Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Perforin and granzymes: function, dysfunction and human pathology

Key Points

  • This article reviews recent advances in the structural, cellular and clinical aspects of perforin and granzyme biology.

  • It describes the cellular and biochemical mechanisms that are responsible for protecting cytotoxic T lymphocytes and natural killer cells from endogenous cytotoxic perforin and granzymes.

  • Structural studies have shown evolutionary conservation and similar mechanisms of pore formation by perforin-like family proteins and the bacterial virulence factors cholesterol-dependent cytolysins.

  • Perforin and granzymes synergize to mediate apoptosis of target cells: pro-apoptotic granzymes diffuse through perforin pores on the plasma membrane of the target cell.

  • Granzymes have various cytotoxic and non-cytotoxic mechanisms of action and have roles in inflammation and cancer.

  • A group of autosomal-recessive, immune-mediated diseases — known as perforinopathies — are discussed. These are caused by insufficient perforin delivery to the immunological synapse, due either to perforin mutations or to impaired granule exocytosis.

  • A common perforin polymorphism, Ala91Val — which predisposes carriers to immunological disorders — is highlighted.

Abstract

A defining property of cytotoxic lymphocytes is their expression and regulated secretion of potent toxins, including the pore-forming protein perforin and serine protease granzymes. Until recently, mechanisms of pore formation and granzyme transfer into the target cell were poorly understood, but advances in structural and cellular biology have now begun to unravel how synergy between perforin and granzymes brings about target cell death. These and other advances are demonstrating the surprisingly broad pathophysiological roles of the perforin–granzyme pathway, and this has important implications for understanding immune homeostasis and for developing immunotherapies for cancer and other diseases. In particular, we are beginning to define and understand a range of human diseases that are associated with a failure to deliver active perforin to target cells. In this Review, we discuss the current understanding of the structural, cellular and clinical aspects of perforin and granzyme biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of a cytotoxic lymphocyte with a target cell.
Figure 2: Structural transitions of cholesterol-dependent cytolysins and perforin.
Figure 3: Perforin pore formation in action.

Similar content being viewed by others

References

  1. Ritter, A. T., Angus, K. L. & Griffiths, G. M. The role of the cytoskeleton at the immunological synapse. Immunol. Rev. 256, 107–117 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Voskoboinik, I. & Trapani, J. A. Perforinopathy: a spectrum of human immune disease caused by defective perforin delivery or function. Front. Immunol. 4, 441 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Brennan, A. J., Chia, J., Trapani, J. A. & Voskoboinik, I. Perforin deficiency and susceptibility to cancer. Cell Death Differ. 17, 607–615 (2010).

    CAS  PubMed  Google Scholar 

  4. de Saint Basile, G., Ménasché, G. & Fischer, A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nature Rev. Immunol. 10, 568–579 (2010).

    CAS  Google Scholar 

  5. Janka, G. E. Familial and acquired hemophagocytic lymphohistiocytosis. Annu. Rev. Med. 63, 233–246 (2012).

    CAS  PubMed  Google Scholar 

  6. Rosenau, W. & Moon, H. D. Lysis of homologous cells by sensitized lymphocytes in tissue culture. J. Natl Cancer Inst. 27, 471–483 (1961).

    CAS  PubMed  Google Scholar 

  7. Bykovskaja, S. N., Rytenko, A. N., Rauschenbach, M. O. & Bykovsky, A. F. Ultrastructural alteration of cytolytic T lymphocytes following their interaction with target cells. II. Morphogenesis of secretory granules and intracellular vacuoles. Cell. Immunol. 40, 175–185 (1978).

    CAS  PubMed  Google Scholar 

  8. Bykovskaja, S. N., Rytenko, A. N., Rauschenbach, M. O. & Bykovsky, A. F. Ultrastructural alteration of cytolytic T lymphocytes following their interaction with target cells. I. Hypertrophy and change of orientation of the Golgi apparatus. Cell. Immunol. 40, 164–174 (1978).

    CAS  PubMed  Google Scholar 

  9. Yannelli, J. R., Sullivan, J. A., Mandell, G. L. & Engelhard, V. H. Reorientation and fusion of cytotoxic T lymphocyte granules after interaction with target cells as determined by high resolution cinemicrography. J. Immunol. 136, 377–382 (1986).

    CAS  PubMed  Google Scholar 

  10. Dourmashkin, R. R., Deteix, P., Simone, C. B. & Henkart, P. Electron microscopic demonstration of lesions in target cell membranes associated with antibody-dependent cellular cytotoxicity. Clin. Exp. Immunol. 42, 554–560 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Henkart, P. A., Millard, P. J., Reynolds, C. W. & Henkart, M. P. Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors. J. Exp. Med. 160, 75–93 (1984).

    CAS  PubMed  Google Scholar 

  12. Millard, P. J., Henkart, M. P., Reynolds, C. W. & Henkart, P. A. Purification and properties of cytoplasmic granules from cytotoxic rat LGL tumors. J. Immunol. 132, 3197–3204 (1984).

    CAS  PubMed  Google Scholar 

  13. Shinkai, Y., Takio, K. & Okumura, K. Homology of perforin to the ninth component of complement (C9). Nature 334, 525–527 (1988).

    CAS  PubMed  Google Scholar 

  14. Podack, E. R., Young, J. D. & Cohn, Z. A. Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules. Proc. Natl Acad. Sci. USA 82, 8629–8633 (1985).

    CAS  PubMed  Google Scholar 

  15. Young, J. D., Cohn, Z. A. & Podack, E. R. The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: structural, immunological, and functional similarities. Science 233, 184–190 (1986).

    CAS  PubMed  Google Scholar 

  16. Young, J. D., Hengartner, H., Podack, E. R. & Cohn, Z. A. Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 44, 849–859 (1986).

    CAS  PubMed  Google Scholar 

  17. Jenne, D. et al. Identification and sequencing of cDNA clones encoding the granule-associated serine proteases granzymes D, E and F of cytolytic T lymphocytes. Proc. Natl Acad. Sci. USA 85, 4814–4818 (1988).

    CAS  PubMed  Google Scholar 

  18. Masson, D. & Tschopp, J. A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell 49, 679–685 (1987).

    CAS  PubMed  Google Scholar 

  19. Krahenbuhl, O. et al. Characterization of granzymes A and B isolated from granules of cloned human cytotoxic T lymphocytes. J. Immunol. 141, 3471–3477 (1988).

    CAS  PubMed  Google Scholar 

  20. Young, J. D. et al. Isolation and characterization of a serine esterase from cytolytic T cell granules. Cell 47, 183–194 (1986).

    CAS  PubMed  Google Scholar 

  21. Shi, L., Kam, C. M., Powers, J. C., Aebersold, R. & Greenberg, A. H. Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J. Exp. Med. 176, 1521–1529 (1992).

    CAS  PubMed  Google Scholar 

  22. Nakajima, H. & Henkart, P. A. Cytotoxic lymphocyte granzymes trigger a target cell internal disintegration pathway leading to cytolysis and DNA breakdown. J. Immunol. 152, 1057–1063 (1994).

    CAS  PubMed  Google Scholar 

  23. Shi, L. et al. Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J. Exp. Med. 185, 855–866 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakajima, H., Park, H. L. & Henkart, P. A. Synergistic roles of granzymes A and B in mediating target cell death by rat basophilic leukemia mast cell tumors also expressing cytolysin/perforin. J. Exp. Med. 181, 1037–1046 (1995).

    CAS  PubMed  Google Scholar 

  25. Shiver, J. W., Su, L. & Henkart, P. A. Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell 71, 315–322 (1992).

    CAS  PubMed  Google Scholar 

  26. Heusel, J. W., Wesselschmidt, R. L., Shresta, S., Russell, J. H. & Ley, T. J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76, 977–987 (1994).

    CAS  PubMed  Google Scholar 

  27. Su, B., Bochan, M. R., Hanna, W. L., Froelich, C. J. & Brahmi, Z. Human granzyme B is essential for DNA fragmentation of susceptible target cells. Eur. J. Immunol. 24, 2073–2080 (1994).

    CAS  PubMed  Google Scholar 

  28. Trapani, J. A. & Smyth, M. J. Killing by cytotoxic T cells and natural killer cells: multiple granule serine proteases as initiators of DNA fragmentation. Immunol. Cell Biol. 71, 201–208 (1993).

    CAS  PubMed  Google Scholar 

  29. Jongstra, J. et al. The isolation and sequence of a novel gene from a human functional T cell line. J. Exp. Med. 165, 601–614 (1987).

    CAS  PubMed  Google Scholar 

  30. Peters, P. J. et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med. 173, 1099–1109 (1991).

    CAS  PubMed  Google Scholar 

  31. Bolitho, P., Voskoboinik, I., Trapani, J. A. & Smyth, M. J. Apoptosis induced by the lymphocyte effector molecule perforin. Curr. Opin. Immunol. 19, 339–347 (2007).

    CAS  PubMed  Google Scholar 

  32. Voskoboinik, I., Smyth, M. J. & Trapani, J. A. Perforin-mediated target-cell death and immune homeostasis. Nature Rev. Immunol. 6, 940–952 (2006).

    CAS  Google Scholar 

  33. Mullbacher, A., Hla, R. T., Museteanu, C. & Simon, M. M. Perforin is essential for control of ectromelia virus but not related poxviruses in mice. J. Virol. 73, 1665–1667 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pardo, J., Balkow, S., Anel, A. & Simon, M. M. The differential contribution of granzyme A and granzyme B in cytotoxic T lymphocyte-mediated apoptosis is determined by the quality of target cells. Eur. J. Immunol. 32, 1980–1985 (2002).

    CAS  PubMed  Google Scholar 

  35. Simon, M. M. et al. In vitro- and ex vivo-derived cytolytic leukocytes from granzyme A x B double knockout mice are defective in granule-mediated apoptosis but not lysis of target cells. J. Exp. Med. 186, 1781–1786 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Stepp, S. E. et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286, 1957–1959 (1999). This is the first study reporting biallelic perforin mutations in patients with FHL.

    CAS  PubMed  Google Scholar 

  37. Pipkin, M. E. et al. Chromosome transfer activates and delineates a locus control region for perforin. Immunity 26, 29–41 (2007).

    CAS  PubMed  Google Scholar 

  38. Pipkin, M. E., Rao, A. & Lichtenheld, M. G. The transcriptional control of the perforin locus. Immunol. Rev. 235, 55–72 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cruz-Guilloty, F. et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J. Exp. Med. 206, 51–59 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pipkin, M. E. et al. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32, 79–90 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, N. et al. MicroRNA-150 regulates the cytotoxicity of natural killers by targeting perforin-1. J. Allergy Clin. Immunol. 134, 195–203 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, T. D. et al. Human microRNA-27a* targets Prf1 and GzmB expression to regulate NK-cell cytotoxicity. Blood 118, 5476–5486 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Trifari, S. et al. MicroRNA-directed program of cytotoxic CD8+ T-cell differentiation. Proc. Natl Acad. Sci. USA 110, 18608–18613 (2013).

    CAS  PubMed  Google Scholar 

  44. Wang, P. et al. Identification of resting and type I IFN-activated human NK cell miRNomes reveals microRNA-378 and microRNA-30e as negative regulators of NK cell cytotoxicity. J. Immunol. 189, 211–221 (2012).

    CAS  PubMed  Google Scholar 

  45. D'Angelo, M. E. et al. Cathepsin H is an additional convertase of pro-granzyme B. J. Biol. Chem. 285, 20514–20519 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pham, C. T. & Ley, T. J. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl Acad. Sci. USA 96, 8627–8632 (1999).

    CAS  PubMed  Google Scholar 

  47. Griffiths, G. M. & Isaaz, S. Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J. Cell Biol. 120, 885–896 (1993).

    CAS  PubMed  Google Scholar 

  48. Young, J. D., Damiano, A., DiNome, M. A., Leong, L. G. & Cohn, Z. A. Dissociation of membrane binding and lytic activities of the lymphocyte pore-forming protein (perforin). J. Exp. Med. 165, 1371–1382 (1987).

    CAS  PubMed  Google Scholar 

  49. Voskoboinik, I. et al. Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain: a critical role for aspartate residues 429, 435, 483, and 485 but not 491. J. Biol. Chem. 280, 8426–8434 (2005).

    CAS  PubMed  Google Scholar 

  50. Praper, T. et al. Human perforin permeabilizing activity, but not binding to lipid membranes, is affected by pH. Mol. Immunol. 47, 2492–2504 (2010).

    CAS  PubMed  Google Scholar 

  51. Uellner, R. et al. Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J. 16, 7287–7296 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Brennan, A. J. et al. Protection from endogenous perforin: glycans and the C terminus regulate exocytic trafficking in cytotoxic lymphocytes. Immunity 34, 879–892 (2011).

    CAS  PubMed  Google Scholar 

  53. Law, R. H. et al. The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468, 447–451 (2010). This study reports the X-ray crystal structure of perforin and the three-dimensional reconstruction of the entire pore.

    CAS  PubMed  Google Scholar 

  54. Lopez, J. A., Brennan, A. J., Whisstock, J. C., Voskoboinik, I. & Trapani, J. A. Protecting a serial killer: pathways for perforin trafficking and self-defence ensure sequential target cell death. Trends Immunol. 33, 406–412 (2012).

    CAS  PubMed  Google Scholar 

  55. Krzewski, K., Gil-Krzewska, A., Nguyen, V., Peruzzi, G. & Coligan, J. E. LAMP1/CD107a is required for efficient perforin delivery to lytic granules and NK-cell cytotoxicity. Blood 121, 4672–4683 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dustin, M. L. & Long, E. O. Cytotoxic immunological synapses. Immunol. Rev. 235, 24–34 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lagrue, K. et al. The central role of the cytoskeleton in mechanisms and functions of the NK cell immune synapse. Immunol. Rev. 256, 203–221 (2013).

    CAS  PubMed  Google Scholar 

  58. Stinchcombe, J. C., Majorovits, E., Bossi, G., Fuller, S. & Griffiths, G. M. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443, 462–465 (2006).

    CAS  PubMed  Google Scholar 

  59. Bertrand, F. et al. An initial and rapid step of lytic granule secretion precedes microtubule organizing center polarization at the cytotoxic T lymphocyte/target cell synapse. Proc. Natl Acad. Sci. USA 110, 6073–6078 (2013).

    CAS  PubMed  Google Scholar 

  60. Ruiz-Garcia, R. et al. A case of partial dedicator of cytokinesis 8 deficiency with altered effector phenotype and impaired CD8+ and natural killer cell cytotoxicity. J. Allergy Clin. Immunol. 134, 218–221 (2014).

    CAS  PubMed  Google Scholar 

  61. Randall, K. L. et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J. Exp. Med. 208, 2305–2320 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kupfer, A., Singer, S. J. & Dennert, G. On the mechanism of unidirectional killing in mixtures of two cytotoxic T lymphocytes. Unidirectional polarization of cytoplasmic organelles and the membrane-associated cytoskeleton in the effector cell. J. Exp. Med. 163, 489–498 (1986).

    CAS  PubMed  Google Scholar 

  63. Balaji, K. N., Schaschke, N., Machleidt, W., Catalfamo, M. & Henkart, P. A. Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation. J. Exp. Med. 196, 493–503 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Baran, K. et al. Cytotoxic T lymphocytes from cathepsin B-deficient mice survive normally in vitro and in vivo after encountering and killing target cells. J. Biol. Chem. 281, 30485–30491 (2006).

    CAS  PubMed  Google Scholar 

  65. Lopez, J. A. et al. Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack. Blood 121, 2659–2668 (2013). This paper demonstrates the precise moment of target cell membrane disruption by perforin in a live immunological synapse.

    CAS  PubMed  Google Scholar 

  66. Isaaz, S., Baetz, K., Olsen, K., Podack, E. & Griffiths, G. M. Serial killing by cytotoxic T lymphocytes: T cell receptor triggers degranulation, re-filling of the lytic granules and secretion of lytic proteins via a non-granule pathway. Eur. J. Immunol. 25, 1071–1079 (1995).

    CAS  PubMed  Google Scholar 

  67. Cohnen, A. et al. Surface CD107a/LAMP-1 protects natural killer cells from degranulation-associated damage. Blood 122, 1411–1418 (2013).

    CAS  PubMed  Google Scholar 

  68. Bird, C. H. et al. Selective regulation of apoptosis: the cytotoxic lymphocyte serpin proteinase inhibitor 9 protects against granzyme B-mediated apoptosis without perturbing the Fas cell death pathway. Mol. Cell. Biol. 18, 6387–6398 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, M. et al. Serine protease inhibitor 6 protects cytotoxic T cells from self-inflicted injury by ensuring the integrity of cytotoxic granules. Immunity 24, 451–461 (2006).

    CAS  PubMed  Google Scholar 

  70. Hadders, M. A., Beringer, D. X. & Gros, P. Structure of C8α–MACPF reveals mechanism of membrane attack in complement immune defense. Science 317, 1552–1554 (2007).

    CAS  PubMed  Google Scholar 

  71. Rosado, C. J. et al. A common fold mediates vertebrate defense and bacterial attack. Science 317, 1548–1551 (2007). References 70 and 71 report the first X-ray crystal structures of MACPF domain-containing proteins and demonstrate the similarity of these proteins to bacterial CDCs.

    CAS  PubMed  Google Scholar 

  72. Slade, D. J. et al. Crystal structure of the MACPF domain of human complement protein C8α in complex with the C8γ subunit. J. Mol. Biol. 379, 331–342 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Shatursky, O. et al. The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99, 293–299 (1999).

    CAS  PubMed  Google Scholar 

  74. Tilley, S. J., Orlova, E. V., Gilbert, R. J., Andrew, P. W. & Saibil, H. R. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121, 247–256 (2005).

    CAS  PubMed  Google Scholar 

  75. Reboul, C. F., Mahmood, K., Whisstock, J. C. & Dunstone, M. A. Predicting giant transmembrane β-barrel architecture. Bioinformatics 28, 1299–1302 (2012).

    CAS  PubMed  Google Scholar 

  76. Gilbert, R. J., Dalla Serra, M., Froelich, C. J., Wallace, M. I. & Anderluh, G. Membrane pore formation at protein-lipid interfaces. Trends Biochem. Sci. 39, 510–516 (2014).

    CAS  PubMed  Google Scholar 

  77. Leung, C. et al. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. eLife 3, e04247 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Metkar, S. S. et al. Perforin oligomers form arcs in cellular membranes: a locus for intracellular delivery of granzymes. Cell Death Differ. 22, 74–85 (2015). References 77 and 78 demonstrate the formation of incomplete pores ('arcs') by perforin and a bacterial CDC.

    CAS  PubMed  Google Scholar 

  79. Voskoboinik, I., Dunstone, M. A., Baran, K., Whisstock, J. C. & Trapani, J. A. Perforin: structure, function, and role in human immunopathology. Immunol. Rev. 235, 35–54 (2010).

    CAS  PubMed  Google Scholar 

  80. Baran, K. et al. The molecular basis for perforin oligomerization and transmembrane pore assembly. Immunity 30, 684–695 (2009).

    CAS  PubMed  Google Scholar 

  81. Browne, K. A. et al. Cytosolic delivery of granzyme B by bacterial toxins: evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin. Mol. Cell. Biol. 19, 8604–8615 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Keefe, D. et al. Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23, 249–262 (2005).

    CAS  PubMed  Google Scholar 

  83. Froelich, C. J. et al. New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J. Biol. Chem. 271, 29073–29079 (1996).

    CAS  PubMed  Google Scholar 

  84. Metkar, S. S. et al. Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B–serglycin complexes into target cells without plasma membrane pore formation. Immunity 16, 417–428 (2002).

    CAS  PubMed  Google Scholar 

  85. Thiery, J. et al. Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood 115, 1582–1593 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Thiery, J. et al. Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nature Immunol. 12, 770–777 (2011).

    CAS  Google Scholar 

  87. Gerasimenko, J. V., Tepikin, A. V., Petersen, O. H. & Gerasimenko, O. V. Calcium uptake via endocytosis with rapid release from acidifying endosomes. Curr. Biol. 8, 1335–1338 (1998).

    CAS  PubMed  Google Scholar 

  88. Metkar, S. S. et al. Perforin rapidly induces plasma membrane phospholipid flip-flop. PLoS ONE 6, e24286 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Renkin, E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 38, 225–243 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lopez, J. A. et al. Rapid and unidirectional perforin pore delivery at the cytotoxic immune synapse. J. Immunol. 191, 2328–2334 (2013).

    CAS  PubMed  Google Scholar 

  91. Reddy, A., Caler, E. V. & Andrews, N. W. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106, 157–169 (2001).

    CAS  PubMed  Google Scholar 

  92. Gilbert, R. J. Inactivation and activity of cholesterol-dependent cytolysins: what structural studies tell us. Structure 13, 1097–1106 (2005).

    CAS  PubMed  Google Scholar 

  93. McNeil, P. L. & Steinhardt, R. A. Plasma membrane disruption: repair, prevention, adaptation. Annu. Rev. Cell Dev. Biol. 19, 697–731 (2003).

    CAS  PubMed  Google Scholar 

  94. Shi, L., Kraut, R. P., Aebersold, R. & Greenberg, A. H. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. Exp. Med. 175, 553–566 (1992).

    CAS  PubMed  Google Scholar 

  95. Hiebert, P. R. & Granville, D. J. Granzyme B in injury, inflammation, and repair. Trends Mol. Med. 18, 732–741 (2012).

    CAS  PubMed  Google Scholar 

  96. Andrade, F., Fellows, E., Jenne, D. E., Rosen, A. & Young, C. S. Granzyme H destroys the function of critical adenoviral proteins required for viral DNA replication and granzyme B inhibition. EMBO J. 26, 2148–2157 (2007). This paper shows that granzymes can synergize by cleaving viral substrates that hijack antiviral host defence.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Pham, C. T., Ivanovich, J. L., Raptis, S. Z., Zehnbauer, B. & Ley, T. J. Papillon–Lefèvre syndrome: correlating the molecular, cellular, and clinical consequences of cathepsin C/dipeptidyl peptidase I deficiency in humans. J. Immunol. 173, 7277–7281 (2004).

    CAS  PubMed  Google Scholar 

  98. Sutton, V. R. & Trapani, J. A. Proteases in lymphocyte killer function: redundancy, polymorphism and questions remaining. Biol. Chem. 391, 873–879 (2010).

    CAS  PubMed  Google Scholar 

  99. Heibein, J. A. et al. Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members bid and Bax. J. Exp. Med. 192, 1391–1402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sutton, V. R. et al. Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme B-mediated caspase activation. J. Exp. Med. 192, 1403–1414 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sutton, V. R., Wowk, M. E., Cancilla, M. & Trapani, J. A. Caspase activation by granzyme B is indirect, and caspase autoprocessing requires the release of proapoptotic mitochondrial factors. Immunity 18, 319–329 (2003).

    CAS  PubMed  Google Scholar 

  102. Kaiserman, D. et al. The major human and mouse granzymes are structurally and functionally divergent. J. Cell Biol. 175, 619–630 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Casciola-Rosen, L. et al. Mouse and human granzyme B have distinct tetrapeptide specificities and abilities to recruit the bid pathway. J. Biol. Chem. 282, 4545–4552 (2007).

    CAS  PubMed  Google Scholar 

  104. Cullen, S. P., Adrain, C., Luthi, A. U., Duriez, P. J. & Martin, S. J. Human and murine granzyme B exhibit divergent substrate preferences. J. Cell Biol. 176, 435–444 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Thia, K. Y. & Trapani, J. A. The granzyme B gene is highly polymorphic in wild mice but essentially invariant in common inbred laboratory strains. Tissue Antigens 70, 198–204 (2007).

    CAS  PubMed  Google Scholar 

  106. Andoniou, C. E. et al. A natural genetic variant of granzyme B confers lethality to a common viral infection. PLoS Pathog. 10, e1004526 (2014). References 105 and 106 identify and characterize natural variants of mouse granzyme B and show that their inheritance has a crucial role in the clearance of viral pathogens.

    PubMed  PubMed Central  Google Scholar 

  107. Mullbacher, A. et al. Granzymes are the essential downstream effector molecules for the control of primary virus infections by cytolytic leukocytes. Proc. Natl Acad. Sci. USA 96, 13950–13955 (1999).

    CAS  PubMed  Google Scholar 

  108. Susanto, O. et al. Mouse granzyme A induces a novel death with writhing morphology that is mechanistically distinct from granzyme B-induced apoptosis. Cell Death Differ. 20, 1183–1193 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Metkar, S. S. et al. Human and mouse granzyme A induce a proinflammatory cytokine response. Immunity 29, 720–733 (2008).

    CAS  Google Scholar 

  110. Hoves, S. et al. A critical role for granzymes in antigen cross-presentation through regulating phagocytosis of killed tumor cells. J. Immunol. 187, 1166–1175 (2011).

    CAS  PubMed  Google Scholar 

  111. Ewen, C. L., Kane, K. P. & Bleackley, R. C. Granzyme H induces cell death primarily via a Bcl-2-sensitive mitochondrial cell death pathway that does not require direct Bid activation. Mol. Immunol. 54, 309–318 (2013).

    CAS  PubMed  Google Scholar 

  112. de Poot, S. A. & Bovenschen, N. Granzyme M: behind enemy lines. Cell Death Differ. 21, 359–368 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. de Poot, S. A. et al. Granzyme M targets topoisomerase IIα to trigger cell cycle arrest and caspase-dependent apoptosis. Cell Death Differ. 21, 416–426 (2014).

    CAS  PubMed  Google Scholar 

  114. Pao, L. I. et al. Functional analysis of granzyme M and its role in immunity to infection. J. Immunol. 175, 3235–3243 (2005).

    CAS  PubMed  Google Scholar 

  115. Andrade, F. Non-cytotoxic antiviral activities of granzymes in the context of the immune antiviral state. Immunol. Rev. 235, 128–146 (2010).

    CAS  PubMed  Google Scholar 

  116. Joeckel, L. T. & Bird, P. I. Blessing or curse? Proteomics in granzyme research. Proteomics Clin. Appl. 8, 351–381 (2014).

    CAS  PubMed  Google Scholar 

  117. Rawlings, N. D., Waller, M., Barrett, A. J. & Bateman, A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42, D503–D509 (2014).

    CAS  PubMed  Google Scholar 

  118. Brasacchio, D. et al. A functional genomics screen identifies PCAF and ADA3 as regulators of human granzyme B-mediated apoptosis and Bid cleavage. Cell Death Differ. 21, 748–760 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Irmler, M. et al. Granzyme A is an interleukin 1 β-converting enzyme. J. Exp. Med. 181, 1917–1922 (1995).

    CAS  PubMed  Google Scholar 

  120. Hiebert, P. R., Wu, D. & Granville, D. J. Granzyme B degrades extracellular matrix and contributes to delayed wound closure in apolipoprotein E knockout mice. Cell Death Differ. 20, 1404–1414 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhong, C. et al. Granzyme K inhibits replication of influenza virus through cleaving the nuclear transport complex importin α1/β dimer of infected host cells. Cell Death Differ. 19, 882–890 (2012).

    CAS  PubMed  Google Scholar 

  122. Bovenschen, N. et al. Elevated granzyme M-expressing lymphocytes during cytomegalovirus latency and reactivation after allogeneic stem cell transplantation. Clin. Immunol. 150, 1–11 (2014).

    CAS  PubMed  Google Scholar 

  123. van Domselaar, R. et al. Granzyme M targets host cell hnRNP K that is essential for human cytomegalovirus replication. Cell Death Differ. 20, 419–429 (2013). This paper is an example of how an orphan granzyme may have evolved to interfere with a specific viral pathogen.

    CAS  PubMed  Google Scholar 

  124. Anthony, D. A. et al. A role for granzyme M in TLR4-driven inflammation and endotoxicosis. J. Immunol. 185, 1794–1803 (2010).

    CAS  PubMed  Google Scholar 

  125. Afonina, I. S. et al. Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1α. Mol. Cell 44, 265–278 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Akeda, T. et al. CD8+ T cell granzyme B activates keratinocyte endogenous IL-18. Arch. Dermatol. Res. 306, 125–130 (2014).

    CAS  PubMed  Google Scholar 

  127. Omoto, Y. et al. Granzyme B is a novel interleukin-18 converting enzyme. J. Dermatol. Sci. 59, 129–135 (2010).

    CAS  PubMed  Google Scholar 

  128. Wensink, A. C. et al. Granzyme K synergistically potentiates LPS-induced cytokine responses in human monocytes. Proc. Natl Acad. Sci. USA 111, 5974–5979 (2014).

    CAS  PubMed  Google Scholar 

  129. Arias, M. A. et al. Elucidating sources and roles of granzymes A and B during bacterial infection and sepsis. Cell Rep. 8, 420–429 (2014).

    CAS  PubMed  Google Scholar 

  130. Jenkins, M. R., Trapani, J. A., Doherty, P. C. & Turner, S. J. Granzyme K expressing cytotoxic T lymphocytes protects against influenza virus in granzyme AB−/− mice. Viral Immunol. 21, 341–346 (2008).

    CAS  PubMed  Google Scholar 

  131. Marcet-Palacios, M. et al. Granzyme B inhibits vaccinia virus production through proteolytic cleavage of eukaryotic initiation factor 4 gamma 3. PLoS Pathog. 7, e1002447 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. van Domselaar, R., Quadir, R., van der Made, A. M., Broekhuizen, R. & Bovenschen, N. All human granzymes target hnRNP K that is essential for tumor cell viability. J. Biol. Chem. 287, 22854–22864 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, S., Xia, P., Shi, L. & Fan, Z. FADD cleavage by NK cell granzyme M enhances its self-association to facilitate procaspase-8 recruitment for auto-processing leading to caspase cascade. Cell Death Differ. 19, 605–615 (2012).

    CAS  PubMed  Google Scholar 

  134. de Poot, S. A., Lai, K. W., Hovingh, E. S. & Bovenschen, N. Granzyme M cannot induce cell death via cleavage of mouse FADD. Apoptosis 18, 533–534 (2013).

    PubMed  Google Scholar 

  135. Baginska, J. et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc. Natl Acad. Sci. USA 110, 17450–17455 (2013).

    CAS  PubMed  Google Scholar 

  136. Wang, S. et al. Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells. Cell Death Dis. 4, e856 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Sutton, V. R., Vaux, D. L. & Trapani, J. A. Bcl-2 prevents apoptosis induced by perforin and granzyme B, but not that mediated by whole cytotoxic lymphocytes. J. Immunol. 158, 5783–5790 (1997).

    CAS  PubMed  Google Scholar 

  138. Sutton, V. R. et al. Granzyme B triggers a prolonged pressure to die in Bcl-2 overexpressing cells, defining a window of opportunity for effective treatment with ABT-737. Cell Death Dis. 3, e344 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cote, M. et al. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J. Clin. Invest. 119, 3765–3773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Jenkins, M. R. et al. Failed CTL/NK cell killing and cytokine hyper-secretion are directly linked through prolonged synapse time. J. Exp. Med. 212, 307–317 (2015). This study demonstrates the link between perforin deficiency, the duration of the immunological synapse and hypersecretion of pro-inflammatory cytokines. It also provides the cellular mechanism of FHL.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Feldmann, J. et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115, 461–473 (2003).

    CAS  PubMed  Google Scholar 

  142. zur Stadt, U. et al. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am. J. Hum. Genet. 85, 482–492 (2009).

    PubMed  PubMed Central  Google Scholar 

  143. zur Stadt, U. et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum. Mol. Genet. 14, 827–834 (2005). References 139 and 141–143 determine three genes that are responsible for perforin and granzyme secretion into the immunological synapse; defects in these genes lead to FHL.

    CAS  PubMed  Google Scholar 

  144. Chia, J. et al. Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proc. Natl Acad. Sci. USA 106, 9809–9814 (2009). This study defines partial perforin deficiency as a protein misfolding disease and determines its link with cancer predisposition.

    CAS  PubMed  Google Scholar 

  145. van den Broek, M. E. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184, 1781–1790 (1996).

    CAS  PubMed  Google Scholar 

  146. van den Broek, M. F., Kagi, D., Zinkernagel, R. M. & Hengartner, H. Perforin dependence of natural killer cell-mediated tumor control in vivo. Eur. J. Immunol. 25, 3514–3516 (1995).

    CAS  PubMed  Google Scholar 

  147. Smyth, M. J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Gatti, R. A. & Good, R. A. Occurrence of malignancy in immunodeficiency diseases. A literature review. Cancer 28, 89–98 (1971).

    CAS  PubMed  Google Scholar 

  149. Katano, H. et al. Chronic active Epstein–Barr virus infection associated with mutations in perforin that impair its maturation. Blood 103, 1244–1252 (2004).

    CAS  PubMed  Google Scholar 

  150. Sekijima, Y. et al. The biological and chemical basis for tissue-selective amyloid disease. Cell 121, 73–85 (2005).

    CAS  PubMed  Google Scholar 

  151. Wiseman, R. L., Powers, E. T., Buxbaum, J. N., Kelly, J. W. & Balch, W. E. An adaptable standard for protein export from the endoplasmic reticulum. Cell 131, 809–821 (2007).

    CAS  PubMed  Google Scholar 

  152. Machaczka, M. et al. Development of classical Hodgkin's lymphoma in an adult with biallelic STXBP2 mutations. Haematologica 98, 760–764 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Meeths, M. et al. Spectrum of clinical presentations in familial hemophagocytic lymphohistiocytosis type 5 patients with mutations in STXBP2. Blood 116, 2635–2643 (2010). This study uncovers a range of previously unsuspected clinical symptoms in patients with FHL type 5.

    CAS  PubMed  Google Scholar 

  154. Pagel, J. et al. Distinct mutations in STXBP2 are associated with variable clinical presentations in patients with familial hemophagocytic lymphohistiocytosis type 5 (FHL5). Blood 119, 6016–6024 (2012).

    CAS  PubMed  Google Scholar 

  155. Adami, J. et al. Cancer risk following organ transplantation: a nationwide cohort study in Sweden. Br. J. Cancer 89, 1221–1227 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Frisch, M., Biggar, R. J., Engels, E. A., Goedert, J. J. & AIDS–Cancer Match Registry Study Group. Association of cancer with AIDS-related immunosuppression in adults. JAMA 285, 1736–1745 (2001).

    CAS  PubMed  Google Scholar 

  157. Grulich, A. E., van Leeuwen, M. T., Falster, M. O. & Vajdic, C. M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370, 59–67 (2007).

    PubMed  Google Scholar 

  158. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    CAS  PubMed  Google Scholar 

  159. Naidoo, J., Page, D. B. & Wolchok, J. D. Immune checkpoint blockade. Hematol. Oncol. Clin. North Am. 28, 585–600 (2014).

    PubMed  Google Scholar 

  160. Zamarin, D. et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl Med. 6, 226ra32 (2014).

    PubMed  PubMed Central  Google Scholar 

  161. Voskoboinik, I. et al. Perforin activity and immune homeostasis: the common A91V polymorphism in perforin results in both presynaptic and postsynaptic defects in function. Blood 110, 1184–1190 (2007).

    CAS  PubMed  Google Scholar 

  162. House, I. G. et al. Heterozygosity for the common perforin mutation, p.A91V, impairs the cytotoxicity of primary natural killer cells from healthy individuals. Immunol. Cell Biol. http://dx.doi.org/10.1038/icb.2015.1 (2015).

  163. Mehta, P. A. et al. Perforin polymorphism A91V and susceptibility to B-precursor childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Leukemia 20, 1539–1541 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Trapani, J. A. et al. Human perforin mutations and susceptibility to multiple primary cancers. Oncoimmunology 2, e24185 (2013).

    PubMed  PubMed Central  Google Scholar 

  165. Zhang, K. et al. Synergistic defects of different molecules in the cytotoxic pathway lead to clinical familial hemophagocytic lymphohistiocytosis. Blood 124, 1331–1334 (2014). This study demonstrates that the co-inheritance of monoallelic mutations in two genes associated with FHL may lead to the disease; the Ala91Val polymorphism in PFR1 has been responsible for almost 50% of cases.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Pena, S. V., Hanson, D. A., Carr, B. A., Goralski, T. J. & Krensky, A. M. Processing, subcellular localization, and function of 519 (granulysin), a human late T cell activation molecule with homology to small, lytic, granule proteins. J. Immunol. 158, 2680–2688 (1997).

    CAS  PubMed  Google Scholar 

  167. Anderson, D. H. et al. Granulysin crystal structure and a structure-derived lytic mechanism. J. Mol. Biol. 325, 355–365 (2003).

    CAS  PubMed  Google Scholar 

  168. Stenger, S. et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125 (1998).

    CAS  PubMed  Google Scholar 

  169. Walch, M. et al. Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell 157, 1309–1323 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Chung, W. H. et al. Granulysin is a key mediator for disseminated keratinocyte death in Stevens–Johnson syndrome and toxic epidermal necrolysis. Nature Med. 14, 1343–1350 (2008).

    CAS  PubMed  Google Scholar 

  171. Bovenschen, N. et al. NK cell protease granzyme M targets α-tubulin and disorganizes the microtubule network. J. Immunol. 180, 8184–8191 (2008).

    CAS  PubMed  Google Scholar 

  172. Hu, D. et al. Cleavage of survivin by granzyme M triggers degradation of the survivin-X-linked inhibitor of apoptosis protein (XIAP) complex to free caspase activity leading to cytolysis of target tumor cells. J. Biol. Chem. 285, 18326–18335 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Kelly, J. M. et al. Granzyme M mediates a novel form of perforin-dependent cell death. J. Biol. Chem. 279, 22236–22242 (2004).

    CAS  PubMed  Google Scholar 

  174. Lu, H. et al. Granzyme M directly cleaves inhibitor of caspase-activated DNase (CAD) to unleash CAD leading to DNA fragmentation. J. Immunol. 177, 1171–1178 (2006).

    CAS  PubMed  Google Scholar 

  175. Reboul, C. F., Whisstock, J. C. & Dunstone, M. A. A new model for pore formation by cholesterol-dependent cytolysins. PLoS Comput. Biol. 10, e1003791 (2014).

    PubMed  PubMed Central  Google Scholar 

  176. Sedelies, K. A. et al. Discordant regulation of granzyme H and granzyme B expression in human lymphocytes. J. Biol. Chem. 279, 26581–26587 (2004).

    CAS  PubMed  Google Scholar 

  177. Busiello, R. et al. Atypical features of familial hemophagocytic lymphohistiocytosis. Blood 103, 4610–4612 (2004).

    CAS  PubMed  Google Scholar 

  178. Cannella, S. et al. Germline mutations of the perforin gene are a frequent occurrence in childhood anaplastic large cell lymphoma. Cancer 109, 2566–2571 (2007).

    CAS  PubMed  Google Scholar 

  179. Clementi, R. et al. Adult onset and atypical presentation of hemophagocytic lymphohistiocytosis in siblings carrying PRF1 mutations. Blood 100, 2266–2267 (2002).

    CAS  PubMed  Google Scholar 

  180. Clementi, R. et al. A proportion of patients with lymphoma may harbor mutations of the perforin gene. Blood 105, 4424–4428 (2005).

    CAS  PubMed  Google Scholar 

  181. Feldmann, J. et al. Functional consequences of perforin gene mutations in 22 patients with familial haemophagocytic lymphohistiocytosis. Br. J. Haematol. 117, 965–972 (2002).

    CAS  PubMed  Google Scholar 

  182. Mancebo, E. et al. Familial hemophagocytic lymphohistiocytosis in an adult patient homozygous for A91V in the perforin gene, with tuberculosis infection. Haematologica 91, 1257–1260 (2006).

    PubMed  Google Scholar 

  183. Marcenaro, S. et al. Analysis of natural killer-cell function in familial hemophagocytic lymphohistiocytosis (FHL): defective CD107a surface expression heralds Munc13-4 defect and discriminates between genetic subtypes of the disease. Blood 108, 2316–2323 (2006).

    CAS  PubMed  Google Scholar 

  184. Okur, H. et al. Clinical and molecular aspects of Turkish familial hemophagocytic lymphohistiocytosis patients with perforin mutations. Leuk. Res. 32, 972–975 (2008).

    CAS  PubMed  Google Scholar 

  185. Risma, K. A., Frayer, R. W., Filipovich, A. H. & Sumegi, J. Aberrant maturation of mutant perforin underlies the clinical diversity of hemophagocytic lymphohistiocytosis. J. Clin. Invest. 116, 182–192 (2006).

    CAS  PubMed  Google Scholar 

  186. Santoro, A. et al. A single amino acid change A91V in perforin: a novel, frequent predisposing factor to childhood acute lymphoblastic leukemia? Haematologica 90, 697–698 (2005).

    PubMed  Google Scholar 

  187. Trambas, C. et al. A single amino acid change, A91V, leads to conformational changes that can impair processing to the active form of perforin. Blood 106, 932–937 (2005).

    CAS  PubMed  Google Scholar 

  188. Trizzino, A. et al. Genotype–phenotype study of familial haemophagocytic lymphohistiocytosis due to perforin mutations. J. Med. Genet. 45, 15–21 (2008).

    CAS  PubMed  Google Scholar 

  189. Orange, J. S. et al. Wiskott–Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc. Natl Acad. Sci. USA 99, 11351–11356 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I.V. and J.C.W. are supported by fellowships from the National Health and Medical Research Council of Australia (NHMRC). I.V., J.C.W. and J.A.T. are supported by project grants from the NHMRC. J.C.W. is supported by the Australian Research Council (ARC) and he acknowledges the support of an ARC Federation fellowship. J.A.T. is supported by a programme grant from the NHMRC. The authors thank the many members of their laboratories, especially J. A. Lopez and A. J. Brennan, and their collaborators, especially H. Saibil, M. A. Dunstone, R. H. P. Law and N. Lukoyanova, for their contributions to many of the findings discussed in this Review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ilia Voskoboinik or Joseph A. Trapani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Perforinopathies

A range of human immune-mediated disorders that are caused by impaired perforin delivery or function.

Toxic epidermal necrolysis

A rare life-threatening skin disease in which the dermis detaches from the epidermis. This disease often leads to sepsis and death. It is also known as Lyell syndrome; one of its forms is called Stevens–Johnson syndrome.

Microtubule-organizing centre

(MTOC). An intracellular structure from which microtubules originate. In cytotoxic lymphocytes, the MTOC moves towards the immunological synapse.

Wiskott–Aldrich syndrome

A life-threatening X-linked immunodeficiency that is caused by mutations in the gene encoding the Wiskott–Aldrich syndrome protein. The condition is characterized by thrombocytopaenia with small platelets, eczema, recurrent infections caused by immunodeficiency and an increased incidence of autoimmune manifestations and malignancies.

Emperitosis

A process by which a granzyme B-expressing cytotoxic lymphocyte is taken up by the target cell and killed by apoptosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voskoboinik, I., Whisstock, J. & Trapani, J. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol 15, 388–400 (2015). https://doi.org/10.1038/nri3839

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3839

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing