Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synchronizing transcriptional control of T cell metabolism and function

Key Points

  • Naive, effector and memory T cells have distinct metabolic profiles that are crucial for their maintenance and function.

  • A complex network of immune cell-specific transcription factors, cytokines and canonical regulators of cellular metabolism regulate the diversity of effector and memory T cells.

  • The T cell receptor-dependent transcription factors interferon-regulatory factor 4 (IRF4) and MYC coordinately induce gene networks that are required for metabolic reprogramming and for sustaining aerobic glycolysis during periods of rapid clonal expansion.

  • Clonal competition and the selection of high-affinity T cell clones during a primary immune response are driven by metabolic fitness.

  • Common cytokine receptor γ-chain cytokines modulate metabolic profiles during effector and memory T cell differentiation and maintenance.

  • Immune cell-specific transcription factors sense and integrate metabolic signals with immunological cues to appropriately regulate adaptive immune responses.

Abstract

During an immune response, cytokines and transcription factors regulate the differentiation and function of effector and memory T cells. At the same time, T cell metabolism undergoes dynamic and differentiation-stage-specific changes that are required for initial T cell activation, rapid proliferation and the acquisition of effector functions. Similarly, during the resolution of an immune response, metabolic regulation is crucial for restraining inflammatory responses and promoting peripheral tolerance, and it is required for the long-term maintenance of memory T cells. T cell receptor (TCR)-induced transcription factors, in particular MYC and interferon-regulatory factor 4 (IRF4), cooperate with canonical nutrient-sensing pathways to integrate antigen-specific and metabolic signals to appropriately modulate adaptive immune responses. In this Review, we focus on the emerging evidence that T cell differentiation and metabolism are closely linked and synchronized by immune cell-specific cytokines and transcription factors that are induced by TCR signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clonal expansion and competition during immune responses is determined by IRF4 and the metabolic state of cells.
Figure 2: Immune cell-specific transcriptional regulators cooperate with canonical metabolic regulators during effector and memory T cell differentiation.

Similar content being viewed by others

References

  1. Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pollizzi, K. N. & Powell, J. D. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat. Rev. Immunol. 14, 435–446 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. MacIver, N. J., Michalek, R. D. & Rathmell, J. C. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31, 259–283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, R. & Green, D. R. Metabolic checkpoints in activated T cells. Nat. Immunol. 13, 907–915 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12, 325–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Finlay, D. & Cantrell, D. A. Metabolism, migration and memory in cytotoxic T cells. Nat. Rev. Immunol. 11, 109–117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O'Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamane, H. & Paul, W. E. Cytokines of the γC family control CD4+ T cell differentiation and function. Nat. Immunol. 13, 1037–1044 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carbone, F. R., Mackay, L. K., Heath, W. R. & Gebhardt, T. Distinct resident and recirculating memory T cell subsets in non-lymphoid tissues. Curr. Opin. Immunol. 25, 329–333 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang, J. T., Wherry, E. J. & Goldrath, A. W. Molecular regulation of effector and memory T cell differentiation. Nat. Immunol. 15, 1104–1115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brustle, A. et al. The development of inflammatory TH17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8, 958–966 (2007).

    Article  PubMed  CAS  Google Scholar 

  15. Staudt, V. et al. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33, 192–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Kwon, H. et al. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 31, 941–952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cretney, E. et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat. Immunol. 12, 304–311 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Man, K. et al. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat. Immunol. 14, 1155–1165 (2013). This study demonstrates that IRF4 regulates clonal expansion and effector function of CD8+ T cells. In particular, IRF4 was shown to be required for maintaining the expression of genes required of the glycolytic pathway and modulating the expression of key regulators of cellular metabolism, including FOXO1, HIF1α and PPARγ.

    Article  CAS  PubMed  Google Scholar 

  19. Yao, S. et al. Interferon regulatory factor 4 sustains CD8+ T cell expansion and effector differentiation. Immunity 39, 833–845 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Grusdat, M. et al. IRF4 and BATF are critical for CD8+ T-cell function following infection with LCMV. Cell Death Differ. 21, 1050–1060 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013). This study shows that aerobic glycolysis is directly required for efficient cytokine production by effector T cells by blocking glyceraldehyde 3-phosphate dehydrogenase (GAPDH)-mediated inhibition of Ifng and Il2 mRNA translation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blagih, J. et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42, 41–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Rolf, J. et al. AMPKα1: a glucose sensor that controls CD8 T-cell memory. Eur. J. Immunol. 43, 889–896 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lochner, M., Berod, L. & Sparwasser, T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 36, 81–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013). This study demonstrates that restricting glycolysis or the duration of glycolysis in effector T cells enhances memory T cell development and increases the expression of memory cell-specific transcription factors such as TCF7, LEF1 and BCL-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Efeyan, A. et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493, 679–683 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Dowling, R. J. et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328, 1172–1176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sancak, Y. et al. Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196–1208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955–968 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Brugarolas, J. et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 18, 2893–2904 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bernardi, R. et al. PML inhibits HIF-1α translation and neoangiogenesis through repression of mTOR. Nature 442, 779–785 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Li, Y. et al. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J. Biol. Chem. 282, 35803–35813 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and TReg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dang, E. V. et al. Control of TH17/TReg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011). References 41 and 42 demonstrate that signalling via mTORC1 and expression of HIF1α are required for T H 17 cell differentiation by promoting glycolytic activity. They further show that HIF1α directly binds to the Rorc locus (which encodes RORγt) to activate its transcription, while mediating FOXP3 protein degradation, thus stabilizing T H 17 cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Klotz, L. et al. The nuclear receptor PPAR γ selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J. Exp. Med. 206, 2079–2089 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015).

    Article  PubMed  Google Scholar 

  46. Harris, T. J. et al. Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol. 179, 4313–4317 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Semenza, G. L. Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, W. H. & Kim, S. G. AMPK-dependent metabolic regulation by PPAR agonists. PPAR Res. 2010, 549101 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Bensinger, S. J. & Tontonoz, P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454, 470–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Tontonoz, P., Nagy, L., Alvarez, J. G., Thomazy, V. A. & Evans, R. M. PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93, 241–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Kliewer, S. A. et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc. Natl Acad. Sci. USA 94, 4318–4323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pascual, G. et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ. Nature 437, 759–763 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jiang, C., Ting, A. T. & Seed, B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Yang, X. Y. et al. Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor γ (PPARγ) agonists. PPARγ co-association with transcription factor NFAT. J. Biol. Chem. 275, 4541–4544 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, L. H. et al. Transcriptional inactivation of STAT3 by PPARγ suppresses IL-6-responsive multiple myeloma cells. Immunity 20, 205–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Soroosh, P. et al. Oxysterols are agonist ligands of RORγt and drive TH17 cell differentiation. Proc. Natl Acad. Sci. USA 111, 12163–12168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiao, S. et al. Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity 40, 477–489 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, G., Yang, K., Burns, S., Shrestha, S. & Chi, H. The S1P1-mTOR axis directs the reciprocal differentiation of TH1 and TReg cells. Nat. Immunol. 11, 1047–1056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Procaccini, C. et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 33, 929–941 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish TReg-cell function. Nature 499, 485–490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vahl, J. C. et al. Continuous T cell receptor signals maintain a functional regulatory T cell pool. Immunity 41, 722–736 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14, 489–499 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rao, R. R., Li, Q., Gubbels Bupp, M. R. & Shrikant, P. A. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8+ T cell differentiation. Immunity 36, 374–387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, C. C. et al. FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev. Cell 18, 592–604 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, M. V., Ouyang, W., Liao, W., Zhang, M. Q. & Li, M. O. The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection. Immunity 39, 286–297 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Rao, R. R., Li, Q., Odunsi, K. & Shrikant, P. A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32, 67–78 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hess Michelini, R., Doedens, A. L., Goldrath, A. W. & Hedrick, S. M. Differentiation of CD8 memory T cells depends on Foxo1. J. Exp. Med. 210, 1189–1200 (2013). References 74 and 75 link the mTOR target and metabolic regulator FOXO1 with T-bet and EOMES in a pathway that influences the balance between effector and memory T cell differentiation.

    Article  PubMed  CAS  Google Scholar 

  76. Lucas, C. L. et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat. Immunol. 15, 88–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Shrestha, S. et al. Tsc1 promotes the differentiation of memory CD8+ T cells via orchestrating the transcriptional and metabolic programs. Proc. Natl Acad. Sci. USA 111, 14858–14863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pollizzi, K. N. et al. mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. J. Clin. Invest. 125, 2090–2108 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yang, K. et al. T cell exit from quiescence and differentiation into TH2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Busch, D. H. & Pamer, E. G. T cell affinity maturation by selective expansion during infection. J. Exp. Med. 189, 701–710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Malherbe, L., Hausl, C., Teyton, L. & McHeyzer-Williams, M. G. Clonal selection of helper T cells is determined by an affinity threshold with no further skewing of TCR binding properties. Immunity 21, 669–679 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Price, D. A. et al. Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses. J. Exp. Med. 202, 1349–1361 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Savage, P. A., Boniface, J. J. & Davis, M. M. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10, 485–492 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Wensveen, F. M. et al. Apoptosis threshold set by Noxa and Mcl-1 after T cell activation regulates competitive selection of high-affinity clones. Immunity 32, 754–765 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Zehn, D., Lee, S. Y. & Bevan, M. J. Complete but curtailed T-cell response to very low-affinity antigen. Nature 458, 211–214 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Teixeiro, E. et al. Different T cell receptor signals determine CD8+ memory versus effector development. Science 323, 502–505 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Smith-Garvin, J. E. et al. T-cell receptor signals direct the composition and function of the memory CD8+ T-cell pool. Blood 116, 5548–5559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Marchingo, J. M. et al. T cell signaling. Antigen affinity, costimulation, and cytokine inputs sum linearly to amplify T cell expansion. Science 346, 1123–1127 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011). This paper demonstrates that the transcription factor MYC directly regulates T cell proliferation by coordinating aspects of activation-induced metabolic reprogramming, including the coupling of glucose and glutamine metabolism with various biosynthetic pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Finlay, D. K. et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209, 2441–2453 (2012). This paper shows that IL-2, PDK1–AKT1–mTORC1 signalling and HIF1α are all required for inducing aerobic glycolysis following antigen recognition and that they promote the effector differentiation of CD8+ T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat. Immunol. 14, 1173–1182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nayar, R. et al. Graded levels of IRF4 regulate CD8+ T cell differentiation and expansion, but not attrition, in response to acute virus infection. J. Immunol. 192, 5881–5893 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Kurachi, M. et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat. Immunol. 15, 373–383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Glasmacher, E. et al. A genomic regulatory element that directs assembly and function of immune-specific AP-1–IRF complexes. Science 338, 975–980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ciofani, M. et al. A validated regulatory network for TH17 cell specification. Cell 151, 289–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, P. et al. BATF–JUN is critical for IRF4-mediated transcription in T cells. Nature 490, 543–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vasanthakumar, A. et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16, 276–285 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Chou, C. et al. c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nat. Immunol. 15, 884–893 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pastorino, J. G., Shulga, N. & Hoek, J. B. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem. 277, 7610–7618 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Majewski, N., Nogueira, V., Robey, R. B. & Hay, N. Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol. Cell. Biol. 24, 730–740 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Zhao, Y. et al. Glucose metabolism attenuates p53 and Puma-dependent cell death upon growth factor deprivation. J. Biol. Chem. 283, 36344–36353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Rathmell, J. C. et al. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol. Cell. Biol. 23, 7315–7328 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yamaguchi, H. & Wang, H. G. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 20, 7779–7786 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Alves, N. L. et al. The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 24, 703–716 (2006). This study indicates that under conditions of glucose limitation, levels of the pro-survival molecule MCL1 decline and the activity of interacting BH3-only protein NOXA confers susceptibility to apoptosis in activated T cells. MCL1 levels could be restored by the addition of glucose, demonstrating that proteins involved in regulating cell death are sensitive to metabolic signals.

    Article  CAS  PubMed  Google Scholar 

  108. Pierson, W. et al. Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells. Nat. Immunol. 14, 959–965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rochman, Y., Spolski, R. & Leonard, W. J. New insights into the regulation of T cells by γC family cytokines. Nat. Rev. Immunol. 9, 480–490 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim, M. T. & Harty, J. T. Impact of inflammatory cytokines on effector and memory CD8+ T cells. Frontiers Immunol. 5, 295 (2014).

    Google Scholar 

  111. Liao, W., Lin, J. X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kalia, V. et al. Prolonged interleukin-2Rα expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32, 91–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Pipkin, M. E. et al. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32, 79–90 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Williams, M. A., Tyznik, A. J. & Bevan, M. J. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441, 890–893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Takemoto, N., Intlekofer, A. M., Northrup, J. T., Wherry, E. J. & Reiner, S. L. Cutting edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation. J. Immunol. 177, 7515–7519 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Macintyre, A. N. et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 34, 224–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schluns, K. S. & Lefrancois, L. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 3, 269–279 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. O'Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014). References 121 and 122 demonstrate that the memory-promoting cytokine IL-15 is involved in inducing the expression of genes that are required for promoting mitochondrial biogenesis, fatty acid transport, de novo FAS and FAO that promote the maintenance and longevity of memory T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wofford, J. A., Wieman, H. L., Jacobs, S. R., Zhao, Y. & Rathmell, J. C. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 111, 2101–2111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jacobs, S. R. et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180, 4476–4486 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Cui, G. et al. IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell 161, 750–761 (2015). This recent study shows that IL-7 is required for inducing the expression of the glycerol transporter aquaporin 9 and triacylglycerol synthases. It further demonstrates that the synthesis of triacylglycerols, glycerol and free fatty acids is an important source of neutral lipids and is required for the survival of CD8+ memory T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cui, W., Liu, Y., Weinstein, J. S., Craft, J. & Kaech, S. M. An interleukin-21–interleukin-10–STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity 35, 792–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Siegel, A. M. et al. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35, 806–818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gough, D. J. et al. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324, 1713–1716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wegrzyn, J. et al. Function of mitochondrial Stat3 in cellular respiration. Science 323, 793–797 (2009). References 128 and 129 demonstrate that the transcription factor STAT3, which is important for memory T cell differentiation, has functions outside of classical transcriptional regulation and can be found in the mitochondria, where it regulates the function of complexes I and II of the electron transport chain and OXPHOS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Laplante, M. & Sabatini, D. M. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126, 1713–1719 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Powell, J. D. & Delgoffe, G. M. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 33, 301–311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue TReg cells. Nature 486, 549–553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cunard, R. et al. Regulation of cytokine expression by ligands of peroxisome proliferator activated receptors. J. Immunol. 168, 2795–2802 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Reilly, C. M. et al. Inhibition of mesangial cell nitric oxide in MRL/lpr mice by prostaglandin J2 and proliferator activation receptor-γ agonists. J. Immunol. 164, 1498–1504 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Chung, S. W., Kang, B. Y. & Kim, T. S. Inhibition of interleukin-4 production in CD4+ T cells by peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands: involvement of physical association between PPAR-γ and the nuclear factor of activated T cells transcription factor. Mol. Pharmacol. 64, 1169–1179 (2003). References 133–135 suggest an important link between PPARγ-mediated regulation of lipid metabolism and the inhibition of inflammatory gene expression and cytokine production by CD4+ T cells.

    Article  CAS  PubMed  Google Scholar 

  136. Ichii, H. et al. Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nat. Immunol. 3, 558–563 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Oestreich, K. J. et al. Bcl-6 directly represses the gene program of the glycolysis pathway. Nat. Immunol. 15, 957–964 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. van Grevenynghe, J. et al. Transcription factor FOXO3a controls the persistence of memory CD4+ T cells during HIV infection. Nature Med. 14, 266–274 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Staron, M. M. et al. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8+ T cells during chronic infection. Immunity 41, 802–814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Eguchi, J. et al. Transcriptional control of adipose lipid handling by IRF4. Cell. Metabolism 13, 249–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kong, X. et al. IRF4 is a key thermogenic transcriptional partner of PGC-1α. Cell 158, 69–83 (2014). References 142 and 143 show that IRF4 — which is typically considered to be a haematopoietic cell-specific transcriptional regulator — regulates lipid metabolism in adipocytes and is crucial for the thermogenic capacity of brown adipose tissue in response to environmental cold via cooperative transcriptional binding with PPARγ coactivator 1α (PGC1α).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ortega-Molina, A. et al. Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab. 15, 382–394 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. LaPensee, C. R., Lin, G., Dent, A. L. & Schwartz, J. Deficiency of the transcriptional repressor B cell lymphoma 6 (Bcl6) is accompanied by dysregulated lipid metabolism. PloS ONE 9, e97090 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Eijkelenboom, A. & Burgering, B. M. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14, 83–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Kallies laboratory for their various inputs. This work was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (A.K.), by fellowships from the Sylvia and Charles Viertel Foundation (A.K.) and the Victoria Cancer Council (K.M.), and by the Victorian State Government Operational Infrastructure Support and Australian Government NHMRC Independent Research Institute Infrastructure Support scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Kallies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Catabolic state

A state of metabolism characterized by the breakdown of complex substances into simpler ones, which is often accompanied by ATP production. Examples include the oxidation of fatty acids and amino acids.

Anabolic state

A state of metabolism characterized by chemical reactions that build complex molecules from simpler units, consuming energy in the process.

Oxidative phosphorylation

A two-step metabolic pathway that produces ATP from the oxidation of nutrients and the transfer of electrons. First, pyruvate and fatty acids are converted into acetyl-CoA, which enters the tricarboxylic acid cycle, yielding free electrons carried by NADH and FADH2. Second, the electrons enter the electron transport chain, resulting in the movement of protons out of the mitochondrial matrix and the synthesis of ATP.

Fatty acid oxidation

(FAO). An important metabolic process used to derive energy through the mobilization and oxidation of fatty acids, mainly in the mitochondrial matrix. FAO is positively and negatively regulated by AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), respectively.

Glycolysis

Oxygen-independent metabolism of glucose and other sugars into pyruvate to produce energy in the form of ATP and intermediate substrates for other metabolic pathways. When combined with oxygen-dependent enzyme reactions, a more complete breakdown occurs, producing more energy.

Glutaminolysis

A series of biochemical reactions in which the amino acid glutamine is degraded to glutamate and then to α-ketoglutarate for further metabolism in the tricarboxylic acid cycle.

mTOR complex 1

(mTORC1). A complex consisting of: mammalian target of rapamycin (mTOR), which is a serine/threonine kinase; regulatory-associated protein of mTOR (RAPTOR); proline-rich AKT1 substrate of 40 kDa (PRAS40), which is an mTORC1 inhibitor; mLST8 (also known as GβL), which is of unknown function; and DEP domain-containing mTOR-interacting protein (DEPTOR), which is an mTOR inhibitor.

Tricarboxylic acid cycle

Also known as Krebs cycle. Acetyl-CoA derived from glucose or fat breakdown is further metabolized to generate reduced energy equivalents that are used by mitochondrial oxidative phosphorylation to generate ATP.

Oxysterols

Natural molecules derived from cholesterol oxidation.

T cell exhaustion

A state in which effector T cells have an impaired ability to carry out their functions, such as cytotoxicity and cytokine secretion, owing to chronic stimulation by antigens. It is characterized by increased surface expression of inhibitory receptors such as programmed cell death protein 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man, K., Kallies, A. Synchronizing transcriptional control of T cell metabolism and function. Nat Rev Immunol 15, 574–584 (2015). https://doi.org/10.1038/nri3874

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3874

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing