Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How leukocytes cross the vascular endothelium

Key Points

  • Immune responses depend on the ability of leukocytes to move from the circulation into tissues. Leukocyte extravasation is guided and controlled by endothelial cells that capture circulating leukocytes and open a path for diapedesis.

  • Regulation of integrin-mediated adhesion controls the slowing down of leukocyte rolling, leukocyte arrest, crawling and migration through the blood vessel wall. Each of these cellular functions is tightly regulated and depends on different extracellular factors and binding partners with varying signalling requirements.

  • A central step in the diapedesis process involves a mechanism that stimulates the opening of endothelial cell junctions, which depends on regulating the function of VE-cadherin. An alternative, although less common, pathway is the transcellular route through endothelial cells.

  • The diapedesis process involves many functions of leukocytes and endothelial cells, from stopping intraluminal crawling at suitable exit sites to loosening of endothelial cell contacts, preventing plasma leakage, extending the membrane surface area at endothelial cell junctions, active leukocyte migration through the junctional cleft, preventing reverse transmigration and sealing of the junction after diapedesis.

  • After crossing the endothelial barrier, leukocytes crawl along pericytes to reach preferential sites of exit through the basement membrane that are characterized by low levels of expression of certain protein components.

  • Understanding the process of leukocyte diapedesis in more detail will help to identify molecular targets, to interfere with various inflammatory processes.

Abstract

Immune responses depend on the ability of leukocytes to move from the circulation into tissue. This is enabled by mechanisms that guide leukocytes to the right exit sites and allow them to cross the barrier of the blood vessel wall. This process is regulated by a concerted action between endothelial cells and leukocytes, whereby endothelial cells activate leukocytes and direct them to extravasation sites, and leukocytes in turn instruct endothelial cells to open a path for transmigration. This Review focuses on recently described mechanisms that control and open exit routes for leukocytes through the endothelial barrier.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The multistep cascade of leukocyte extravasation.
Figure 2: Adhesion receptors function sequentially during leukocyte diapedesis.
Figure 3: Signalling steps that initiate the opening of endothelial cell junctions and regulate leukocyte diapedesis.

Similar content being viewed by others

References

  1. McEver, R. P. Selectins: initiators of of leukocyte adhesion and signalling at the vascular wall. Cardiovasc. Res. 107, 331–339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vestweber, D. & Blanks, J. E. Mechanisms that regulate the function of the selectins and their ligands. Physiol. Rev. 79, 181–213 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Sundd, P. et al. 'Slings' enable neutrophil rolling at high shear. Nature 488, 399–403 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alon, R. & Feigelson, S. W. Chemokine-triggered leukocyte arrest: force-regulated bi-directional integrin activation in quantal adhesive contacts. Curr. Opin. Cell Biol. 24, 670–676 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. van Buul, J. D., Kanters, E. & Hordijk, P. L. Endothelial signaling by Ig-like cell adhesion molecules. Arterioscler. Thromb. Vasc. Biol. 27, 1870–1876 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Muller, W. A. The role of PECAM-1 (CD31) in leukocyte emigration: studies in vitro and in vivo. J. Leukoc. Biol. 57, 523–528 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Nourshargh, S., Krombach, F. & Dejana, E. The role of JAM-A and PECAM-1 in modulating leukocyte infiltration in inflamed and ischemic tissues. J. Leukoc. Biol. 80, 714–718 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Wegmann, F. et al. ESAM supports neutrophil extravasation, activation of Rho and VEGF-induced vascular permeability. J. Exp. Med. 203, 1671–1677 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schenkel, A. R., Mamdouh, Z., Chen, X., Liebman, R. M. & Muller, W. A. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat. Immunol. 3, 143–150 (2002). This is the first study to show that paracellular diapedesis is mediated by sequential steps.

    Article  CAS  PubMed  Google Scholar 

  10. Reymond, N. et al. DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J. Exp. Med. 199, 1331–1341 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nourshargh, S., Hordijk, P. L. & Sixt, M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat. Rev. Mol. Cell Biol. 11, 366–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Campbell, I. D. & Humphries, M. J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 3, a004994 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Herter, J. & Zarbock, A. Integrin regulation during leukocyte recruitment. J. Immunol. 190, 4451–4457 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Luo, B. H., Carman, C. V. & Springer, T. A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moser, M., Legate, K. R., Zent, R. & Fässler, R. The tail of integrins, talin, and kindlins. Science 324, 895–899 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Abram, C. L. & Lowell, C. A. The ins and outs of leukocyte integrin signaling. Annu. Rev, Immunol. 27, 399–362 (2009).

    Article  CAS  Google Scholar 

  17. Zarbock, A., Ley, K., McEver, R. P. & Hidalgo, A. Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood 118, 6743–6751 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuwano, Y., Spelten, O., Zhang, H., Ley, K. & Zarbock, A. Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils. Blood 116, 617–624 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lefort, C. T. et al. Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood 119, 4275–4282 (2012). This study shows that activation of the integrin LFA1 to the intermediate-affinity conformation, which supports slow leukocyte rolling, requires only the binding of talin, whereas activation to the high-affinity conformation requires binding of talin and kindlin 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yago, T. et al. Blocking neutrophil integrin activation prevents ischemia-reperfusion injury. J. Exp. Med. 212, 1267–1281 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi, E. Y. et al. Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science 322, 1101–1104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choi, E. Y. et al. Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination. Mol. Psychiatry 20, 880–888 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kempf, T. et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat. Med. 17, 581–588 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Phillipson, M. et al. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J. Exp. Med. 203, 2569–2575 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Halai, K., Whiteford, J., Ma, B., Nourshargh, S. & Woodfin, A. ICAM-2 facilitates luminal interactions between neutrophils and endothelial cells in vivo. J. Cell Sci. 127, 620–629 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Sumagin, R., Prizant, H., Lomakina, E., Waugh, R. E. & Sarelius, I. H. LFA-1 and Mac-1 define characteristically different intralumenal crawling and emigration patterns for monocytes and neutrophils in situ. J. Immunol. 185, 7057–7066 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Carlin, L. M. et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 153, 362–375 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bartholomäus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Barreiro, O. et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J. Cell Biol. 157, 1233–1245 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carman, C. V. & Springer, T. A. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J. Cell Biol. 167, 377–388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carman, C. V. et al. Transcellular diapedesis is initiated by invasive podosomes. Immunity 26, 784–797 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Buul, J. D. et al. RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J. Cell Biol. 178, 1279–1293 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shaw, S. K. et al. Coordinated redistribution of leukocyte LFA-1 and endothelial cell ICAM-1 accompany neutrophil transmigration. J. Exp. Med. 200, 1571–1580 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, L. et al. Endothelial cell cortactin coordinates intercellular adhesion molecule-1 clustering and actin cytoskeleton remodeling during polymorphonuclear leukocyte adhesion and transmigration. J. Immunol. 177, 6440–6449 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, L., Kowalski, J. R., Zhan, X., Thomas, S. M. & Luscinskas, F. W. Endothelial cell cortactin phosphorylation by Src contributes to polymorphonuclear leukocyte transmigration in vitro. Circ. Res. 98, 394–402 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Schnoor, M. et al. Cortactin deficiency is associated with reduced neutrophil recruitment but increased vascular permeability in vivo. J. Exp. Med. 208, 1721–1735 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baluk, P., Bolton, P., Hirata, A., Thurston, G. & McDonald, D. M. Endothelial gaps and adherent leukocytes in allergen-induced early- and late-phase plasma leakage in rat airways. Am. J. Pathol. 152, 1463–1476 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. He, P. Leukocyte/endothelium intercations and microvessel permeability: coupled or uncoupled? Cardiovasc. Res. 87, 281–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woodfin, A. et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat. Immunol. 12, 761–769 (2011). This paper visualizes for the first time leukocyte extravasation in vivo by 3D live imaging. It determines the numbers of paracellular and transcellular diapedesing neutrophils and demonstrates that the lack of JAMC leads to reverse transmigration of neutrophils.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martin-Padura, I. et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol. 142, 117–127 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ostermann, G., Weber, K. S., Zernecke, A., Schroder, A. & Weber, C. JAM-1 is a ligand of the β2 integrin LFA-1 involved in transendothelial migration of leukocytes. Nat. Immunol. 3, 151–158 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Scott, D. W. et al. N-glycosylation controls the function of the junctional adhesion molecule-A. Mol. Biol. Cell 26, 3205–3214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khandoga, A. et al. Junctional adhesion molecule-A deficiency increases hepatic ischemia-reperfusion injury despite reduction of neutrophil transendothelial migration. Blood 106, 725–733 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Woodfin, A. et al. JAM-A mediates neutrophil transmigration in a stimulus-specific manner in vivo: evidence for sequential roles for JAM-A and PECAM-1 in neutrophil transmigration. Blood 110, 1848–1856 (2007). This study shows for the first time that two adhesion receptors function sequentially during neutrophil diapedesis in postcapillary venules.

    Article  CAS  PubMed  Google Scholar 

  46. Corada, M. et al. Junctional adhesion molecule-A-deficient polymorphonuclear cells show reduced diapedesis in peritonitis and heart ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 102, 10634–10639 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmitt, M. M. et al. Endothelial junctional adhesion molecule-a guides monocytes into flow-dependent predilection sites of atherosclerosis. Circulation 129, 66–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Zen, K. et al. JAM-C is a component of desmosomes and a ligand for CD11b/CD18-mediated neutrophil transepithelial migration. Mol. Biol. Cell 15, 3926–3937 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aurrand-Lions, M. et al. Junctional adhesion molecule-C regulates the early influx of leukocytes into tissues during inflammation. J. Immunol. 174, 6406–6415 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Colom, B. et al.Leukotriene B4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo. Immunity 42, 1075–1086 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nasdala, I. et al. A transmembrane tight junction protein selectively expressed on endothelial cells and platelets. J. Biol. Chem. 277, 16294–16303 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Conway, D. E. et al. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr. Biol. 23, 1024–1030 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Conway, D. E. & Schwartz, M. A. Mechanotransduction of shear stress occurs through changes in VE-cadherin and PECAM-1 tension: Implications for cell migration. Cell Adh. Migr. http://dx.doi.org/10.4161/19336918.2014.968498 (2014).

  54. Liao, F. et al. Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1. J. Exp. Med. 182, 1337–1343 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Wakelin, M. W. et al. An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. J. Exp. Med. 184, 229–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Liao, F., Ali, J., Greene, T. & Muller, W. A. Soluble domain 1 of platelet-endothelial cell adhesion molecule (PECAM) is sufficient to block transendothelial migration in vitro and in vivo. J. Exp. Med. 185, 1349–1357 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thompson, R. D. et al. Divergent effects of platelet-endothelial cell adhesion molecule-1 and β3 integrin blockade on leukocyte transmigration in vivo. J. Immunol. 165, 426–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Schenkel, A. R., Chew, T. W. & Muller, W. A. Platelet endothelial cell adhesion molecule deficiency or blockade significantly reduces leukocyte emigration in a majority of mouse strains. J. Immunol. 173, 6403–6408 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Woodfin, A. et al. Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A and PECAM-1. Blood 113, 6246–6257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bixel, G. et al. Mouse CD99 participates in T cell recruitment into inflamed skin. Blood 104, 3205–3213 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Dufour, E. M., Deroche, A., Bae, Y. & Muller, W. A. CD99 is essential for leukocyte diapedesis in vivo. Cell Commun. Adhes. 15, 351–363 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bixel, M. G. et al. A CD99-related antigen on endothelial cells mediates neutrophil but not lymphocyte extravasation in vivo. Blood 109, 5327–5336 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Schenkel, A. R., Dufour, E. M., Chew, T. W., Sorg, E. & Muller, W. A. The murine CD99-related molecule CD99-like 2 (CD99L2) is an adhesion molecule involved in the inflammatory response. Cell. Commun. Adhes. 14, 227–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Seelige, R. et al. Endothelial-specific gene ablation of CD99L2 impairs leukocyte extravasation in vivo. J. Immunol. 190, 892–896 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Stefanidakis, M., Newton, G., Lee, W. Y., Parkos, C. A. & Luscinskas, F. W. Endothelial CD47 interaction with SIRPγ is required for human T-cell transendothelial migration under shear flow conditions in vitro. Blood 112, 1280–1289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Azcutia, V. et al. Endothelial CD47 promotes vascular endothelial-cadherin tyrosine phosphorylation and participates in T cell recruitment at sites of inflammation in vivo. J. Immunol. 189, 2553–2562 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Sullivan, D. P., Seidman, M. A. & Muller, W. A. Poliovirus receptor (CD155) regulates a step in transendothelial migration between PECAM and CD99. Am. J. Pathol. 182, 1031–1042 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bixel, M. G. et al. CD99 and CD99L2 act at the same site as, but independently of, PECAM-1 during leukocyte diapedesis. Blood 116, 1172–1184 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Watson, R. L. et al. Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration. J. Exp. Med. 212, 1021–1041 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sorokin, L. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10, 712–723 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Gotsch, U. et al. VE-cadherin antibody accelerates neutrophil recruiment in vivo. J. Cell Sci. 110, 583–588 (1997).

    CAS  PubMed  Google Scholar 

  72. Schulte, D. et al. Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. EMBO J. 30, 4157–4170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shaw, S. K., Bamba, P. S., Perkins, B. N. & Luscinskas, F. W. Real-time imaging of vascular endothelial-cadherin during leukocyte transmigration across endothelium. J. Immunol. 167, 2323–2330 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Nawroth, R. et al. VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J. 21, 4885–4895 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nottebaum, A. F. et al. VE-PTP maintains the endothelial barrier via plakoglobin and becomes dissociated from VE-cadherin by leukocytes and by VEGF. J. Exp. Med. 205, 2929–2945 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vockel, M. & Vestweber, D. How T cells trigger the dissociation of the endothelial receptor phosphatase VE-PTP from VE-cadherin. Blood 122, 2512–2522 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Broermann, A. et al. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo. J. Exp. Med. 208, 2393–2401 (2011). This paper shows that preventing the dissociation of VE-PTP from VE-cadherin inhibits neutrophil extravasation and the induction of vascular permeability in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Allingham, M. J., van Buul, J. D. & Burridge, K. ICAM-1-mediated Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration. J. Immunol. 179, 4053–4064 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Turowski, P. et al. Phosphorylation of vascular endothelial cadherin controls lymphocyte emigration. J. Cell Sci. 121, 29–37 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Wessel, F. et al. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat. Immunol. 15, 223–230 (2014). This in vivo study shows that phosphorylation and dephosphorylation of two tyrosine residues of VE-cadherin selectively and exclusively regulate either vascular permeability induction or leukocyte diapedesis, respectively.

    Article  CAS  PubMed  Google Scholar 

  81. Laukoetter, M. G. et al. JAM-A regulates permeability and inflammation in the intestine in vivo. J. Exp. Med. 204, 3067–3076 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Muller, W. A. Mechanisms of leukocyte transendothelial migration. Annu. Rev. Pathol. 6, 323–344 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mamdouh, Z., Chen, X., Pierini, L. M., Maxfield, F. R. & Muller, W. A. Targeted recycling of PECAM from endothelial surface-connected compartments during diapedesis. Nature 421, 748–753 (2003). This paper proposes the existence of a novel PECAM1-containing intracellular multivesicular compartment in endothelial cells that facilitates leukocyte diapedesis.

    Article  CAS  PubMed  Google Scholar 

  84. Mamdouh, Z., Mikhailov, A. & Muller, W. A. Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment. J. Exp. Med. 206, 2795–2808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schoefl, G. I. The migration of lymphocytes across the vascular endothelium in lymphoid tissue. A reexamination. J. Exp. Med. 136, 568–588 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Feng, D., Nagy, J. A., Pyne, K., Dvorak, H. F. & Dvorak, A. M. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J. Exp. Med. 187, 903–915 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Millan, J. L. et al. Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat. Cell Biol. 8, 113–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Nieminen, M. et al. Vimentin function in lymphocyte adhesion and transcellular migration. Nat. Cell Biol. 8, 156–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Yang, L. et al. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-α-activated vascular endothelium under flow. Blood 106, 584–592 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stan, R. V., Ghitescu, L., Jacobson, B. S. & Palade, G. E. Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein. J. Cell Biol. 145, 1189–1198 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stan, R. V., Kubitza, M. & Palade, G. E. PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc. Natl Acad. Sci. USA 96, 13203–13207 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stan, R. V., Tkachenko, E. & Niesman, I. R. PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms. Mol. Biol. Cell 15, 3615–3630 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hallmann, R., Mayer, D. N., Berg, E. L., Broermann, R. & Butcher, E. C. Novel mouse endothelial cell surface marker is suppressed during differentiation of the blood brain barrier. Dev. Dyn. 202, 325–332 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Keuschnigg, J. et al. The prototype endothelial marker PAL-E is a leukocyte trafficking molecule. Blood 114, 478–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Rantakari, P. et al. The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Nat. Immunol. 16, 386–396 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Salmi, M. & Jalkanen, S. Ectoenzymes in leukocyte migration and their therapeutic potential. Semin. Immunopathol. 36, 163–176 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Salmi, M. & Jalkanen, S. Cell-surface enzymes in control of leukocyte trafficking. Nat. Rev. Immunol. 5, 760–771 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Rossi, E., Lopez-Novoa, J. M. & Bernabeu, C. Endoglin involvement in integrin-mediated cell adhesion as a putative pathogenic mechanism in hereditary hemorrhagic telangiectasia type 1 (HHT1). Front. Genet. 5, 457 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Rossi, E. et al. Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration. Blood 121, 403–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316, 295–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Schwab, S. R. & Cyster, J. G. Finding a way out: lymphocyte egress from lymphoid organs. Nat. Immunol. 8, 1295–1301 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Willinger, T., Ferguson, S. M., Pereira, J. P., De Camilli, P. & Flavell, R. A. Dynamin 2-dependent endocytosis is required for sustained S1PR1 signaling. J. Exp. Med. 211, 685–700 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kanda, H. et al. Autotaxin, an LPA-producing ecto-enzyme, promotes lymphocyte entry into secondary lymphoid organs. Nat. Immunol. 9, 415–423 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nakasaki, T. et al. Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions. Am. J. Pathol. 173, 1566–1576 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, Y., Chen, Y. C., Krummel, M. F. & Rosen, S. D. Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. J. Immunol. 189, 3914–3924 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Bai, Z. et al. Constitutive lymphocyte transmigration across the basal lamina of high endothelial venules is regulated by the autotaxin/lysophosphatidic acid axis. J. Immunol. 190, 2036–2048 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Chimen, M. et al. Homeostatic regulation of T cell trafficking by a B cell-derived peptide is impaired in autoimmune and chronic inflammatory disease. Nat. Med. 21, 467–475 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Semple, J. W., Italiano, J. E. J. & Freedman, J. Platelets and the immune continuum. Nat. Rev. Immunol. 11, 264–274 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Gleissner, C. A., von Hundelshausen, P. & Ley, K. Platelet chemokines in vascular disease. Arterioscler. Thromb. Vasc. Biol. 28, 1920–1927 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Karshovska, E. et al. Hyperreactivity of junctional adhesion molecule A-deficient platelets accelerates atherosclerosis in hyperlipidemic mice. Circ. Res. 116, 587–599 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Sreeramkumar, V. et al. Neutrophils scan for activated platelets to initiate inflammation. Science 346, 1234–1238 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Herzog, B. H. et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 502, 105–109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Goerge, T. et al. Inflammation induces hemorrhage in thrombocytopenia. Blood 111, 4958–4964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Boulaftali, Y. et al. Platelet ITAM signaling is critical for vascular integrity in inflammation. J. Clin. Invest. 123, 908–916 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hillgruber, C. et al. Blocking neutrophil diapedesis prevents hemorrhage during thrombocytopenia. J. Exp. Med. 212, 1255–1266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and how? Trends Cell Biol. 18, 560–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Manevich-Mendelson, E. et al. Loss of Kindlin-3 in LAD-III eliminates LFA-1 but not VLA-4 adhesiveness developed under shear flow conditions. Blood 114, 2344–2353 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Hyduk, S. J. et al. Talin-1 and kindlin-3 regulate α4β1 integrin-mediated adhesion stabilization, but not G protein-coupled receptor-induced affinity upregulation. J. Immunol. 187, 4360–4368 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Anderson, D. C. & Springer, T. A. Leukocyte adhesion deficiency:an inherited defect in Mac-1, LFA-1, and p150/95 glycoprotein. Ann. Rev. Med. 38, 175–192 (1987).

    Article  CAS  PubMed  Google Scholar 

  122. Etzioni, A. et al. Recurrent severe infections caused by a novel leukocyte adhesion deficiency. N. Engl. J. Med. 327, 1789–1792 (1992).

    Article  CAS  PubMed  Google Scholar 

  123. Luhn, K., Wild, M. K., Eckhardt, M., Gerardy-Schahn, R. & Vestweber, D. The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat. Genet. 28, 69–72 (2001).

    CAS  PubMed  Google Scholar 

  124. Lübke, T. et al. Complementation cloning identifies CDG-IIc (LADII), a new type of congenital disorders of glycosylation, as a GDP-fucose-transporter deficiency. Nature Genet. 28, 73–76 (2001).

    PubMed  Google Scholar 

  125. Kuijpers, T. W. et al. Leukocyte adhesion deficiency type 1 (LAD-1)/variant. J. Clin. Invest. 100, 1725–1733 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Svensson, L. et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat. Med. 15, 306–312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Moser, M. et al. Kindlin-3 is required for β2 integrin-mediated leukocyte adhesion to endothelial cells. Nat. Med. 15, 300–305 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Malinin, N. L. et al. A point mutation in Kindlin-3 ablates activation of three integrin subfamilies in humans. Nat. Med. 15, 313–318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Armulik, A., Genové, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Proebstl, D. et al. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J. Exp. Med. 209, 1219–1234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Voisin, M. B. & Nourshargh, S. Neutrophil transmigration: emergence of an adhesive cascade within venular walls. J. Innate Immunol. 5, 336–347 (2013).

    Article  CAS  Google Scholar 

  132. Wang, S. et al. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J. Exp. Med. 203, 1519–1532 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu, C. et al. Endothelial basement membrane laminin α5 selectively inhibits T lymphocyte extravasation into the brain. Nat. Med. 15, 519–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Pober, J. S. & Tellides, G. Participation of blood vessel cells in human adaptive immune responses. Trends Immunol. 33, 49–57 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Stark, K. et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and 'instruct' them with pattern-recognition and motility programs. Nat. Immunol. 14, 41–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Abtin, A. et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat. Immunol. 15, 45–53 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Larochelle, C. et al. Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain 135, 2906–2924 (2012).

    Article  PubMed  Google Scholar 

  138. Duan, H. et al. Targeting endothelial CD146 attenuates neuroinflammation by limiting lymphocyte extravasation to the CNS. Sci. Rep. 3, 1687 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Schneider-Hohendorf, T. et al. VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells. J. Exp. Med. 211, 1833–1846 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jin, S. et al. Nepmucin/CLM-9, an Ig domain-containing sialomucin in vascular endothelial cells, promotes lymphocyte transendothelial migration in vitro. FEBS Lett. 582, 3018–3024 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks A. Wintgens for help with the figures and acknowledges the Max Planck Society, the Deutsche Forschungsgemeinschaft (SFB629, SFB 1009 and SFB/TR 128) and the Cells-in-Motion (CiM) Excellence Cluster Münster for funding his research on this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Vestweber.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Pathogen-associated molecular patterns

(PAMPs). Microbial products that stimulate cells of the innate immune system by binding to an array of pattern-recognition receptors.

Damage-associated molecular patterns

(DAMPs). Molecules that are released by stressed and damaged cells and function as endogenous danger signals by promoting the innate immune response.

Pericytes

Perivascular cells that wrap around capillaries and venules throughout the organism.

Tight and adherens junctions

Intermingled junctions that form a belt of closely associated plasma membranes at cell contacts that regulate paracellular flux and cell contact stability between endothelial cells. The major components of these junctions are claudins, occludin, junctional adhesion molecules, endothelial cell-selective adhesion molecule and vascular endothelial cadherin.

Desmosomes

A type of junction that is found in epithelial and muscle cells, where intermediate filaments are linked to the plasma membrane. Although blood vessel endothelial cells do not contain classical desmosomes, they do express desmosomal cadherins.

Reverse transmigration

Transmigration of leukocytes in an abluminal-to-luminal direction under conditions of ischaemia–reperfusion injury.

Lateral border recycling compartment

(LBRC). An endothelial intracellular vesicle compartment that forms a membrane network just below the plasma membrane at regions of cell contact. Stimulation of PECAM1 has been suggested to trigger the recycling of this membrane compartment to the junctional surface, where the additional membrane surface may help to accommodate the diapedesing leukocyte.

Blood–brain barrier

The highly selective and tight barrier of the vascular wall of blood vessels of the brain that separates the circulating blood from the central nervous system.

Hereditary haemorrhagic telangiectasia

A multiorgan vascular dysplasia characterized by multiple arteriovenous malformations that lack an intervening capillary network.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vestweber, D. How leukocytes cross the vascular endothelium. Nat Rev Immunol 15, 692–704 (2015). https://doi.org/10.1038/nri3908

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3908

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing