Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Type I interferons in anticancer immunity

Key Points

  • The type I interferon (IFN) system involves a single form of IFNβ, several variants of IFNα and other less well-characterized IFNs, all of which signal via a heterodimeric IFNα/β receptor 1 (IFNAR1)–IFNAR2 receptor to transactivate IFN-stimulated genes (ISGs). IFNβ also promotes the transactivation of ISGs through homodimeric IFNAR1.

  • The secretion of type I IFNs is stimulated by viral constituents, as well as by danger signals emitted by dying cells, including nuclear and mitochondrial nucleic acids found at ectopic locations. The production of type I IFNs has marked antiviral and immunostimulatory effects.

  • Beyond their role in curtailing viral infection, type I IFNs play an essential part in natural cancer immunosurveillance, functioning both at the level of malignant cell precursors and through effects on the immune system. Thus, the knockout of Ifnar1 in mouse epithelial cells predisposes them to malignant transformation, as does the knockout of Ifnar1 in leukocytes, especially dendritic cells.

  • Type I IFN signalling is also essential for the full-blown efficacy of various anticancer agents, including chemotherapeutics (such as anthracyclines), antibodies that target growth factor receptors (such as human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR)), the injection of adjuvants and oncolytic virotherapy.

  • The expression levels of ISGs constitute a positive prognostic or predictive biomarker in patients affected by several cancers including melanoma and breast carcinoma. Recombinant type I IFNs have been successfully used for the treatment of various human neoplasms, particularly ulcerative melanoma, renal cell carcinoma and hepatitis B virus (HBV)-induced hepatocellular carcinoma.

  • Preclinical data identify four distinct approaches to improve the targeted delivery of type I IFNs to malignant lesions: first, fusing or linking recombinant type I IFNs to antibodies specific for tumour-associated surface antigens; second, engineering leukocytes or mesenchymal stem cells to express type I IFNs once they have infiltrated neoplastic lesions; third, injecting type I IFN-encoding vectors into the tumour mass; and fourth, supplying artificial ligands of type I IFN-stimulating pattern recognition receptors (PRRs).

Abstract

Type I interferons (IFNs) are known for their key role in antiviral immune responses. In this Review, we discuss accumulating evidence indicating that type I IFNs produced by malignant cells or tumour-infiltrating dendritic cells also control the autocrine or paracrine circuits that underlie cancer immunosurveillance. Many conventional chemotherapeutics, targeted anticancer agents, immunological adjuvants and oncolytic viruses are only fully efficient in the presence of intact type I IFN signalling. Moreover, the intratumoural expression levels of type I IFNs or of IFN-stimulated genes correlate with favourable disease outcome in several cohorts of patients with cancer. Finally, new anticancer immunotherapies are being developed that are based on recombinant type I IFNs, type I IFN-encoding vectors and type I IFN-expressing cells.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Contribution of type I IFNs to the efficacy of anticancer therapy.
Figure 2: Experimental targeting of type I IFNs to malignant lesions.

References

  1. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B 147, 258–267 (1957). In this report, type I IFN was described for the first time as a factor released by chick chorioallantoic membranes upon exposure to heat-inactivated influenza viruses, which could be used to interfere with the replication of live viruses of the same type.

    CAS  PubMed  Google Scholar 

  2. Trinchieri, G. Type I interferon: friend or foe? J. Exp. Med. 207, 2053–2063 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaur, S. & Platanias, L. C. IFN-β-specific signaling via a unique IFNAR1 interaction. Nat. Immunol. 14, 884–885 (2013).

    CAS  PubMed  Google Scholar 

  4. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    CAS  PubMed  Google Scholar 

  5. Hervas-Stubbs, S. et al. Direct effects of type I interferons on cells of the immune system. Clin. Cancer Res. 17, 2619–2627 (2011).

    CAS  PubMed  Google Scholar 

  6. de Weerd, N. A. et al. Structural basis of a unique interferon-β signaling axis mediated via the receptor IFNAR1. Nat. Immunol. 14, 901–907 (2013).

    CAS  PubMed  Google Scholar 

  7. McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O'Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015). This review provides a balanced and comprehensive overview of the role of type I IFN in the host response against infectious diseases.

    CAS  PubMed  Google Scholar 

  8. Moschos, S., Varanasi, S. & Kirkwood, J. M. Interferons in the treatment of solid tumors. Cancer Treat. Res. 126, 207–241 (2005).

    PubMed  Google Scholar 

  9. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  10. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    CAS  PubMed  Google Scholar 

  11. Dunn, G. P. et al. A critical function for type I interferons in cancer immunoediting. Nat. Immunol. 6, 722–729 (2005).

    CAS  PubMed  Google Scholar 

  12. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    CAS  PubMed  Google Scholar 

  13. Chen, H. M. et al. Critical role for constitutive type I interferon signaling in the prevention of cellular transformation. Cancer Sci. 100, 449–456 (2009).

    CAS  PubMed  Google Scholar 

  14. Katze, M. G., He, Y. & Gale, M. Jr. Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2, 675–687 (2002).

    CAS  PubMed  Google Scholar 

  15. Tschurtschenthaler, M. et al. Type I interferon signalling in the intestinal epithelium affects Paneth cells, microbial ecology and epithelial regeneration. Gut 63, 1921–1931 (2014).

    CAS  PubMed  Google Scholar 

  16. Chan, S. R. et al. Dysregulated STAT1–SOCS1 control of JAK2 promotes mammary luminal progenitor cell survival and drives ERα+ tumorigenesis. Cell Death Differ. 21, 234–246 (2014).

    CAS  PubMed  Google Scholar 

  17. Bidwell, B. N. et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat. Med. 18, 1224–1231 (2012).

    CAS  PubMed  Google Scholar 

  18. Swann, J. B. et al. Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J. Immunol. 178, 7540–7549 (2007).

    CAS  PubMed  Google Scholar 

  19. Diamond, M. S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zelenay, S. et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Invest. 122, 1615–1627 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chiba, S. et al. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. eLife 3, e04177 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gajewski, T. F., Fuertes, M. B. & Woo, S. R. Innate immune sensing of cancer: clues from an identified role for type I IFNs. Cancer Immunol. Immunother. 61, 1343–1347 (2012).

    CAS  PubMed  Google Scholar 

  27. Asselin-Paturel, C. & Trinchieri, G. Production of type I interferons: plasmacytoid dendritic cells and beyond. J. Exp. Med. 202, 461–465 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bald, T. et al. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discov. 4, 674–687 (2014).

    CAS  PubMed  Google Scholar 

  29. Gajewski, T. F., Louahed, J. & Brichard, V. G. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 16, 399–403 (2010).

    CAS  PubMed  Google Scholar 

  30. Cheon, H., Borden, E. C. & Stark, G. R. Interferons and their stimulated genes in the tumor microenvironment. Semin. Oncol. 41, 156–173 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sisirak, V. et al. Impaired IFN-α production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression. Cancer Res. 72, 5188–5197 (2012).

    CAS  PubMed  Google Scholar 

  32. Snijders, A. M. et al. An interferon signature identified by RNA-sequencing of mammary tissues varies across the estrous cycle and is predictive of metastasis-free survival. Oncotarget 5, 4011–4025 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Linsley, P. S., Speake, C., Whalen, E. & Chaussabel, D. Copy number loss of the interferon gene cluster in melanomas is linked to reduced T cell infiltrate and poor patient prognosis. PLoS ONE 9, e109760 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Stagg, J. et al. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc. Natl Acad. Sci. USA 108, 7142–7147 (2011).

    CAS  PubMed  Google Scholar 

  35. Yang, X. et al. Targeting the tumor microenvironment with interferon-β bridges innate and adaptive immune responses. Cancer Cell 25, 37–48 (2014). This article proves that directing exogenous type I IFN to the tumour microenvironment by coupling it to monoclonal antibodies specific for oncogenic receptors results in superior therapeutic effects as it targets intratumoural DCs.

    PubMed  PubMed Central  Google Scholar 

  36. Sistigu, A. et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med. 20, 1301–1309 (2014). This report shows that cancer cell-autonomous type I IFN signalling is required for regulated cell death to be perceived as immunogenic by the host immune system.

    CAS  PubMed  Google Scholar 

  37. Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zitvogel, L., Galluzzi, L., Smyth, M. J. & Kroemer, G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39, 74–88 (2013). This comprehensive review presents the main mechanisms by which conventional chemotherapeutics and targeted anticancer agents mediate off-target immunostimulatory effects that contribute to their clinical activity.

    CAS  PubMed  Google Scholar 

  39. Moschella, F. et al. Cyclophosphamide induces a type I interferon-associated sterile inflammatory response signature in cancer patients' blood cells: implications for cancer chemoimmunotherapy. Clin. Cancer Res. 19, 4249–4261 (2013).

    CAS  PubMed  Google Scholar 

  40. Ziccheddu, G., Proietti, E. & Moschella, F. The Janus face of cyclophosphamide: a sterile inflammatory response that potentiates cancer immunotherapy. Oncoimmunology 2, e25789 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. Schiavoni, G. et al. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res. 71, 768–778 (2011).

    CAS  PubMed  Google Scholar 

  42. Burnette, B. C. et al. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res. 71, 2488–2496 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Robb, R. J. et al. Type I-IFNs control GVHD and GVL responses after transplantation. Blood 118, 3399–3409 (2011).

    CAS  PubMed  Google Scholar 

  45. Drobits, B. et al. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J. Clin. Invest. 122, 575–585 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014). References 43 and 47 show that the sensing of cytosolic DNA by STING and the consequent production of type I IFN are required for the recognition of malignancies by the host immune system.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Semeraro, M. et al. Trial watch: lenalidomide-based immunochemotherapy. Oncoimmunology 2, e26494 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. Zhang, L. H. et al. Lenalidomide efficacy in activated B-cell-like subtype diffuse large B-cell lymphoma is dependent upon IRF4 and cereblon expression. Br. J. Haematol. 160, 487–502 (2013).

    CAS  PubMed  Google Scholar 

  50. Yang, Y. et al. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell 21, 723–737 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    CAS  PubMed  Google Scholar 

  52. Zamarin, D. et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl Med. 6, 226ra232 (2014).

    Google Scholar 

  53. Melero, I. et al. Strict requirement for vector-induced type I interferon in efficacious antitumor responses to virally encoded IL12. Cancer Res. 75, 497–507 (2014).

    PubMed  Google Scholar 

  54. Jonasch, E. & Haluska, F. G. Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 6, 34–55 (2001).

    CAS  PubMed  Google Scholar 

  55. Vacchelli, E. et al. Trial watch: immunostimulatory cytokines in cancer therapy. Oncoimmunology 3, e29030 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Tarhini, A. A. et al. Safety and efficacy of combination immunotherapy with interferon α2b and tremelimumab in patients with stage IV melanoma. J. Clin. Oncol. 30, 322–328 (2012).

    CAS  PubMed  Google Scholar 

  57. Eggermont, A. M. et al. Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon α2b versus observation in resected stage III melanoma. J. Clin. Oncol. 30, 3810–3818 (2012).

    CAS  PubMed  Google Scholar 

  58. Moschos, S. J. et al. Neoadjuvant treatment of regional stage IIIB melanoma with high-dose interferon α2b induces objective tumor regression in association with modulation of tumor infiltrating host cellular immune responses. J. Clin. Oncol. 24, 3164–3171 (2006).

    CAS  PubMed  Google Scholar 

  59. Hou, J. et al. Hepatic RIG-I predicts survival and interferon-α therapeutic response in hepatocellular carcinoma. Cancer Cell 25, 49–63 (2014).

    CAS  PubMed  Google Scholar 

  60. Preudhomme, C. et al. Imatinib plus peginterferon α2a in chronic myeloid leukemia. N. Engl. J. Med. 363, 2511–2521 (2010).

    CAS  PubMed  Google Scholar 

  61. Simonsson, B. et al. Combination of pegylated IFN-α2b with imatinib increases molecular response rates in patients with low- or intermediate-risk chronic myeloid leukemia. Blood 118, 3228–3235 (2011).

    CAS  PubMed  Google Scholar 

  62. Burchert, A. et al. Sustained molecular response with interferon-α maintenance after induction therapy with imatinib plus interferon-α in patients with chronic myeloid leukemia. J. Clin. Oncol. 28, 1429–1435 (2010).

    CAS  PubMed  Google Scholar 

  63. Hardan, I. et al. Treatment with interferon-α prior to discontinuation of imatinib in patients with chronic myeloid leukemia. Cytokine 57, 290–293 (2012).

    CAS  PubMed  Google Scholar 

  64. Bhattacharya, S. et al. Bcr-abl signals to desensitize chronic myeloid leukemia cells to IFNα via accelerating the degradation of its receptor. Blood 118, 4179–4187 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Talpaz, M., Hehlmann, R., Quintas-Cardama, A., Mercer, J. & Cortes, J. Re-emergence of interferon-α in the treatment of chronic myeloid leukemia. Leukemia 27, 803–812 (2013).

    CAS  PubMed  Google Scholar 

  66. Ilander, M. et al. Enlarged memory T-cell pool and enhanced Th1-type responses in chronic myeloid leukemia patients who have successfully discontinued IFN-α monotherapy. PLoS ONE 9, e87794 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Mullally, A. et al. Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-α in a murine model of polycythemia vera. Blood 121, 3692–3702 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Riley, C. H. et al. Expansion of circulating CD56bright natural killer cells in patients with JAK2-positive chronic myeloproliferative neoplasms during treatment with interferon-α. Eur. J. Haematol. 94, 227–234 (2014).

    PubMed  Google Scholar 

  69. Smits, E. L., Anguille, S. & Berneman, Z. N. Interferon-α may be back on track to treat acute myeloid leukemia. Oncoimmunology 2, e23619 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Zeidner, J. F. et al. Granulocyte–macrophage colony stimulating factor (GM-CSF) enhances the clinical responses to interferon-α (IFN) in newly diagnosed chronic myeloid leukemia (CML). Leuk. Res. 38, 886–890 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Vandersee, S., Terhorst, D., Humme, D. & Beyer, M. Treatment of indolent primary cutaneous B-cell lymphomas with subcutaneous interferon-α. J. Am. Acad. Dermatol. 70, 709–715 (2014).

    CAS  PubMed  Google Scholar 

  72. Radesi-Sarghi, S. et al. Interferon-α with or without rituximab achieves a high response rate and durable responses in relapsed FL: 17 years' experience in a single centre. Ann. Hematol. 93, 147–156 (2014).

    CAS  PubMed  Google Scholar 

  73. Pardanani, A. How I treat patients with indolent and smoldering mastocytosis (rare conditions but difficult to manage). Blood 121, 3085–3094 (2013).

    CAS  PubMed  Google Scholar 

  74. Passamonti, F. How I treat polycythemia vera. Blood 120, 275–284 (2012).

    CAS  PubMed  Google Scholar 

  75. Li, Y. F. et al. Low dose of interferon-α improves the clinical outcomes of docetaxel in patients with castration-resistant prostate cancer: a pilot study. Oncol. Lett. 7, 125–130 (2014).

    CAS  PubMed  Google Scholar 

  76. Inoue, M. et al. Interferon-α treatment for growing teratoma syndrome of the testis. Case Rep. Nephrol. Urol. 3, 40–45 (2013).

    PubMed  PubMed Central  Google Scholar 

  77. Lotrich, F. E. Major depression during interferon-α treatment: vulnerability and prevention. Dialogues Clin. Neurosci. 11, 417–425 (2009).

    PubMed  PubMed Central  Google Scholar 

  78. Kreutzer, K., Bonnekoh, B., Franke, I., Ulrich, J. & Gollnick, H. Sarcoidosis, myasthenia gravis and anterior ischaemic optic neuropathy: severe side effects of adjuvant interferon-α therapy in malignant melanoma?. J. Dtsch. Dermatol. Ges. 2, 689–694 (in German) (2004).

    PubMed  Google Scholar 

  79. Garcin, G. et al. High efficiency cell-specific targeting of cytokine activity. Nat. Commun. 5, 3016 (2014).

    PubMed  Google Scholar 

  80. Galluzzi, L. et al. Classification of current anticancer immunotherapies. Oncotarget 5, 12472–12508 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. Rossi, E. A. et al. Preclinical studies on targeted delivery of multiple IFNα2b to HLA-DR in diverse hematologic cancers. Blood 118, 1877–1884 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Vacchelli, E. et al. Trial watch: tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 3, e27048 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Huang, T. H., Chintalacharuvu, K. R. & Morrison, S. L. Targeting IFN-α to B cell lymphoma by a tumor-specific antibody elicits potent antitumor activities. J. Immunol. 179, 6881–6888 (2007).

    CAS  PubMed  Google Scholar 

  84. Jiang, W., Zhang, C., Tian, Z. & Zhang, J. hIFN-α gene modification augments human natural killer cell line anti-human hepatocellular carcinoma function. Gene Ther. 20, 1062–1069 (2013).

    CAS  PubMed  Google Scholar 

  85. Xu, C. et al. Interferon-α-secreting mesenchymal stem cells exert potent antitumor effect in vivo. Oncogene 33, 5047–5052 (2014).

    CAS  PubMed  Google Scholar 

  86. Koba, C. et al. Therapeutic effect of human iPS-cell-derived myeloid cells expressing IFN-β against peritoneally disseminated cancer in xenograft models. PLoS ONE 8, e67567 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Escobar, G. et al. Genetic engineering of hematopoiesis for targeted IFN-α delivery inhibits breast cancer progression. Sci. Transl Med. 6, 217ra213 (2014).

    Google Scholar 

  88. Hashimoto, H. et al. Type I IFN gene delivery suppresses regulatory T cells within tumors. Cancer Gene Ther. 21, 532–541 (2014).

    CAS  PubMed  Google Scholar 

  89. Van der Jeught, K. et al. Intratumoral administration of mRNA encoding a fusokine consisting of IFN-β and the ectodomain of the TGF-β receptor II potentiates antitumor immunity. Oncotarget 5, 10100–10113 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. Yoneyama, M. & Fujita, T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev. 227, 54–65 (2009).

    CAS  PubMed  Google Scholar 

  91. Poeck, H. et al. 5′-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nat. Med. 14, 1256–1263 (2008).

    CAS  PubMed  Google Scholar 

  92. Schnurr, M. & Duewell, P. Breaking tumor-induced immunosuppression with 5′-triphosphate siRNA silencing TGFβ and activating RIG-I. Oncoimmunology 2, e24170 (2013).

    PubMed  PubMed Central  Google Scholar 

  93. Gungor, B. et al. CpG ODN nanorings induce IFNα from plasmacytoid dendritic cells and demonstrate potent vaccine adjuvant activity. Sci. Transl Med. 6, 235ra261 (2014).

    Google Scholar 

  94. Aranda, F. et al. Trial watch: Toll-like receptor agonists in oncological indications. Oncoimmunology 3, e29179 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Maeda, S. et al. Interferon-α acts on the S/G2/M phases to induce apoptosis in the G1 phase of an IFNAR2-expressing hepatocellular carcinoma cell line. J. Biol. Chem. 289, 23786–23795 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Happold, C. et al. Interferon-β induces loss of spherogenicity and overcomes therapy resistance of glioblastoma stem cells. Mol. Cancer Ther. 13, 948–961 (2014).

    CAS  PubMed  Google Scholar 

  97. Lesinski, G. B. et al. The antitumor effects of IFN-α are abrogated in a STAT1-deficient mouse. J. Clin. Invest. 112, 170–180 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Badgwell, B. et al. The antitumor effects of interferon-α are maintained in mice challenged with a STAT1-deficient murine melanoma cell line. J. Surg. Res. 116, 129–136 (2004).

    CAS  PubMed  Google Scholar 

  99. Spaapen, R. M. et al. Therapeutic activity of high-dose intratumoral IFNβ requires direct effect on the tumor vasculature. J. Immunol. 193, 4254–4260 (2014). This paper shows that the therapeutic activity of high-dose intratumoural IFNβ relies on IFNAR signalling in endothelial cells and the consequent ablation of the tumour vasculature.

    CAS  PubMed  Google Scholar 

  100. Huang, L. et al. Cutting edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces potent tolerogenic responses. J. Immunol. 191, 3509–3513 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Aranda, F. et al. Trial watch: immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology 3, e27297 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Kong, L. Y. et al. Intratumoral mediated immunosuppression is prognostic in genetically engineered murine models of glioma and correlates to immunotherapeutic responses. Clin. Cancer Res. 16, 5722–5733 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Reizis, B., Bunin, A., Ghosh, H. S., Lewis, K. L. & Sisirak, V. Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. 29, 163–183 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gregorio, J. et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J. Exp. Med. 207, 2921–2930 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Meixlsperger, S. et al. CD141+ dendritic cells produce prominent amounts of IFNα after dsRNA recognition and can be targeted via DEC-205 in humanized mice. Blood 121, 5034–5044 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Levings, M. K. et al. IFNα and IL-10 induce the differentiation of human type 1 T regulatory cells. J. Immunol. 166, 5530–5539 (2001).

    CAS  PubMed  Google Scholar 

  107. Stewart, C. A. et al. Interferon-dependent IL-10 production by TRegs limits tumor TH17 inflammation. J. Clin. Invest. 123, 4859–4874 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ahrens, S. et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36, 635–645 (2012).

    CAS  PubMed  Google Scholar 

  109. Ma, Y., Galluzzi, L., Zitvogel, L. & Kroemer, G. Autophagy and cellular immune responses. Immunity 39, 211–227 (2013).

    CAS  PubMed  Google Scholar 

  110. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014). References 110 and 111 show that the activation of caspases upon mitochondrial outer membrane permeabilization prevents the sensing of mitochondrial DNA by STING, hence blocking the initiation of a type I IFN-driven innate immune response by the host.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Galluzzi, L., Kepp, O. & Kroemer, G. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol. 13, 780–788 (2012).

    CAS  Google Scholar 

  113. Hjortsberg, L. et al. Phosphoinositide 3-kinase regulates a subset of interferon-α-stimulated genes. Exp. Cell Res. 313, 404–414 (2007).

    CAS  PubMed  Google Scholar 

  114. Papewalis, C. et al. IFN-α skews monocytes into CD56+-expressing dendritic cells with potent functional activities in vitro and in vivo. J. Immunol. 180, 1462–1470 (2008).

    CAS  PubMed  Google Scholar 

  115. Guillot, B. et al. The expression of cytotoxic mediators is altered in mononuclear cells of patients with melanoma and increased by interferon-α treatment. Br. J. Dermatol. 152, 690–696 (2005).

    CAS  PubMed  Google Scholar 

  116. Crouse, J. et al. Type I interferons protect T cells against NK cell attack mediated by the activating receptor NCR1. Immunity 40, 961–973 (2014).

    CAS  PubMed  Google Scholar 

  117. Xu, H. C. et al. Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity. Immunity 40, 949–960 (2014).

    CAS  PubMed  Google Scholar 

  118. Novikov, A. et al. Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1β production in human macrophages. J. Immunol. 187, 2540–2547 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Bacher, N. et al. Interferon-α suppresses cAMP to disarm human regulatory T cells. Cancer Res. 73, 5647–5656 (2013).

    CAS  PubMed  Google Scholar 

  120. Talpaz, M. et al. Hematologic remission and cytogenetic improvement induced by recombinant human interferon alphaA in chronic myelogenous leukemia. N. Engl. J. Med. 314, 1065–1069 (1986).

    CAS  PubMed  Google Scholar 

  121. Quesada, J. R., Reuben, J., Manning, J. T., Hersh, E. M. & Gutterman, J. U. α-interferon for induction of remission in hairy-cell leukemia. N. Engl. J. Med. 310, 15–18 (1984).

    CAS  PubMed  Google Scholar 

  122. Eggermont, A. M. et al. Adjuvant therapy with pegylated interferon α2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. Lancet 372, 117–126 (2008).

    CAS  PubMed  Google Scholar 

  123. Mellstedt, H. et al. Interferon therapy in myelomatosis. Lancet 1, 245–247 (1979).

    CAS  PubMed  Google Scholar 

  124. Foon, K. A. et al. Treatment of advanced non-Hodgkin's lymphoma with recombinant leukocyte A interferon. N. Engl. J. Med. 311, 1148–1152 (1984).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to J. M. Bravo-San Pedro (Centre de Recherche des Cordelies, Paris, France) for help with figure preparation. G.K. and L.Z. are supported by the Ligue contre le Cancer (Équipe Labelisée); Agence Nationale de la Recherche (ANR) – Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases; Association pour la Recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Institut National du Cancer (INCa); Fondation de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); the Paris Alliance of Cancer Research Institutes (PACRI); and the ISREC and Swiss Bridge Foundations. M.J.S. is supported by the National Health and Medical Research Council of Australia (NH&MRC); the Cancer Council of Queensland; QIMR Berghofer Medical Research Institute; and the Susan G. Komen foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Kroemer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Pattern recognition receptors

(PRRs). Evolutionarily old receptors expressed by cells of the innate immune system. PRRs detect viral and bacterial components that are commonly referred to as microorganism-associated molecular patterns (MAMPs), as well as endogenous molecules known as damage-associated molecular patterns (DAMPs). PRRs constitute key sensors of danger.

T regulatory type 1 cells

(TR1 cells). A subset of immunosuppressive CD4+ T cells that downregulate T helper 1 (TH1) and TH2 cell responses in vitro and in vivo by a contact-independent mechanism that is mediated by the secretion of soluble interleukin-10 and transforming growth factor-β1.

CD8α+ dendritic cells

(CD8α+ DCs). A DC subset phenotypically characterized by the expression of Cd8a (in mice) and particularly efficient at cross-presentation: that is, at presenting extracellular antigens on MHC class I molecules to CD8+ cytotoxic T cells, rather than on MHC class II molecules to CD4+ T helper cells.

Cross-priming

The initiation of a CD8+ T cell response against an antigen that is not expressed by antigen-presenting cells (APCs). Cross-priming relies on the ability of some APCs to redirect internalized antigens to the MHC class I presentation pathway (cross-presentation).

Stimulator of IFN genes protein

(STING). A protein of the endoplasmic reticulum membrane (encoded by TMEM173) that promotes the production of type I interferons (IFNs) in response to cyclic di-GMP and works as an adaptor in the signal transduction cascades induced by other cytosolic sensors of nucleic acids.

Plasmacytoid DCs

(pDCs). A dendritic cell (DC) subset that is phenotypically characterized by reduced expression levels of CD11c and CD14 and that is particularly efficient at type I interferon production in response to several stimuli.

Graft-versus-leukaemia

(GVL). The process by which allogeneic haematopoietic stem cell grafts recognize (and eliminate) residual leukaemic cells in the host as a result of some degree of mismatch between minor histocompatibility antigens.

Cytotoxic T lymphocyte-associated protein 4

(CTLA4). A plasma membrane receptor of the immunoglobulin superfamily that is expressed by activated T cells. It is involved in the physiological extinction of immune responses but is also harnessed by malignant cells to establish an immunosuppressive tumour microenvironment.

Programmed cell death protein 1

(PD1). Plasma membrane receptor of the immunoglobulin superfamily expressed by activated T cells, B cells and macrophages. Similar to cytotoxic T lymphocyte-associated protein 4 (CTLA4), PD1 is harnessed by cancer cells for the establishment of local and systemic immunosuppression.

Immunomodulatory drugs

(IMiDs). A group of molecules with immunomodulatory effects currently approved for the treatment of erythema nodosum leprosum (a complication of leprosy), multiple myeloma and myelodysplastic syndrome. IMiDs include thalidomide, lenalidomide and pomalidomide.

Anticancer virotherapy

A peculiar paradigm of anticancer immunotherapy based on the administration of natural or genetically modified viruses that selectively kill malignant cells.

Pegylated IFN

Recombinant interferon (IFN) modified by the addition of a polyethylene glycol (PEG) moiety. This modification improves the half-life of recombinant IFN in the circulation.

Retinoic acid-inducible gene I

(RIG-I). A cytosolic sensor that responds to viral double-stranded RNA in the cytosol by inducing type I interferon production.

Imatinib

A multikinase inhibitor initially developed as a specific blocker of BCR–ABL, the chimeric kinase that aetiologically underpins leukaemogenesis in Philadelphia chromosome- bearing cells. As imatinib also inhibits KIT and platelet- derived growth factor receptor-β (PDGFRβ; encoded by PDGFRB), it is also used in patients with gastrointestinal stromal tumours that overexpress KIT and some myelodysplastic syndromes associated with PDGFRB rearrangements.

Induced pluripotent stem cells

(iPSCs). A type of pluripotent stem cell that can be generated directly from adult mature cells. Once they have been obtained, iPSCs can be differentiated into almost any cell type.

Indoleamine 2,3-dioxygenase 1

(IDO1). An enzyme that catalyses the first and rate-limiting reaction of degradation of the amino acid L-tryptophan. IDO1 mediates robust immunosuppressive effects, not all of which depend on its ability to deplete L-tryptophan and favour the accumulation of L-kynurenine.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zitvogel, L., Galluzzi, L., Kepp, O. et al. Type I interferons in anticancer immunity. Nat Rev Immunol 15, 405–414 (2015). https://doi.org/10.1038/nri3845

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3845

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing