–3860 (1998).

    CAS  PubMed  Google Scholar 

  18. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    CAS  PubMed  Google Scholar 

  19. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    CAS  PubMed  Google Scholar 

  20. Lechner, O. et al. Fingerprints of anergic T cells. Curr. Biol. 11, 587–595 (2001).

    CAS  PubMed  Google Scholar 

  21. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).Mice on a C57/BL6 background that lack PD-1 exhibit glomerulonephritis and arthritis that is exacerbated if the Fas pathway is also defective. Lymphocytic infiltration of multiple organs is observed in 2C TCR transgenic mice that lack PD–1.

    CAS  PubMed  Google Scholar 

  22. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    CAS  PubMed  Google Scholar 

  23. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Latchman, Y. et al. PD-L2 is a second ligand for PD-I and inhibits T cell activation. Nature Immunol. 2, 261–268 (2001).

    CAS  Google Scholar 

  25. Chambers, C. A. The expanding world of co-stimulation: the two-signal model revisited. Trends Immunol. 22, 217–223 (2001).

    CAS  PubMed  Google Scholar 

  26. Pape, K. A., Merica, R., Mondino, A., Khoruts, A. & Jenkins, M. K. Direct evidence that functionally impaired CD4+ T cells persist in vivo following induction of peripheral tolerance. J. Immunol. 160, 4719–4729 (1998).CD4+ OVA-specific TCR transgenic T cells persist in vivo for several months following tolerogenic administration of soluble OVA peptide.

    CAS  PubMed  Google Scholar 

  27. Young, D. A. et al. IL-4, IL-10, IL-13, and TGF-β from an altered peptide ligand- specific TH2 cell clone down-regulate adoptive transfer of experimental autoimmune encephalomyelitis. J. Immunol. 164, 3563–3572 (2000).

    CAS  PubMed  Google Scholar 

  28. Bradley, L. M. et al. Islet-specific TH1, but not TH2, cells secrete multiple chemokines and promote rapid induction of autoimmune diabetes. J. Immunol. 162, 2511–2520 (1999).

    CAS  PubMed  Google Scholar 

  29. Pakala, S. V., Kurrer, M. O. & Katz, J. D. T helper 2 (TH2) T cells induce acute pancreatitis and diabetes in immune-compromised nonobese diabetic (NOD) mice. J. Exp. Med. 186, 299–306 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Charles, P. C., Weber, K. S., Cipriani, B. & Brosnan, C. F. Cytokine, chemokine and chemokine receptor mRNA expression in different strains of normal mice: implications for establishment of a TH1/TH2 bias. J. Neuroimmunol. 100, 64–73 (1999).

    CAS  PubMed  Google Scholar 

  31. Chensue, S. W. et al. Aberrant in vivo T helper type 2 cell response and impaired eosinophil recruitment in CC chemokine receptor 8 knockout mice. J. Exp. Med. 193, 573–584 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kearney, E. R., Pape, K. A., Loh, D. Y. & Jenkins, M. K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    CAS  PubMed  Google Scholar 

  33. Walker, L. S. et al. Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J. Exp. Med. 190, 1115–1122 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ansel, K. M., McHeyzer-Williams, L. J., Ngo, V. N., McHeyzer-Williams, M. G. & Cyster, J. G. in vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Luther, S. A., Lopez, T., Bai, W., Hanahan, D. & Cyster, J. G. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 12, 471–481 (2000).

    CAS  PubMed  Google Scholar 

  36. Ishikawa, S. et al. Aberrant high expression of B lymphocyte chemokine (BLC/CXCL13) by C11b+CD11c+ dendritic cells in murine lupus and preferential chemotaxis of B1 cells towards BLC. J. Exp. Med. 193, 1393–1402 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).First direct evidence for a non-redundant role of the Fas pathway in maintaining self-tolerance.

    CAS  PubMed  Google Scholar 

  38. Sobel, E. S., Kakkanaiah, V. N., Cohen, P. L. & Eisenberg, R. A. Correction of gld autoimmunity by co-infusion of normal bone marrow suggests that gld is a mutation of the Fas ligand gene. Int. Immunol. 5, 1275–1278 (1993).

    CAS  PubMed  Google Scholar 

  39. Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).

    CAS  PubMed  Google Scholar 

  40. Fisher, G. H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    CAS  PubMed  Google Scholar 

  41. Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14, 523–534 (2001).

    CAS  PubMed  Google Scholar 

  42. Chen, W. et al. Requirement for transforming growth factor β1 in controlling T cell apoptosis. J. Exp. Med. 194, 439–454 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lenardo, M. J. Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature 353, 858–861 (1991).

    CAS  PubMed  Google Scholar 

  44. Van Parijs, L. et al. Functional responses and apoptosis of CD25 (IL-2Rα)-deficient T cells expressing a transgenic antigen receptor. J. Immunol. 158, 3738–3745 (1997).

    CAS  PubMed  Google Scholar 

  45. Van Parijs, L. et al. Uncoupling IL-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity 11, 281–288 (1999).

    CAS  PubMed  Google Scholar 

  46. Refaeli, Y., Van Parijs, L., London, C. A., Tschopp, J. & Abbas, A. K. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8, 615–623 (1998).

    CAS  PubMed  Google Scholar 

  47. Sadlack, B. et al. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur. J. Immunol. 25, 3053–3059 (1995).

    CAS  PubMed  Google Scholar 

  48. Willerford, D. M. et al. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530 (1995).

    CAS  PubMed  Google Scholar 

  49. Malek, T. R., Porter, B. O., Codias, E. K., Scibelli, P. & Yu, A. Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors. J. Immunol. 164, 2905–2914 (2000).

    CAS  PubMed  Google Scholar 

  50. Singer, G. G. & Abbas, A. K. The fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1, 365–371 (1994).In vivo peptide administration induces thymic deletion even in the absence of Fas signalling, but peripheral T-cell deletion is impaired.

    CAS  PubMed  Google Scholar 

  51. Mogil, R. J. et al. Fas (CD95) participates in peripheral T cell deletion and associated apoptosis in vivo. Int. Immunol. 7, 1451–1458 (1995).

    CAS  PubMed  Google Scholar 

  52. Ettinger, R. et al. Fas ligand-mediated cytotoxicity is directly responsible for apoptosis of normal CD4+ T cells responding to a bacterial superantigen. J. Immunol. 154, 4302–4308 (1995).

    CAS  PubMed  Google Scholar 

  53. Hildeman, D. A. et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735–744 (1999).

    CAS  PubMed  Google Scholar 

  54. Van Parijs, L., Peterson, D. A. & Abbas, A. K. The Fas/Fas ligand pathway and Bcl-2 regulate T cell responses to model self and foreign antigens. Immunity 8, 265–274 (1998).

    CAS  PubMed  Google Scholar 

  55. Janeway, C. A. Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13, 11–16 (1992).

    CAS  PubMed  Google Scholar 

  56. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).Cloning and characterization of a human homologue of the Drosophila Toll protein that can activate the NF-κB pathway.

    CAS  PubMed  Google Scholar 

  57. Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    CAS  PubMed  Google Scholar 

  58. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    CAS  PubMed  Google Scholar 

  59. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    CAS  PubMed  Google Scholar 

  60. Basu, S., Binder, R. J., Suto, R., Anderson, K. M. & Srivastava, P. K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol. 12, 1539–1546 (2000).

    CAS  PubMed  Google Scholar 

  61. Kurts, C. et al. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J. Exp. Med. 184, 923–930 (1996).First demonstration of how tissue-associated antigens, which are not accessible to recirculating T cells, can be presented by bone-marrow-derived APCs to CD8 T cells in the context of MHC class I.

    CAS  PubMed  Google Scholar 

  62. Adler, A. J. et al. CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. J. Exp. Med. 187, 1555–1564 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kurts, C., Cannarile, M., Klebba, I. & Brocker, T. Dendritic cells are sufficient to cross-present self-antigens to CD8 T cells in vivo. J. Immunol. 166, 1439–1442 (2001).

    CAS  PubMed  Google Scholar 

  64. Hirao, M. et al. CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: critical role in migration from the tumor site to draining lymph nodes. Cancer Res. 60, 2209–2217 (2000).

    CAS  PubMed  Google Scholar 

  65. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med. 5, 1249–1255 (1999).

    CAS  PubMed  Google Scholar 

  66. Sauter, B. et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang, F. P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Inaba, K. et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J. Exp. Med. 188, 2163–2173 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Thery, C. et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein HSC 73. J. Cell Biol. 147, 599–610 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193, 233–238 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184, 387–396 (1996).Removal of the thymus at day 3 after birth eliminates the regulatory CD4+CD25+ cell subset from the periphery and is associated with onset of autoimmunity that can be prevented by inoculation with CD25+ cells from normal mice.

    CAS  PubMed  Google Scholar 

  72. Thornton, A. M. & Shevach, E. M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol. 164, 183–190 (2000).

    CAS  PubMed  Google Scholar 

  73. Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuniyasu, Y. et al. Naturally anergic and suppressive CD25+CD4+ T cells as a functionally and phenotypically distinct immunoregulatory T cell subpopulation. Int. Immunol. 12, 1145–1155 (2000).

    CAS  PubMed  Google Scholar 

  75. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    CAS  PubMed  Google Scholar 

  76. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Greenwald, R. J., Boussiotis, V. A., Lorsbach, R. B., Abbas, A. K. & Sharpe, A. H. CTLA-4 regulates induction of anergy in vivo. Immunity 14, 145–155 (2001).

    CAS  PubMed  Google Scholar 

  79. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    CAS  PubMed  Google Scholar 

  80. Wakkach, A., Cottrez, F. & Groux, H. Differentiation of regulatory T cells 1 is induced by CD2 costimulation. J. Immunol. 167, 3107–3113 (2001).

    CAS  PubMed  Google Scholar 

  81. Groux, H., Bigler, M., de Vries, J. E. & Roncarolo, M. G. Inhibitory and stimulatory effects of IL-10 on human CD8+ T cells. J. Immunol. 160, 3188–3193 (1998).

    CAS  PubMed  Google Scholar 

  82. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A. H. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Powrie, F., Carlino, J., Leach, M. W., Mauze, S. & Coffman, R. L. A critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlow CD4+ T cells. J. Exp. Med. 183, 2669–2674 (1996).Colitis induced by CD45RBhi cells in SCID mice is prevented by co-transfer of CD45RBlow cells: IL-10 and TGF-β are required for this effect.

    CAS  PubMed  Google Scholar 

  84. Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190, 995–1004 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Quinn, A. et al. Regulatory and effector CD4 T cells in nonobese diabetic mice recognize overlapping determinants on glutamic acid decarboxylase and use distinct Vβ genes. J. Immunol. 166, 2982–2991 (2001).

    CAS  PubMed  Google Scholar 

  86. Miller, S. D. et al. Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading. Nature Med. 3, 1133–1136 (1997).

    CAS  PubMed  Google Scholar 

  87. Zhao, Z. S., Granucci, F., Yeh, L., Schaffer, P. A. & Cantor, H. Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science 279, 1344–1347 (1998).

    CAS  PubMed  Google Scholar 

  88. Bachmaier, K. et al. Chlamydia infections and heart disease linked through antigenic mimicry. Science 283, 1335–1339 (1999).

    CAS  PubMed  Google Scholar 

  89. Hemmer, B. et al. Predictable TCR antigen recognition based on peptide scans leads to the identification of agonist ligands with no sequence homology. J. Immunol. 160, 3631–3636 (1998).

    CAS  PubMed  Google Scholar 

  90. Hiemstra, H. S. et al. Quantitative determination of TCR cross-reactivity using peptide libraries and protein databases. Eur. J. Immunol. 29, 2385–2391 (1999).

    CAS  PubMed  Google Scholar 

  91. Steere, A. C., Gross, D., Meyer, A. L. & Huber, B. T. Autoimmune mechanisms in antibiotic treatment-resistant lyme arthritis. J. Autoimmun. 16, 263–268 (2001).

    CAS  PubMed  Google Scholar 

  92. Gautam, A. M., Liblau, R., Chelvanayagam, G., Steinman, L. & Boston, T. A viral peptide with limited homology to a self peptide can induce clinical signs of experimental autoimmune encephalomyelitis. J. Immunol. 161, 60–64 (1998).

    CAS  PubMed  Google Scholar 

  93. Panoutsakopoulou, V. et al. Analysis of the relationship between viral infection and autoimmune disease. Immunity 15, 137–147 (2001).

    CAS  PubMed  Google Scholar 

  94. Keffer, J. et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 10, 4025–4031 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Horwitz, M. S. et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nature Med. 4, 781–785 (1998).

    CAS  PubMed  Google Scholar 

  96. Ehl, S. et al. Viral and bacterial infections interfere with peripheral tolerance induction and activate CD8+ T cells to cause immunopathology. J. Exp. Med. 187, 763–774 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Shi, F. D. et al. Natural killer cells determine the outcome of B cell-mediated autoimmunity. Nature Immunol. 1, 245–251 (2000).

    CAS  Google Scholar 

  98. Gombert, J. M. et al. Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur. J. Immunol. 26, 2989–2998 (1996).

    CAS  PubMed  Google Scholar 

  99. Lehuen, A. et al. Overexpression of natural killer T cells protects Vα14-Jα281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188, 1831–1839 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, B., Geng, Y. B. & Wang, C. R. CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J. Exp. Med. 194, 313–320 (2001).

    PubMed  PubMed Central  Google Scholar 

  101. Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol. 2, 301–306 (2001).

    CAS  Google Scholar 

  102. Bensinger, S. J., Bandeira, A., Jordan, M. S., Caton, A. J. & Laufer, T. M. Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+25+ immunoregulatory T cells. J. Exp. Med. 194, 427–438 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kumanogoh, A. et al. Increased T cell autoreactivity in the absence of CD40–CD40 ligand interactions: a role of CD40 in regulatory T cell development. J. Immunol. 166, 353–360 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Krummel, L. Kane and A. Chodos for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy S.K. Walker.

Related links

Related links

DATABASES

LocusLink

CD2

CD25

CD28

CD58

CD80

CD86

CD95

CD178

CTLA-4

CXCL13

CXCR5

FLIP

GAD

IL-2

IL-2 receptor

IL-10

PD-1

Pten

Stat5

TGF-β

Tlr4

OMIM

autoimmune lymphoproliferative syndrome

multiple sclerosis

FURTHER INFORMATION

Abul Abbas's lab

autoimmune disease

dendritic cells (T lymphocyte stimulating)

immunological tolerance: mechanisms

Glossary

PERIPHERAL TOLERANCE

Control of self-reactive T cells in the periphery.

CENTRAL TOLERANCE

Deletion of self-reactive T cells in the thymus.

ANERGY

State of unresponsiveness to antigen.

ACTIVATION-INDUCED CELL DEATH

(AICD). Pathway of T-cell suicide often involving upregulation of Fas ligand that binds to the death receptor Fas.

SUPERANTIGEN

Protein that binds to and activates all T cells that express a particular set of Vβ T-cell receptor genes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, L., Abbas, A. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2, 11–19 (2002). https://doi.org/10.1038/nri701

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri701

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing