Key Points
-
The hallmark fever response during infection and disease has been maintained throughout hundreds of millions of years in endothermic (warm-blooded) and ectothermic (cold-blooded) species.
-
Febrile temperatures boost the probability of an effective immune response by stimulating both the innate and the adaptive arms of the immune system.
-
The pyrogenic cytokine interleukin-6 (IL-6) contributes to two phases of the febrile response: it elevates the core body temperature via thermoregulatory autonomic mechanisms, and it also serves as a thermally sensitive effector molecule that amplifies lymphocyte trafficking into lymphoid organs.
-
There is emerging evidence that adrenergic signalling pathways associated with thermogenesis can greatly influence immune cell function.
-
Thus, the thermal element of fever serves as a systemic alert system that broadly promotes immune surveillance in the setting of infection and disease.
Abstract
Fever is a cardinal response to infection that has been conserved in warm-blooded and cold-blooded vertebrates for more than 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. In this Review, we discuss our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction and during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. We also discuss the emerging evidence suggesting that the adrenergic signalling pathways associated with thermogenesis shape immune cell function.
Access options
Subscribe to Journal
Get full journal access for 1 year
$259.00
only $21.58 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.





References
- 1
Celsus, A. C. A. Cornelius Celsus of Medicine: in Eight Books (ed. Grieve, J.) (D. Wilson & T. Durham, 1756). This set of books summarizes the work of Celsus (approximately 25 BC to 50 AD), who described the four cardinal signs of inflammation.
- 2
Kluger, M. J. Phylogeny of fever. Fed. Proc. 38, 30–34 (1979).
- 3
Earn, D. J., Andrews, P. W. & Bolker, B. M. Population-level effects of suppressing fever. Proc. Biol. Sci. 281, 20132570 (2014).
- 4
Schulman, C. I. et al. The effect of antipyretic therapy upon outcomes in critically ill patients: a randomized, prospective study. Surg. Infect. (Larchmt) 6, 369–375 (2005). References 3 and 4 show that treatment of fever using antipyretic drugs has a detrimental effect on patient outcome during infection.
- 5
Ryan, M. & Levy, M. M. Clinical review: fever in intensive care unit patients. Crit. Care 7, 221–225 (2003).
- 6
Kurosawa, S., Kobune, F., Okuyama, K. & Sugiura, A. Effects of antipyretics in rinderpest virus infection in rabbits. J. Infect. Dis. 155, 991–997 (1987).
- 7
Liu, E. et al. Naturally occurring hypothermia is more advantageous than fever in severe forms of lipopolysaccharide- and Escherichia coli-induced systemic inflammation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1372–R1383 (2012).
- 8
Romanovsky, A. A. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R37–R46 (2007).
- 9
Romanovsky, A. A., Shido, O., Sakurada, S., Sugimoto, N. & Nagasaka, T. Endotoxin shock: thermoregulatory mechanisms. Am. J. Physiol. 270, R693–R703 (1996).
- 10
Almeida, M. C., Steiner, A. A., Branco, L. G. & Romanovsky, A. A. Cold-seeking behavior as a thermoregulatory strategy in systemic inflammation. Eur. J. Neurosci. 23, 3359–3367 (2006).
- 11
Launey, Y., Nesseler, N., Malledant, Y. & Seguin, P. Clinical review: fever in septic ICU patients—friend or foe? Crit. Care 15, 222 (2011).
- 12
Polderman, K. H. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet 371, 1955–1969 (2008).
- 13
Bernheim, H. A. & Kluger, M. J. Fever: effect of drug-induced antipyresis on survival. Science 193, 237–239 (1976).
- 14
Vaughn, L. K., Bernheim, H. A. & Kluger, M. J. Fever in the lizard Dipsosaurus dorsalis. Nature 252, 473–474 (1974).
- 15
Covert, J. B. & Reynolds, W. W. Survival value of fever in fish. Nature 267, 43–45 (1977).
- 16
Reynolds, W. W., Casterlin, M. E. & Covert, J. B. Behavioural fever in teleost fishes. Nature 259, 41–42 (1976). References 13–16 reveal that ectothermic vertebrates (lizards and fish) develop fever through behavioural changes and that fever is associated with a survival benefit.
- 17
Simone-Finstrom, M., Foo, B., Tarpy, D. R. & Starks, P. T. Impact of food availability, pathogen exposure, and genetic diversity on thermoregulation in honey bees (Apis mellifera). J. Insect Behav. 27, 527–539 (2014).
- 18
Blanford, S. & Thomas, M. B. Adult survival, maturation, and reproduction of the desert locust Schistocerca gregaria infected with the fungus Metarhizium anisopliae var acridum. J. Invertebr. Pathol. 78, 1–8 (2001).
- 19
Mackowiak, P. A. Fever: blessing or curse? A unifying hypothesis. Ann. Intern. Med. 120, 1037–1040 (1994).
- 20
Cabanac, M. Fever in the leech, Nephelopsis obscura (Annelida). J. Comp. Physiol. B 159, 281–285 (1989).
- 21
Yarwood, C. E. Heat of respiration of injured and diseased leaves. Phytopathology 43, 675–681 (1953).
- 22
Zhu, Y. et al. Regulation of thermogenesis in plants: the interaction of alternative oxidase and plant uncoupling mitochondrial protein. J. Integr. Plant Biol. 53, 7–13 (2011).
- 23
Pockley, A. G., Calderwood, S. K. & Santoro, M. G. Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease (Springer, 2010).
- 24
Lwoff, A. From protozoa to bacteria and viruses. Fifty years with microbes (André Lwoff). Annu. Rev. Microbiol. 25, 1–26 (1971).
- 25
Osawa, E. & Muschel, L. H. Studies relating to the serum resistance of certain Gram-negative bacteria. J. Exp. Med. 119, 41–51 (1964).
- 26
Hasday, J. D., Thompson, C. & Singh, I. S. Fever, immunity, and molecular adaptations. Compr. Physiol. 4, 109–148 (2014).
- 27
Morrison, S. F., Madden, C. J. & Tupone, D. Central control of brown adipose tissue thermogenesis. Front. Endocrinol. 3, 00005 (2012).
- 28
Taipale, M., Jarosz, D. F. & Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature Rev. Mol. Cell Biol. 11, 515–528 (2010).
- 29
Akerfelt, M., Morimoto, R. I. & Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nature Rev. Mol. Cell Biol. 11, 545–555 (2010).
- 30
Saper, C. B., Romanovsky, A. A. & Scammell, T. E. Neural circuitry engaged by prostaglandins during the sickness syndrome. Nature Neurosci. 15, 1088–1095 (2012).
- 31
Matsumura, K. et al. Brain endothelial cells express cyclooxygenase-2 during lipopolysaccharide-induced fever: light and electron microscopic immunocytochemical studies. J. Neurosci. 18, 6279–6289 (1998).
- 32
Yamagata, K. et al. Coexpression of microsomal-type prostaglandin E synthase with cyclooxygenase-2 in brain endothelial cells of rats during endotoxin-induced fever. J. Neurosci. 21, 2669–2677 (2001).
- 33
Engstrom, L. et al. Lipopolysaccharide-induced fever depends on prostaglandin E2 production specifically in brain endothelial cells. Endocrinology 153, 4849–4861 (2012).
- 34
Blatteis, C. M., Li, S., Li, Z., Feleder, C. & Perlik, V. Cytokines, PGE2 and endotoxic fever: a re-assessment. Prostaglandins Other Lipid Mediat. 76, 1–18 (2005).
- 35
Steiner, A. A., Chakravarty, S., Rudaya, A. Y., Herkenham, M. & Romanovsky, A. A. Bacterial lipopolysaccharide fever is initiated via Toll-like receptor 4 on hematopoietic cells. Blood 107, 4000–4002 (2006). References 34 and 35 show that expression and release of PGE2 from haematopoietic cells is required for the development of fever during LPS challenge.
- 36
Roth, J. & Blatteis, C. M. Mechanisms of fever production and lysis: lessons from experimental LPS fever. Compr. Physiol. 4, 1563–1604 (2014).
- 37
Ivanov, A. I. & Romanovsky, A. A. Prostaglandin E2 as a mediator of fever: synthesis and catabolism. Front. Biosci. 9, 1977–1993 (2004).
- 38
Furuyashiki, T. & Narumiya, S. Stress responses: the contribution of prostaglandin E2 and its receptors. Nature Rev. Endocrinol. 7, 163–175 (2011).
- 39
Engblom, D. et al. Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis. Nature Neurosci. 6, 1137–1138 (2003).
- 40
Lazarus, M. et al. EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nature Neurosci. 10, 1131–1133 (2007). References 39 and 40 demonstrate that responses involving EP3 prostaglandin receptors are required for the development of fever.
- 41
Nakamura, K. & Morrison, S. F. A thermosensory pathway that controls body temperature. Nature Neurosci. 11, 62–71 (2008).
- 42
Dantzer, R. & Wollman, E. Molecular mechanisms of fever: the missing links. Eur. Cytokine Netw. 9, 27–31 (1998).
- 43
Steinman, L. Nuanced roles of cytokines in three major human brain disorders. J. Clin. Invest. 118, 3557–3563 (2008).
- 44
Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol. 4, 499–511 (2004).
- 45
O'Neill, L. A., Golenbock, D. & Bowie, A. G. The history of Toll-like receptors — redefining innate immunity. Nature Rev. Immunol. 13, 453–460 (2013).
- 46
Elander, L., Ruud, J., Korotkova, M., Jakobsson, P. J. & Blomqvist, A. Cyclooxygenase-1 mediates the immediate corticosterone response to peripheral immune challenge induced by lipopolysaccharide. Neurosci. Lett. 470, 10–12 (2010).
- 47
Hanada, R. et al. Central control of fever and female body temperature by RANKL/RANK. Nature 462, 505–509 (2009). This study identifies a pivotal role for RANKL in the brain in generating a fever in response to LPS.
- 48
Benveniste, E. N., Sparacio, S. M., Norris, J. G., Grenett, H. E. & Fuller, G. M. Induction and regulation of interleukin-6 gene expression in rat astrocytes. J. Neuroimmunol. 30, 201–212 (1990).
- 49
Beurel, E. & Jope, R. S. Lipopolysaccharide-induced interleukin-6 production is controlled by glycogen synthase kinase-3 and STAT3 in the brain. J. Neuroinflamm. 6, 9 (2009).
- 50
Sawada, M., Suzumura, A. & Marunouchi, T. TNFα induces IL-6 production by astrocytes but not by microglia. Brain Res. 583, 296–299 (1992).
- 51
Woodroofe, M. N. et al. Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J. Neuroimmunol. 33, 227–236 (1991).
- 52
Ringheim, G. E., Burgher, K. L. & Heroux, J. A. Interleukin-6 mRNA expression by cortical neurons in culture: evidence for neuronal sources of interleukin-6 production in the brain. J. Neuroimmunol. 63, 113–123 (1995).
- 53
Vallieres, L. & Rivest, S. Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1β. J. Neurochem. 69, 1668–1683 (1997).
- 54
Cartmell, T., Poole, S., Turnbull, A. V., Rothwell, N. J. & Luheshi, G. N. Circulating interleukin-6 mediates the febrile response to localised inflammation in rats. J. Physiol. 526, 653–661 (2000).
- 55
Chai, Z., Gatti, S., Toniatti, C., Poli, V. & Bartfai, T. Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1β: a study on IL-6-deficient mice. J. Exp. Med. 183, 311–316 (1996).
- 56
Kozak, W. et al. IL-6 and IL-1β in fever. Studies using cytokine-deficient (knockout) mice. Ann. NY Acad. Sci. 856, 33–47 (1998).
- 57
Hamzic, N. et al. Interleukin-6 primarily produced by non-hematopoietic cells mediates the lipopolysaccharide-induced febrile response. Brain Behav. Immun. 33, 123–130 (2013). References 55–57 highlight that loss of IL-6 signalling alone abrogates fever in response in LPS- or IL-1-induced inflammatory models.
- 58
Nilsberth, C., Hamzic, N., Norell, M. & Blomqvist, A. Peripheral lipopolysaccharide administration induces cytokine mRNA expression in the viscera and brain of fever-refractory mice lacking microsomal prostaglandin E synthase-1. J. Neuroendocrinol. 21, 715–721 (2009).
- 59
Jiang, Q. et al. Exposure to febrile temperature upregulates expression of pyrogenic cytokines in endotoxin-challenged mice. Am. J. Physiol. 276, R1653–R1660 (1999).
- 60
Ostberg, J. R., Taylor, S. L., Baumann, H. & Repasky, E. A. Regulatory effects of fever-range whole-body hyperthermia on the LPS-induced acute inflammatory response. J. Leukoc. Biol. 68, 815–820 (2000).
- 61
Rice, P. et al. Febrile-range hyperthermia augments neutrophil accumulation and enhances lung injury in experimental gram-negative bacterial pneumonia. J. Immunol. 174, 3676–3685 (2005). This report establishes that febrile temperatures drive CXCL8 expression to initiate neutrophil infiltration in the lungs.
- 62
Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).
- 63
Teachey, D. T. et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 121, 5154–5157 (2013).
- 64
Cao, C., Matsumura, K., Yamagata, K. & Watanabe, Y. Endothelial cells of the rat brain vasculature express cyclooxygenase-2 mRNA in response to systemic interleukin-1β: a possible site of prostaglandin synthesis responsible for fever. Brain Res. 733, 263–272 (1996).
- 65
Konsman, J. P., Vigues, S., Mackerlova, L., Bristow, A. & Blomqvist, A. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. J. Comp. Neurol. 472, 113–129 (2004).
- 66
Rummel, C., Sachot, C., Poole, S. & Luheshi, G. N. Circulating interleukin-6 induces fever through a STAT3-linked activation of COX-2 in the brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1316–R1326 (2006).
- 67
Turnbull, A. V., Prehar, S., Kennedy, A. R., Little, R. A. & Hopkins, S. J. Interleukin-6 is an afferent signal to the hypothalamo-pituitary-adrenal axis during local inflammation in mice. Endocrinology 144, 1894–1906 (2003).
- 68
Sundgren-Andersson, A. K., Ostlund, P. & Bartfai, T. IL-6 is essential in TNF-α-induced fever. Am. J. Physiol. 275, R2028–R2034 (1998).
- 69
Li, S., Goorha, S., Ballou, L. R. & Blatteis, C. M. Intracerebroventricular interleukin-6, macrophage inflammatory protein-1β and IL-18: pyrogenic and PGE2-mediated? Brain Res. 992, 76–84 (2003).
- 70
Nilsberth, C. et al. The role of interleukin-6 in lipopolysaccharide-induced fever by mechanisms independent of prostaglandin E2 . Endocrinology 150, 1850–1860 (2009).
- 71
Kong, Y. Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).
- 72
Hashizume, M. & Mihara, M. The roles of interleukin-6 in the pathogenesis of rheumatoid arthritis. Arthritis 2011, 765624 (2011).
- 73
Soehnlein, O. & Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nature Rev. Immunol. 10, 427–439 (2010).
- 74
Girard, J. P., Moussion, C. & Forster, R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nature Rev. Immunol. 12, 762–773 (2012).
- 75
von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nature Rev. Immunol. 3, 867–878 (2003).
- 76
Griffith, J. W., Sokol, C. L. & Luster, A. D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol. 32, 659–702 (2014).
- 77
Ostberg, J. R., Ertel, B. R. & Lanphere, J. A. An important role for granulocytes in the thermal regulation of colon tumor growth. Immunol. Invest. 34, 259–272 (2005).
- 78
Takada, Y. et al. Granulocyte-colony stimulating factor enhances anti-tumour effect of hyperthermia. Int. J. Hyperthermia 16, 275–286 (2000).
- 79
Bernheim, H. A., Bodel, P. T., Askenase, P. W. & Atkins, E. Effects of fever on host defense mechanisms after infection in the lizard Dipsosaurus dorsalis. Br. J. Exp. Pathol. 59, 76–84 (1978).
- 80
Ellis, G. S. et al. G-CSF, but not corticosterone, mediates circulating neutrophilia induced by febrile-range hyperthermia. J. Appl. Physiol. 98, 1799–1804 (2005).
- 81
Hasday, J. D. et al. Febrile-range hyperthermia augments pulmonary neutrophil recruitment and amplifies pulmonary oxygen toxicity. Am. J. Pathol. 162, 2005–2017 (2003).
- 82
Capitano, M. L. et al. Elevating body temperature enhances hematopoiesis and neutrophil recovery after total body irradiation in an IL-1-, IL-17-, and G-CSF-dependent manner. Blood 120, 2600–2609 (2012). This study demonstrates that fever-range hyperthermia promotes neutrophil release from the bone marrow and is protective following irradiation-induced neutropenia in mice.
- 83
Ostberg, J. R. & Repasky, E. A. Comparison of the effects of two different whole body hyperthermia protocols on the distribution of murine leukocyte populations. Int. J. Hyperthermia 16, 29–43 (2000).
- 84
Tulapurkar, M. E. et al. Febrile-range hyperthermia modifies endothelial and neutrophilic functions to promote extravasation. Am. J. Respir. Cell. Mol. Biol. 46, 807–814 (2012).
- 85
Singh, I. S. et al. Heat shock co-activates interleukin-8 transcription. Am. J. Respir. Cell Mol. Biol. 39, 235–242 (2008).
- 86
Zanker, K. S. & Lange, J. Whole body hyperthermia and natural killer cell activity. Lancet 1, 1079–1080 (1982).
- 87
Shen, R. N., Hornback, N. B., Shidnia, H., Shupe, R. E. & Brahmi, Z. Whole-body hyperthermia decreases lung metastases in lung tumor-bearing mice, possibly via a mechanism involving natural killer cells. J. Clin. Immunol. 7, 246–253 (1987).
- 88
Burd, R. et al. Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (fever-like) whole body hyperthermia. J. Cell. Physiol. 177, 137–147 (1998).
- 89
Kappel, M., Stadeager, C., Tvede, N., Galbo, H. & Pedersen, B. K. Effects of in vivo hyperthermia on natural killer cell activity, in vitro proliferative responses and blood mononuclear cell subpopulations. Clin. Exp. Immunol. 84, 175–180 (1991).
- 90
Ostberg, J. R., Dayanc, B. E., Yuan, M., Oflazoglu, E. & Repasky, E. A. Enhancement of natural killer (NK) cell cytotoxicity by fever-range thermal stress is dependent on NKG2D function and is associated with plasma membrane NKG2D clustering and increased expression of MICA on target cells. J. Leukoc. Biol. 82, 1322–1331 (2007).
- 91
Multhoff, G., Botzler, C., Wiesnet, M., Eissner, G. & Issels, R. CD3− large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. Blood 86, 1374–1382 (1995).
- 92
Shi, H. et al. Hyperthermia enhances CTL cross-priming. J. Immunol. 176, 2134–2141 (2006).
- 93
Jiang, Q. et al. Febrile core temperature is essential for optimal host defense in bacterial peritonitis. Infect. Immun. 68, 1265–1270 (2000).
- 94
Hasday, J. D., Fairchild, K. D. & Shanholtz, C. The role of fever in the infected host. Microbes Infect. 2, 1891–1904 (2000).
- 95
Lee, C. T., Zhong, L., Mace, T. A. & Repasky, E. A. Elevation in body temperature to fever range enhances and prolongs subsequent responsiveness of macrophages to endotoxin challenge. PLoS ONE 7, e30077 (2012).
- 96
Lee, C. T. & Repasky, E. A. Opposing roles for heat and heat shock proteins in macrophage functions during inflammation: a function of cell activation state? Front. Immunol. 3, 140 (2012).
- 97
Pritchard, M. T., Li, Z. & Repasky, E. A. Nitric oxide production is regulated by fever-range thermal stimulation of murine macrophages. J. Leukoc. Biol. 78, 630–638 (2005).
- 98
Gupta, A. et al. Toll-like receptor agonists and febrile range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release. J. Biol. Chem. 288, 2756–2766 (2013).
- 99
Multhoff, G. Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods 43, 229–237 (2007).
- 100
Vega, V. L. et al. Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J. Immunol. 180, 4299–4307 (2008).
- 101
Noessner, E. et al. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J. Immunol. 169, 5424–5432 (2002).
- 102
Basu, S., Binder, R. J., Ramalingam, T. & Srivastava, P. K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14, 303–313 (2001).
- 103
Binder, R. J. & Srivastava, P. K. Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc. Natl Acad. Sci. USA 101, 6128–6133 (2004).
- 104
Berwin, B. et al. Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. EMBO J. 22, 6127–6136 (2003).
- 105
Becker, T., Hartl, F. U. & Wieland, F. CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J. Cell Biol. 158, 1277–1285 (2002).
- 106
Arnouk, H. et al. Tumour secreted grp170 chaperones full-length protein substrates and induces an adaptive anti-tumour immune response in vivo. Int. J. Hyperthermia 26, 366–375 (2010).
- 107
Asea, A. et al. Novel signal transduction pathway utilized by extracellular HSP70: role of Toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277, 15028–15034 (2002).
- 108
Facciponte, J. G., Wang, X. Y. & Subjeck, J. R. Hsp110 and Grp170, members of the Hsp70 superfamily, bind to scavenger receptor-A and scavenger receptor expressed by endothelial cells-I. Eur. J. Immunol. 37, 2268–2279 (2007).
- 109
Lehner, T. et al. Heat shock proteins generate β-chemokines which function as innate adjuvants enhancing adaptive immunity. Eur. J. Immunol. 30, 594–603 (2000).
- 110
Panjwani, N. N., Popova, L. & Srivastava, P. K. Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J. Immunol. 168, 2997–3003 (2002).
- 111
Snyder, Y. M., Guthrie, L., Evans, G. F. & Zuckerman, S. H. Transcriptional inhibition of endotoxin-induced monokine synthesis following heat shock in murine peritoneal macrophages. J. Leukoc. Biol. 51, 181–187 (1992).
- 112
Yenari, M. A. et al. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann. NY Acad. Sci. 1053, 74–83 (2005).
- 113
Chen, H. et al. Hsp70 inhibits lipopolysaccharide-induced NF-κB activation by interacting with TRAF6 and inhibiting its ubiquitination. FEBS Lett. 580, 3145–3152 (2006).
- 114
Schmitt, E., Gehrmann, M., Brunet, M., Multhoff, G. & Garrido, C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J. Leukoc. Biol. 81, 15–27 (2007).
- 115
Manzella, J. P. & Roberts, N. J. Jr. Human macrophage and lymphocyte responses to mitogen stimulation after exposure to influenza virus, ascorbic acid, and hyperthermia. J. Immunol. 123, 1940–1944 (1979).
- 116
Postic, B., DeAngelis, C., Breinig, M. K. & Monto, H. O. Effect of temperature on the induction of interferons by endotoxin and virus. J. Bacteriol. 91, 1277–1281 (1966).
- 117
Knippertz, I. et al. Mild hyperthermia enhances human monocyte-derived dendritic cell functions and offers potential for applications in vaccination strategies. Int. J. Hyperthermia 27, 591–603 (2011).
- 118
van Bruggen, I., Robertson, T. A. & Papadimitriou, J. M. The effect of mild hyperthermia on the morphology and function of murine resident peritoneal macrophages. Exp. Mol. Pathol. 55, 119–134 (1991).
- 119
Bachleitner-Hofmann, T. et al. Heat shock treatment of tumor lysate-pulsed dendritic cells enhances their capacity to elicit antitumor T cell responses against medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 91, 4571–4577 (2006).
- 120
Yan, X. et al. Fever range temperature promotes TLR4 expression and signaling in dendritic cells. Life Sci. 80, 307–313 (2007).
- 121
Hatzfeld-Charbonnier, A. S. et al. Influence of heat stress on human monocyte-derived dendritic cell functions with immunotherapeutic potential for antitumor vaccines. J. Leukoc. Biol. 81, 1179–1187 (2007). This reference shows that the exposure of human monocyte-derived DCs to febrile temperatures improves their migratory response to chemokines in vitro and their ability to stimulate naive T cell activation.
- 122
Ostberg, J. R., Kaplan, K. C. & Repasky, E. A. Induction of stress proteins in a panel of mouse tissues by fever-range whole body hyperthermia. Int. J. Hyperthermia 18, 552–562 (2002).
- 123
Peng, J. C. et al. Monocyte-derived DC primed with TLR agonists secrete IL-12p70 in a CD40-dependent manner under hyperthermic conditions. J. Immunother. 29, 606–615 (2006).
- 124
Ostberg, J. R., Gellin, C., Patel, R. & Repasky, E. A. Regulatory potential of fever-range whole body hyperthermia on Langerhans cells and lymphocytes in an antigen-dependent cellular immune response. J. Immunol. 167, 2666–2670 (2001).
- 125
Tal, O. et al. DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J. Exp. Med. 208, 2141–2153 (2011).
- 126
Schumann, K. et al. Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32, 703–713 (2010).
- 127
Weber, M. et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339, 328–332 (2013).
- 128
Ulvmar, M. H. et al. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nature Immunol. 15, 623–630 (2014). References 125–128 describe the role of CCR7 in sensing CCL21 gradients that direct the migration of mature DCs into the afferent lymphatics and within draining lymph nodes.
- 129
von Andrian, U. H. Intravital microscopy of the peripheral lymph node microcirculation in mice. Microcirculation 3, 287–300 (1996).
- 130
Blattman, J. N. et al. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 195, 657–664 (2002).
- 131
Pabst, R. & Binns, R. M. Heterogeneity of lymphocyte homing physiology: several mechanisms operate in the control of migration to lymphoid and non-lymphoid organs in vivo. Immunol. Rev. 108, 83–109 (1989).
- 132
Vardam, T. D. et al. Regulation of a lymphocyte-endothelial-IL-6 trans-signaling axis by fever-range thermal stress: hot spot of immune surveillance. Cytokine 39, 84–96 (2007).
- 133
Boscacci, R. T. et al. Comprehensive analysis of lymph node stroma-expressed Ig superfamily members reveals redundant and nonredundant roles for ICAM-1, ICAM-2, and VCAM-1 in lymphocyte homing. Blood 116, 915–925 (2010).
- 134
Wang, W. C. et al. Fever-range hyperthermia enhances L-selectin-dependent adhesion of lymphocytes to vascular endothelium. J. Immunol. 160, 961–969 (1998).
- 135
Evans, S. S. et al. Dynamic association of L-selectin with the lymphocyte cytoskeletal matrix. J. Immunol. 162, 3615–3624 (1999).
- 136
Evans, S. S., Bain, M. D. & Wang, W. C. Fever-range hyperthermia stimulates α4β7 integrin-dependent lymphocyte-endothelial adhesion. Int. J. Hyperthermia 16, 45–59 (2000).
- 137
Evans, S. S. et al. Fever-range hyperthermia dynamically regulates lymphocyte delivery to high endothelial venules. Blood 97, 2727–2733 (2001).
- 138
Chen, Q. et al. Central role of IL-6 receptor signal-transducing chain gp130 in activation of L-selectin adhesion by fever-range thermal stress. Immunity 20, 59–70 (2004).
- 139
Appenheimer, M. M. et al. Conservation of IL-6 trans-signaling mechanisms controlling L-selectin adhesion by fever-range thermal stress. Eur. J. Immunol. 37, 2856–2867 (2007). References 138 and 139 identify an evolutionarily conserved role of IL-6 trans -signalling in enhancing L-selectin-dependent adhesion in lymphocytes during exposure to febrile temperatures.
- 140
Chen, Q. et al. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nature Immunol. 7, 1299–1308 (2006). This study establishes that fever-range thermal stress acts through an IL-6 trans -signalling-dependent mechanism to upregulate ICAM1 expression selectively in HEVs.
- 141
Chen, Q. et al. Thermal facilitation of lymphocyte trafficking involves temporal induction of intravascular ICAM-1. Microcirculation 16, 143–158 (2009). This study reveals the restricted temporal nature of ICAM1 induction on HEV in response to fever-range hyperthermia and that restoration of normal trafficking involves a zinc-dependent metalloproteinase-dependent mechanism.
- 142
Fisher, D. T. et al. IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J. Clin. Invest. 121, 3846–3859 (2011). This study demonstrates that febrile-range thermal therapy acts through IL-6 trans -signalling to promote the trafficking of CD8+ effector T cells into the tumour microenvironment and delays tumour growth.
- 143
Kraybill, W. G. et al. A phase I study of fever-range whole body hyperthermia (FR-WBH) in patients with advanced solid tumours: correlation with mouse models. Int. J. Hyperthermia 18, 253–266 (2002).
- 144
Picker, L. J. & Butcher, E. C. Physiological and molecular mechanisms of lymphocyte homing. Annu. Rev. Immunol. 10, 561–591 (1992).
- 145
Carman, C. V. & Springer, T. A. Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr. Opin. Cell Biol. 15, 547–556 (2003).
- 146
Schurpf, T. & Springer, T. A. Regulation of integrin affinity on cell surfaces. EMBO J. 30, 4712–4727 (2011).
- 147
Carman, C. V. & Springer, T. A. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J. Cell Biol. 167, 377–388 (2004).
- 148
Carman, C. V. & Springer, T. A. Trans-cellular migration: cell–cell contacts get intimate. Curr. Opin. Cell Biol. 20, 533–540 (2008).
- 149
Roberts, N. J. Jr & Steigbigel, R. T. Hyperthermia and human leukocyte functions: effects on response of lymphocytes to mitogen and antigen and bactericidal capacity of monocytes and neutrophils. Infect. Immun. 18, 673–679 (1977).
- 150
Smith, J. B., Knowlton, R. P. & Agarwal, S. S. Human lymphocyte responses are enhanced by culture at 40 °C. J. Immunol. 121, 691–694 (1978).
- 151
Mace, T. A. et al. Differentiation of CD8+ T cells into effector cells is enhanced by physiological range hyperthermia. J. Leukoc. Biol. 90, 951–962 (2011). This study shows that fever-range temperatures enhance T cell activation by altering the fluidity of the plasma membrane and by pre-association of the signalling components of the TCR complex.
- 152
Mace, T. A., Zhong, L., Kokolus, K. M. & Repasky, E. A. Effector CD8+ T cell IFN-γ production and cytotoxicity are enhanced by mild hyperthermia. Int. J. Hyperthermia 28, 9–18 (2012).
- 153
Zynda, E. et al. A role for the thermal microenvironment in co-stimulation requirements during T cell activation. Cell Cycle (in the press).
- 154
Calabrese, L. H. & Rose-John, S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nature Rev. Rheumatol. 10, 720–727 (2014).
- 155
Fisher, D. T., Appenheimer, M. M. & Evans, S. S. The two faces of IL-6 in the tumor microenvironment. Semin. Immunol. 26, 38–47 (2014).
- 156
Jostock, T. et al. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur. J. Biochem. 268, 160–167 (2001).
- 157
Atreya, R. et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nature Med. 6, 583–588 (2000).
- 158
Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Rev. Cancer 9, 798–809 (2009).
- 159
Shah, A. et al. Cytokine and adhesion molecule expression in primary human endothelial cells stimulated with fever-range hyperthermia. Int. J. Hyperthermia 18, 534–551 (2002).
- 160
Lefor, A. T. et al. Hyperthermia increases intercellular adhesion molecule-1 expression and lymphocyte adhesion to endothelial cells. Surgery 116, 214–220; discussion 220–221 (1994).
- 161
Ager, A. Isolation and culture of high endothelial cells from rat lymph nodes. J. Cell Sci. 87, 133–144 (1987).
- 162
Lee, M. et al. Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing. Nature Immunol. 15, 982–995 (2014).
- 163
Mikucki, M. E. et al. Preconditioning thermal therapy: flipping the switch on IL-6 for anti-tumour immunity. Int. J. Hyperthermia 29, 464–473 (2013).
- 164
Malhotra, D. et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nature Immunol. 13, 499–510 (2012).
- 165
Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med. 200, 783–795 (2004).
- 166
Inouye, S. et al. Heat shock transcription factor 1 opens chromatin structure of interleukin-6 promoter to facilitate binding of an activator or a repressor. J. Biol. Chem. 282, 33210–33217 (2007).
- 167
House, S. D. et al. Effects of heat shock, stannous chloride, and gallium nitrate on the rat inflammatory response. Cell Stress Chaperones 6, 164–171 (2001).
- 168
Ensor, J. E. et al. Differential effects of hyperthermia on macrophage interleukin-6 and tumor necrosis factor-α expression. Am. J. Physiol. 266, C967–C974 (1994).
- 169
Fairchild, K. D., Viscardi, R. M., Hester, L., Singh, I. S. & Hasday, J. D. Effects of hypothermia and hyperthermia on cytokine production by cultured human mononuclear phagocytes from adults and newborns. J. Interferon Cytokine Res. 20, 1049–1055 (2000).
- 170
Hagiwara, S., Iwasaka, H., Matsumoto, S. & Noguchi, T. Changes in cell culture temperature alter release of inflammatory mediators in murine macrophagic RAW264.7 cells. Inflamm. Res. 56, 297–303 (2007).
- 171
Cooper, Z. A. et al. Febrile-range temperature modifies cytokine gene expression in LPS-stimulated macrophages by differentially modifying NF-κB recruitment to cytokine gene promoters. Am. J. Physiol. Cell Physiol. 298, C171–C181 (2010).
- 172
Ensor, J. E., Crawford, E. K. & Hasday, J. D. Warming macrophages to febrile range destabilizes tumor necrosis factor-α mRNA without inducing heat shock. Am. J. Physiol. 269, C1140–C1146 (1995).
- 173
Singh, I. S., He, J. R., Calderwood, S. & Hasday, J. D. A high affinity HSF-1 binding site in the 5′-untranslated region of the murine tumor necrosis factor-α gene is a transcriptional repressor. J. Biol. Chem. 277, 4981–4988 (2002).
- 174
Fiuza, C. et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101, 2652–2660 (2003).
- 175
Lee, C. T. et al. Defining immunological impact and therapeutic benefit of mild heating in a murine model of arthritis. PLoS ONE 10, e0120327 (2015).
- 176
Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).
- 177
Cannon, B. & Nedergaard, J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Exp. Biol. 214, 242–253 (2011).
- 178
Elenkov, I. J., Wilder, R. L., Chrousos, G. P. & Vizi, E. S. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000).
- 179
Eng, J. W. et al. A nervous tumor microenvironment: the impact of adrenergic stress on cancer cells, immunosuppression, and immunotherapeutic response. Cancer Immunol. Immunother. 63, 1115–1128 (2014).
- 180
Padgett, D. A. & Glaser, R. How stress influences the immune response. Trends Immunol. 24, 444–448 (2003).
- 181
Nakai, A., Hayano, Y., Furuta, F., Noda, M. & Suzuki, K. Control of lymphocyte egress from lymph nodes through β2-adrenergic receptors. J. Exp. Med. 211, 2583–2598 (2014).
- 182
Slota, C., Shi, A., Chen, G., Bevans, M. & Weng, N. P. Norepinephrine preferentially modulates memory CD8 T cell function inducing inflammatory cytokine production and reducing proliferation in response to activation. Brain Behav. Immun. 46, 168–179 (2015).
- 183
Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).
- 184
Kokolus, K. M. et al. Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc. Natl Acad. Sci. USA 110, 20176–20181 (2013). References 183 and 184 establish that noradrenaline-driven thermogenesis shapes the phenotype of the immune response by altering macrophage differentiation and antitumour immunity.
- 185
Kokolus, K. M. et al. Stressful presentations: mild cold stress in laboratory mice influences phenotype of dendritic cells in naive and tumor-bearing mice. Front. Immunol. 5, 23 (2014).
- 186
Eng, J. W. et al. Housing temperature-induced stress drives therapeutic resistance in murine tumour models through β2-adrenergic receptor activation. Nature Commun. 6, 6426 (2015).
- 187
Glaser, R. & Kiecolt-Glaser, J. K. Stress-induced immune dysfunction: implications for health. Nature Rev. Immunol. 5, 243–251 (2005).
- 188
Karp, C. L. & Murray, P. J. Non-canonical alternatives: what a macrophage is 4. J. Exp. Med. 209, 427–431 (2012).
- 189
Di, Y. P., Repasky, E. A. & Subjeck, J. R. Distribution of HSP70, protein kinase C, and spectrin is altered in lymphocytes during a fever-like hyperthermia exposure. J. Cell. Physiol. 172, 44–54 (1997).
- 190
Tulapurkar, M. E., Asiegbu, B. E., Singh, I. S. & Hasday, J. D. Hyperthermia in the febrile range induces HSP72 expression proportional to exposure temperature but not to HSF-1 DNA-binding activity in human lung epithelial A549 cells. Cell Stress Chaperones 14, 499–508 (2009).
- 191
Gothard, L. Q., Ruffner, M. E., Woodward, J. G., Park-Sarge, O. K. & Sarge, K. D. Lowered temperature set point for activation of the cellular stress response in T-lymphocytes. J. Biol. Chem. 278, 9322–9326 (2003).
- 192
Rossi, A., Coccia, M., Trotta, E., Angelini, M. & Santoro, M. G. Regulation of cyclooxygenase-2 expression by heat: a novel aspect of heat shock factor 1 function in human cells. PLoS ONE 7, e31304 (2012).
- 193
Chatterjee, M. et al. STAT3 and MAPK signaling maintain overexpression of heat shock proteins 90α and β in multiple myeloma cells, which critically contribute to tumor-cell survival. Blood 109, 720–728 (2007).
- 194
Marubayashi, S. et al. HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans. J. Clin. Invest. 120, 3578–3593 (2010).
- 195
Sato, N. et al. Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3. Biochem. Biophys. Res. Commun. 300, 847–852 (2003).
- 196
Shang, L. & Tomasi, T. B. The heat shock protein 90-CDC37 chaperone complex is required for signaling by types I and II interferons. J. Biol. Chem. 281, 1876–1884 (2006).
- 197
Weigert, O. et al. Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition. J. Exp. Med. 209, 259–273 (2012).
- 198
Patapoutian, A., Peier, A. M., Story, G. M. & Viswanath, V. ThermoTRP channels and beyond: mechanisms of temperature sensation. Nature Rev. Neurosci. 4, 529–539 (2003).
- 199
Ramsey, I. S., Delling, M. & Clapham, D. E. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006).
- 200
Trepel, J., Mollapour, M., Giaccone, G. & Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nature Rev. Cancer 10, 537–549 (2010).
- 201
Zou, J., Guo, Y., Guettouche, T., Smith, D. F. & Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471–480 (1998).
- 202
Ahn, S. G. & Thiele, D. J. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev. 17, 516–528 (2003).
- 203
Whitesell, L. & Lindquist, S. L. HSP90 and the chaperoning of cancer. Nature Rev. Cancer 5, 761–772 (2005).
- 204
Neckers, L. & Workman, P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin. Cancer Res. 18, 64–76 (2012).
- 205
Muralidharan, S. & Mandrekar, P. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J. Leukoc. Biol. 94, 1167–1184 (2013).
- 206
Chu, K. F. & Dupuy, D. E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nature Rev. Cancer 14, 199–208 (2014).
- 207
Repasky, E. A., Evans, S. S. & Dewhirst, M. W. Temperature matters! And why it should matter to tumor immunologists. Cancer Immunol. Res. 1, 210–216 (2013).
- 208
Haemmerich, D. & Laeseke, P. F. Thermal tumour ablation: devices, clinical applications and future directions. Int. J. Hyperthermia 21, 755–760 (2005).
- 209
Issels, R. D. et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol. 11, 561–570 (2010).
- 210
Wessalowski, R. et al. Regional deep hyperthermia for salvage treatment of children and adolescents with refractory or recurrent non-testicular malignant germ-cell tumours: an open-label, non-randomised, single-institution, phase 2 study. Lancet Oncol. 14, 843–852 (2013).
- 211
Jones, E. L. et al. Randomized trial of hyperthermia and radiation for superficial tumors. J. Clin. Oncol. 23, 3079–3085 (2005). References 209–211 demonstrate that thermal therapy has a clinical benefit when used in an adjuvant setting in combination with chemotherapy or radiotherapy.
- 212
Kong, G., Braun, R. D. & Dewhirst, M. W. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res. 61, 3027–3032 (2001).
- 213
Sen, A. et al. Mild elevation of body temperature reduces tumor interstitial fluid pressure and hypoxia and enhances efficacy of radiotherapy in murine tumor models. Cancer Res. 71, 3872–3880 (2011).
- 214
Xu, Y. et al. Fever-range whole body hyperthermia increases the number of perfused tumor blood vessels and therapeutic efficacy of liposomally encapsulated doxorubicin. Int. J. Hyperthermia 23, 513–527 (2007).
- 215
Song, C. W., Park, H. J., Lee, C. K. & Griffin, R. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int. J. Hyperthermia 21, 761–767 (2005).
- 216
Dewhirst, M. W., Landon, C. D., Hofmann, C. L. & Stauffer, P. R. Novel approaches to treatment of hepatocellular carcinoma and hepatic metastases using thermal ablation and thermosensitive liposomes. Surg. Oncol. Clin. N. Am. 22, 545–561 (2013).
- 217
Page, D. B., Postow, M. A., Callahan, M. K., Allison, J. P. & Wolchok, J. D. Immune modulation in cancer with antibodies. Annu. Rev. Med. 65, 185–202 (2014).
- 218
Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nature Rev. Immunol. 12, 269–281 (2012).
- 219
Palucka, K. & Banchereau, J. Cancer immunotherapy via dendritic cells. Nature Rev. Cancer 12, 265–277 (2012).
- 220
Wolchok, J. D. & Chan, T. A. Cancer: antitumour immunity gets a boost. Nature 515, 496–498 (2014).
- 221
Guo, J. et al. Intratumoral injection of dendritic cells in combination with local hyperthermia induces systemic antitumor effect in patients with advanced melanoma. Int. J. Cancer 120, 2418–2425 (2007).
- 222
Mukhopadhaya, A. et al. Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity. Cancer Res. 67, 7798–7806 (2007).
- 223
Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).
Acknowledgements
The authors thank M. Appenheimer, J. Black and M. Messmer for helpful comments on the manuscript, and E. Smith and UC Berkeley Natural Resources Library for assistance with archived citations. This work was supported by the US National Institutes of Health (CA79765, CA085183 and AI082039) and the Jennifer Linscott Tietgen Family Foundation. The authors also acknowledge the significant contributions of colleagues in the field that could not always be cited owing to space limitations.
Author information
Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Evans, S., Repasky, E. & Fisher, D. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 15, 335–349 (2015). https://doi.org/10.1038/nri3843
Published:
Issue Date:
Further reading
-
New Insights on the Role of TRP Channels in Calcium Signalling and Immunomodulation: Review of Pathways and Implications for Clinical Practice
Clinical Reviews in Allergy & Immunology (2021)
-
Fever Induced by Zymosan A and Polyinosinic-Polycytidylic Acid in Female Rats: Influence of Sex Hormones and the Participation of Endothelin-1
Inflammation (2021)
-
Embedded sensing package for temporary bone cement spacers in infected total knee arthroplasty
Journal of the Mechanical Behavior of Biomedical Materials (2021)
-
Perinatal Infection: A Major Contributor to Efficacy of Cooling in Newborns Following Birth Asphyxia
International Journal of Molecular Sciences (2021)
-
Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy
Nano Today (2021)