Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The impact of diet on asthma and allergic diseases

Key Points

  • The incidence of allergic diseases is increasing concomitantly with improvements in living standards and the adoption of a western lifestyle. Although the reduced exposure to microbial products is one possible cause, recent evidence indicates diet as a key factor influencing the development of allergic diseases.

  • Epidemiological studies indicate a crucial role of both maternal and early childhood food exposure in the development of allergic diseases, with the inclusion of food allergens in maternal and early childhood diet possibly being beneficial for the prevention of allergy and asthma.

  • Animal models show that the transfer of allergens, immune complexes and immunosuppressive cytokines to the suckling baby through breast milk enables the generation of regulatory T cells in neonates, which can protect them from later developing allergies.

  • Obesity exacerbates early-onset (allergic) asthma, but can also induce asthma in adults. Immune responses that are associated with the development of allergy are influenced by factors produced by adipose tissue and hence could be differentially affected in lean and obese individuals.

  • Several classes of dietary components affect the development and homeostasis of the immune system by preventing or potentiating the development of allergy. The complex mechanisms of action of these dietary components involve specific receptors.

  • Although the anti-inflammatory effects of omega-3 polyunsaturated fatty acids are well established, their precise role in the development of allergy requires further investigation to understand their potential role in a 'prophylactic diet'.

  • Clinical studies indicate that diet supplementation with fibre, vitamin A and/or vitamin D during the perinatal period has beneficial effects in terms of preventing allergic diseases.

Abstract

The incidence of allergic diseases is increasing, both in developed and developing countries, concomitantly with the rise in living standards and the adoption of a 'western lifestyle'. For two decades, the hygiene hypothesis — which proposes that the lack of early childhood exposure to infectious agents increases susceptibility to allergic diseases in later life — provided the conceptual framework for unravelling the mechanisms that could account for the increased incidence of allergic diseases. In this Review, we discuss recent evidence that highlights the role of diet as a key factor influencing immune homeostasis and the development of allergic diseases through a complex interplay between nutrients, their metabolites and immune cell populations. Although further investigations are still required to understand these complex relationships, recent data have established a possible connection between metabolic homeostasis and allergic diseases.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Possible mechanisms of mother-to-child transfer of protection against allergic airway inflammation.
Figure 2: Immune modulation by lipids.
Figure 3: Immune modulation by fibres and short-chain fatty acids.
Figure 4: Impact of vitamin A and vitamin D3 on allergic reactions.
Figure 5: Possible mechanisms of the beneficial effects of probiotics in allergy.

References

  1. Strachan, D. P. Hay fever, hygiene, and household size. BMJ 299, 1259–1260 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dunstan, J. A. et al. Fish oil supplementation in pregnancy modifies neonatal allergen-specific immune responses and clinical outcomes in infants at high risk of atopy: a randomized, controlled trial. J. Allergy Clin. Immunol. 112, 1178–1184 (2003). One of the many studies that demonstrates the protective effects of PUFA supplementation during pregnancy on allergy in infants.

    Article  CAS  PubMed  Google Scholar 

  3. Bunyavanich, S. et al. Peanut, milk, and wheat intake during pregnancy is associated with reduced allergy and asthma in children. J. Allergy Clin. Immunol. 133, 1373–1382 (2014). A counterintuitive demonstration that food allergen intake during pregnancy prevents allergy development in children.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sideleva, O. & Dixon, A. E. The many faces of asthma in obesity. J. Cell. Biochem. 115, 421–426 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Veldhoen, M. & Brucklacher-Waldert, V. Dietary influences on intestinal immunity. Nature Rev. Immunol. 12, 696–708 (2012).

    Article  CAS  Google Scholar 

  6. Spann, N. J. & Glass, C. K. Sterols and oxysterols in immune cell function. Nature Immunol. 14, 893–900 (2013).

    Article  CAS  Google Scholar 

  7. Thorburn, A. N., Macia, L. & Mackay, C. R. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 40, 833–842 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Greer, R. L., Morgun, A. & Shulzhenko, N. Bridging immunity and lipid metabolism by gut microbiota. J. Allergy Clin. Immunol. 132, 253–262 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Wendell, S. G., Baffi, C. & Holguin, F. Fatty acids, inflammation, and asthma. J. Allergy Clin. Immunol. 133, 1255–1264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Levy, B. D. & Serhan, C. N. Resolution of acute inflammation in the lung. Annu. Rev. Physiol. 76, 467–492 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Ricciotti, E. & FitzGerald, G. A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 31, 986–1000 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Netting, M. J., Middleton, P. F. & Makrides, M. Does maternal diet during pregnancy and lactation affect outcomes in offspring? A systematic review of food-based approaches. Nutrition 30, 1225–1241 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Kull, I., Bergstrom, A., Lilja, G., Pershagen, G. & Wickman, M. Fish consumption during the first year of life and development of allergic diseases during childhood. Allergy 61, 1009–1015 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. D'Vaz, N. et al. Fish oil supplementation in early infancy modulates developing infant immune responses. Clin. Exp. Allergy 42, 1206–1216 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Maslova, E., Hansen, S., Strom, M., Halldorsson, T. I. & Olsen, S. F. Maternal intake of vitamins A, E and K in pregnancy and child allergic disease: a longitudinal study from the Danish National Birth Cohort. Br. J. Nutr. 111, 1096–1108 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Greer, F. R. et al. Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyzed formulas. Pediatrics 121, 183–191 (2008).

    Article  PubMed  Google Scholar 

  17. Gdalevich, M., Mimouni, D. & Mimouni, M. Breast-feeding and the risk of bronchial asthma in childhood: a systematic review with meta-analysis of prospective studies. J. Pediatr. 139, 261–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Howie, P. W., Forsyth, J. S., Ogston, S. A., Clark, A. & Florey, C. D. Protective effect of breast feeding against infection. BMJ 300, 11–16 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kramer, M. S. & Kakuma, R. Optimal duration of exclusive breastfeeding. Cochrane Database Syst. Rev. 8, CD003517 (2012).

    Google Scholar 

  20. Brew, B. K., Allen, C. W., Toelle, B. G. & Marks, G. B. Systematic review and meta-analysis investigating breast feeding and childhood wheezing illness. Paediatr. Perinat. Epidemiol. 25, 507–518 (2011).

    Article  PubMed  Google Scholar 

  21. Dogaru, C. M., Nyffenegger, D., Pescatore, A. M., Spycher, B. D. & Kuehni, C. E. Breastfeeding and childhood asthma: systematic review and meta-analysis. Am. J. Epidemiol. 179, 1153–1167 (2014).

    Article  PubMed  Google Scholar 

  22. Kramer, M. S. Does breast feeding help protect against atopic disease? Biology, methodology, and a golden jubilee of controversy. J. Pediatr. 112, 181–190 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Kull, I. et al. Breast-feeding in relation to asthma, lung function, and sensitization in young schoolchildren. J. Allergy Clin. Immunol. 125, 1013–1019 (2010).

    Article  PubMed  Google Scholar 

  24. Sorva, R., Makinen-Kiljunen, S. & Juntunen-Backman, K. β-lactoglobulin secretion in human milk varies widely after cow's milk ingestion in mothers of infants with cow's milk allergy. J. Allergy Clin. Immunol. 93, 787–792 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Cant, A., Marsden, R. A. & Kilshaw, P. J. Egg and cows' milk hypersensitivity in exclusively breast fed infants with eczema, and detection of egg protein in breast milk. Br. Med. J. (Clin. Res. Ed.) 291, 932–935 (1985).

    Article  CAS  Google Scholar 

  26. Macchiaverni, P. et al. Respiratory allergen from house dust mite is present in human milk and primes for allergic sensitization in a mouse model of asthma. Allergy 69, 395–398 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Casas, R., Bottcher, M. F., Duchen, K. & Bjorksten, B. Detection of IgA antibodies to cat, β-lactoglobulin, and ovalbumin allergens in human milk. J. Allergy Clin. Immunol. 105, 1236–1240 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Kalliomaki, M., Ouwehand, A., Arvilommi, H., Kero, P. & Isolauri, E. Transforming growth factor-β in breast milk: a potential regulator of atopic disease at an early age. J. Allergy Clin. Immunol. 104, 1251–1257 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Zeiger, R. S. Food allergen avoidance in the prevention of food allergy in infants and children. Pediatrics 111, 1662–1671 (2003).

    PubMed  Google Scholar 

  30. Komatsu, T., Okao, M., Miyamoto, H., Chen, T. & Shinka, S. Effects of early antigen exposure through lactation on later specific antibody responses in mice. J. Immunol. 141, 2895–2906 (1988).

    CAS  PubMed  Google Scholar 

  31. Verhasselt, V. et al. Breast milk-mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nature Med. 14, 170–175 (2008). This study shows that breast milk-mediated transfer of aeroallergen to the neonate leads to TGFβ-dependent and T Reg cell-dependent induction of oral tolerance and protection against allergic airway disease.

    Article  CAS  PubMed  Google Scholar 

  32. Mosconi, E. et al. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development. Mucosal Immunol. 3, 461–474 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. American Academy of Pediatrics Committee on Nutrition in Pediatric Nutrition Handbook (ed. Kleinman, R. E.) 593–607 (Elk Grove Village, 2004).

  34. Muraro, A. et al. Dietary prevention of allergic diseases in infants and small children. Part III: critical review of published peer-reviewed observational and interventional studies and final recommendations. Pediatr. Allergy Immunol. 15, 291–307 (2004).

    Article  PubMed  Google Scholar 

  35. Roduit, C. et al. Increased food diversity in the first year of life is inversely associated with allergic diseases. J. Allergy Clin. Immunol. 133, 1056–1064 (2014).

    Article  PubMed  Google Scholar 

  36. Riedler, J. et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 358, 1129–1133 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Loss, G. et al. The protective effect of farm milk consumption on childhood asthma and atopy: the GABRIELA study. J. Allergy Clin. Immunol. 128, 766–773.e4 (2011).

    Article  PubMed  Google Scholar 

  38. Hollingsworth, J. W. et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J. Clin. Invest. 118, 3462–3469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang, Y. H., Bressler, J. & Beaudet, A. L. Epigenetics and human disease. Annu. Rev. Genomics Hum. Genet. 5, 479–510 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Polte, T. & Hansen, G. Maternal tolerance achieved during pregnancy is transferred to the offspring via breast milk and persistently protects the offspring from allergic asthma. Clin. Exp. Allergy 38, 1950–1958 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Story, C. M., Mikulska, J. E. & Simister, N. E. A major histocompatibility complex class I-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus. J. Exp. Med. 180, 2377–2381 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Yamamoto, T., Tsubota, Y., Kodama, T., Kageyama-Yahara, N. & Kadowaki, M. Oral tolerance induced by transfer of food antigens via breast milk of allergic mothers prevents offspring from developing allergic symptoms in a mouse food allergy model. Clin. Dev. Immunol. 2012, 721085 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beuther, D. A. & Sutherland, E. R. Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies. Am. J. Respir. Crit. Care Med. 175, 661–666 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Beckett, W. S. et al. Asthma is associated with weight gain in females but not males, independent of physical activity. Am. J. Respir. Crit. Care Med. 164, 2045–2050 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Dixon, A. E. et al. Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control, and inflammation. J. Allergy Clin. Immunol. 128, 508–515.e2 (2011). References 44 and 45 show that, in humans, a high-fat diet and obesity impair lung function, whereas weight reduction has beneficial effects.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wood, L. G., Garg, M. L. & Gibson, P. G. A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma. J. Allergy Clin. Immunol. 127, 1133–1140 (2011).

    Article  PubMed  Google Scholar 

  47. Silverberg, J. I., Silverberg, N. B. & Lee-Wong, M. Association between atopic dermatitis and obesity in adulthood. Br. J. Dermatol. 166, 498–504 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Kusunoki, T. et al. Obesity and the prevalence of allergic diseases in schoolchildren. Pediatr. Allergy Immunol. 19, 527–534 (2008).

    Article  PubMed  Google Scholar 

  49. Ekstrom, S. et al. Maternal BMI in early pregnancy and offspring asthma, rhinitis and eczema up to 16 years of age. Clin. Exp. Allergy 45, 283–291 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Mathis, D. Immunological goings-on in visceral adipose tissue. Cell Metab. 17, 851–859 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rasmussen, F. & Hancox, R. J. Mechanisms of obesity in asthma. Curr. Opin. Allergy Clin. Immunol. 14, 35–43 (2014). References 4 and 51 are recent reviews that provide an initial integrated framework for understanding the link between obesity and asthma.

    Article  CAS  PubMed  Google Scholar 

  52. Brashier, B. & Salvi, S. Obesity and asthma: physiological perspective. J. Allergy (Cairo) 2013, 198068 (2013).

    Google Scholar 

  53. Scott, H. A., Gibson, P. G., Garg, M. L. & Wood, L. G. Airway inflammation is augmented by obesity and fatty acids in asthma. Eur. Respir. J. 38, 594–602 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Telenga, E. D. et al. Obesity in asthma: more neutrophilic inflammation as a possible explanation for a reduced treatment response. Allergy 67, 1060–1068 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Wenzel, S. E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nature Med. 18, 716–725 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Zhu, M. et al. Role of TNFR1 in the innate airway hyperresponsiveness of obese mice. J. Appl. Physiol. 113, 1476–1485 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Johnston, R. A. et al. Allergic airway responses in obese mice. Am. J. Respir. Crit. Care Med. 176, 650–658 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, H. Y. et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nature Med. 20, 54–61 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Shore, S. A. et al. Effect of leptin on allergic airway responses in mice. J. Allergy Clin. Immunol. 115, 103–109 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Shore, S. A., Terry, R. D., Flynt, L., Xu, A. & Hug, C. Adiponectin attenuates allergen-induced airway inflammation and hyperresponsiveness in mice. J. Allergy Clin. Immunol. 118, 389–395 (2006). References 59 and 60 describe the role of adipokines in allergic asthma.

    Article  CAS  PubMed  Google Scholar 

  61. Lugogo, N. L. et al. Alveolar macrophages from overweight/obese asthmatic subjects demonstrate a pro-inflammatory phenotype. Am. J. Respir. Crit. Care Med. 186, 404–411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fernandez-Boyanapalli, R. et al. Obesity impairs apoptotic cell clearance in asthma. J. Allergy Clin. Immunol. 131, 1041–1047.e3 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Kato, H. et al. Leptin has a priming effect on eotaxin-induced human eosinophil chemotaxis. Int. Arch. Allergy Immunol. 155, 335–344 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Yamamoto, R. et al. Adiponectin attenuates human eosinophil adhesion and chemotaxis: implications in allergic inflammation. J. Asthma 50, 828–835 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Calixto, M. C. et al. Obesity enhances eosinophilic inflammation in a murine model of allergic asthma. Br. J. Pharmacol. 159, 617–625 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. de Vries, A. et al. High-fat feeding redirects cytokine responses and decreases allergic airway eosinophilia. Clin. Exp. Allergy 39, 731–739 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Desai, D. et al. Elevated sputum interleukin-5 and submucosal eosinophilia in obese individuals with severe asthma. Am. J. Respir. Crit. Care Med. 188, 657–663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lloyd, C. M. & Saglani, S. Eosinophils in the spotlight: finding the link between obesity and asthma. Nature Med. 19, 976–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Calixto, M. C. et al. Metformin attenuates the exacerbation of the allergic eosinophilic inflammation in high fat-diet-induced obesity in mice. PLoS ONE 8, e76786 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dibble, C. C. & Manning, B. D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nature Cell Biol. 15, 555–564 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Yang, K. et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor–mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nurmatov, U., Devereux, G. & Sheikh, A. Nutrients and foods for the primary prevention of asthma and allergy: systematic review and meta-analysis. J. Allergy Clin. Immunol. 127, 724–733.e30 (2011). A systematic review and meta-analysis that support a role for vitamin A, vitamin D, vitamin E, zinc, fruits, vegetables and a Mediterranean diet in the prevention of asthma.

    Article  PubMed  Google Scholar 

  73. Daynes, R. A. & Jones, D. C. Emerging roles of PPARs in inflammation and immunity. Nature Rev. Immunol. 2, 748–759 (2002).

    Article  CAS  Google Scholar 

  74. Sugiyama, H. et al. Peroxisome proliferator-activated receptors are expressed in mouse bone marrow-derived mast cells. FEBS Lett. 467, 259–262 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Woerly, G. et al. Peroxisome proliferator-activated receptors-α and -γ down-regulate allergic inflammation and eosinophil activation. J. Exp. Med. 198, 411–421 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hammad, H. et al. Activation of peroxisome proliferator-activated receptor-γ in dendritic cells inhibits the development of eosinophilic airway inflammation in a mouse model of asthma. Am. J. Pathol. 164, 263–271 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Honda, K., Marquillies, P., Capron, M. & Dombrowicz, D. Peroxisome proliferator-activated receptor γ is expressed in airways and inhibits features of airway remodeling in a mouse asthma model. J. Allergy Clin. Immunol. 113, 882–888 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Park, S. J. et al. Peroxisome proliferator-activated receptor γ agonist down-regulates IL-17 expression in a murine model of allergic airway inflammation. J. Immunol. 183, 3259–3267 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Kim, S. R. et al. Involvement of IL-10 in peroxisome proliferator-activated receptor γ-mediated anti-inflammatory response in asthma. Mol. Pharmacol. 68, 1568–1575 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Lee, K. S. et al. PPAR-gamma modulates allergic inflammation through up-regulation of PTEN. FASEB J. 19, 1033–1035 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Reddy, A. T. et al. The nitrated fatty acid 10-nitro-oleate attenuates allergic airway disease. J. Immunol. 191, 2053–2063 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Jaudszus, A. et al. Cis-9,trans-11-conjugated linoleic acid inhibits allergic sensitization and airway inflammation via a PPARγ-related mechanism in mice. J. Nutr. 138, 1336–1342 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Trifilieff, A. et al. PPAR-α and -γ but not -δ agonists inhibit airway inflammation in a murine model of asthma: in vitro evidence for an NF-κB-independent effect. Br. J. Pharmacol. 139, 163–171 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Staumont-Salle, D. et al. Peroxisome proliferator-activated receptor α regulates skin inflammation and humoral response in atopic dermatitis. J. Allergy Clin. Immunol. 121, 962–968.e6 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Dahten, A. et al. Systemic PPARγ ligation inhibits allergic immune response in the skin. J. Invest. Dermatol. 128, 2211–2218 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Jung, K. et al. Peroxisome proliferator-activated receptor γ-mediated suppression of dendritic cell function prevents the onset of atopic dermatitis in NC/Tnd mice. J. Allergy Clin. Immunol. 127, 420–429.e6 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Hatano, Y. et al. Murine atopic dermatitis responds to peroxisome proliferator-activated receptors α and β/δ (but not γ) and liver X receptor activators. J. Allergy Clin. Immunol. 125, 160–169.e5 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Li, J. et al. Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice. J. Allergy Clin. Immunol. 131, 442–450 (2013). This study shows that dietary medium-chain triglycerides promote allergic sensitization and anaphylaxis by affecting antigen absorption and availability, and by stimulating T H 2 cell responses.

    Article  CAS  PubMed  Google Scholar 

  89. Venkataraman, C. & Kuo, F. The G-protein coupled receptor, GPR84 regulates IL-4 production by T lymphocytes in response to CD3 crosslinking. Immunol. Lett. 101, 144–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Liberato, M. V. et al. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. PLoS ONE 7, e36297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lumia, M. et al. Cow's milk allergy and the association between fatty acids and childhood asthma risk. J. Allergy Clin. Immunol. 134, 488–490 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Chisaguano, A. M. et al. Gene expression of desaturase (FADS1 and FADS2) and elongase (ELOVL5) enzymes in peripheral blood: association with polyunsaturated fatty acid levels and atopic eczema in 4-year-old children. PLoS ONE 8, e78245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. de Matos, O. G. et al. Dietary supplementation with omega-3-PUFA-rich fish oil reduces signs of food allergy in ovalbumin-sensitized mice. Clin. Dev. Immunol. 2012, 236564 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Weise, C., Ernst, D., van Tol, E. A. & Worm, M. Dietary polyunsaturated fatty acids and non-digestible oligosaccharides reduce dermatitis in mice. Pediatr. Allergy Immunol. 24, 361–367 (2013).

    Article  PubMed  Google Scholar 

  95. Bilal, S. et al. Fat-1 transgenic mice with elevated omega-3 fatty acids are protected from allergic airway responses. Biochim. Biophys. Acta 1812, 1164–1169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Weise, C. et al. Inhibition of IgE production by docosahexaenoic acid is mediated by direct interference with STAT6 and NFκB pathway in human B cells. J. Nutr. Biochem. 22, 269–275 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. MacLean, E., Madsen, N., Vliagoftis, H., Field, C. & Cameron, L. n-3 fatty acids inhibit transcription of human IL-13: implications for development of T helper type 2 immune responses. Br. J. Nutr. 109, 990–1000 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Han, S. C. et al. Fermented fish oil suppresses T helper 1/2 cell response in a mouse model of atopic dermatitis via generation of CD4+CD25+Foxp3+ T cells. BMC Immunol. 13, 44 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. van den Elsen, L. W. et al. n-3 long-chain PUFA reduce allergy-related mediator release by human mast cells in vitro via inhibition of reactive oxygen species. Br. J. Nutr. 109, 1821–1831 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Oh, D. Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yan, Y. et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38, 1154–1163 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Cardet, J. C., Johns, C. B. & Savage, J. H. Bacterial metabolites of diet-derived lignans and isoflavones inversely associate with asthma and wheezing. J. Allergy Clin. Immunol. 135, 267–269.e14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, Y. et al. Modulation of retinoic acid receptor-related orphan receptor α and γ activity by 7-oxygenated sterol ligands. J. Biol. Chem. 285, 5013–5025 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Li, T. & Chiang, J. Y. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev. 66, 948–983 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Heine, G. et al. Liver X receptors control IgE expression in B cells. J. Immunol. 182, 5276–5282 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Shi, Y. et al. A liver-X-receptor ligand, T0901317, attenuates IgE production and airway remodeling in chronic asthma model of mice. PLoS ONE 9, e92668 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gonzalez, A. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009).

    Article  CAS  Google Scholar 

  108. Cui, G. et al. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J. Clin. Invest. 121, 658–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Halim, T. Y. et al. Retinoic-acid-receptor-related orphan nuclear receptor α is required for natural helper cell development and allergic inflammation. Immunity 37, 463–474 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Salimi, M. et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 210, 2939–2950 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tan, J. et al. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Med. 20, 159–166 (2014). This is an important study that demonstrates a link between dietary fibre, microbiota and the regulation of allergic asthma.

    Article  CAS  PubMed  Google Scholar 

  113. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Choi, J. H. et al. Trichostatin A attenuates airway inflammation in mouse asthma model. Clin. Exp. Allergy 35, 89–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40, 128–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic TReg cell homeostasis. Science 341, 569–573 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Osborn, D. A. & Sinn, J. K. Prebiotics in infants for prevention of allergy. Cochrane Database Syst. Rev. 3, CD006474 (2013).

    Google Scholar 

  119. Chen, F. et al. Prenatal retinoid deficiency leads to airway hyperresponsiveness in adult mice. J. Clin. Invest. 124, 801–811 (2014). This study shows that retinoid deficiency during the prenatal period strongly affects the later development of allergic asthma in adult mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yokota-Nakatsuma, A. et al. Retinoic acid prevents mesenteric lymph node dendritic cells from inducing IL-13-producing inflammatory Th2 cells. Mucosal Immunol. 7, 786–801 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Zhao, J., Lloyd, C. M. & Noble, A. Th17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling. Mucosal Immunol. 6, 335–346 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Leber, B. F. & Denburg, J. A. Retinoic acid modulation of induced basophil differentiation. Allergy 52, 1201–1206 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Scheffel, F., Heine, G., Henz, B. M. & Worm, M. Retinoic acid inhibits CD40 plus IL-4 mediated IgE production through alterations of sCD23, sCD54 and IL-6 production. Inflamm. Res. 54, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Schuster, G. U., Kenyon, N. J. & Stephensen, C. B. Vitamin A deficiency decreases and high dietary vitamin A increases disease severity in the mouse model of asthma. J. Immunol. 180, 1834–1842 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Worm, M., Herz, U., Krah, J. M., Renz, H. & Henz, B. M. Effects of retinoids on in vitro and in vivo IgE production. Int. Arch. Allergy Immunol. 124, 233–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Wansley, D. L., Yin, Y. & Prussin, C. The retinoic acid receptor-α modulators ATRA and Ro415253 reciprocally regulate human IL-5+ Th2 cell proliferation and cytokine expression. Clin. Mol. Allergy 11, 4 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Grenningloh, R. et al. Cutting edge: inhibition of the retinoid X receptor (RXR) blocks T helper 2 differentiation and prevents allergic lung inflammation. J. Immunol. 176, 5161–5166 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Matheu, V. et al. Impact on allergic immune response after treatment with vitamin A. Nutr. Metab. (Lond.) 6, 44 (2009).

    Article  CAS  Google Scholar 

  129. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Zosky, G. R. et al. Vitamin D deficiency causes deficits in lung function and alters lung structure. Am. J. Respir. Crit. Care Med. 183, 1336–1343 (2011).

    Article  PubMed  Google Scholar 

  131. Vasiliou, J. E. et al. Vitamin D deficiency induces Th2 skewing and eosinophilia in neonatal allergic airways disease. Allergy 69¸1380–1389 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Heine, G. et al. 25-hydroxvitamin D3 promotes the long-term effect of specific immunotherapy in a murine allergy model. J. Immunol. 193, 1017–1023 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Hartmann, B. et al. Targeting the vitamin D receptor inhibits the B cell-dependent allergic immune response. Allergy 66, 540–548 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Gorman, S. et al. Reversible control by vitamin D of granulocytes and bacteria in the lungs of mice: an ovalbumin-induced model of allergic airway disease. PLoS ONE 8, e67823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Foong, R. E. et al. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF-β expression in the lungs of female BALB/c mice. Physiol. Rep. 2, e00276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hartmann, B. et al. Vitamin D receptor activation improves allergen-triggered eczema in mice. J. Invest. Dermatol. 132, 330–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Yip, K. H. et al. Mechanisms of vitamin D3 metabolite repression of IgE-dependent mast cell activation. J. Allergy Clin. Immunol. 133, 1356–1364.e14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Confino-Cohen, R., Brufman, I., Goldberg, A. & Feldman, B. S. Vitamin D, asthma prevalence and asthma exacerbations: a large adult population-based study. Allergy 69, 1673–1680 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Oren, E., Banerji, A. & Camargo, C. A. Jr. Vitamin D and atopic disorders in an obese population screened for vitamin D deficiency. J. Allergy Clin. Immunol. 121, 533–534 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Hansen, S. et al. The long-term programming effect of maternal 25-hydroxyvitamin D in pregnancy on allergic airway disease and lung function in offspring after 20 to 25 years of follow-up. J. Allergy Clin. Immunol. http://dx.doi.org/10.1016/j.jaci.2014.12.1924 (2015).

  141. Boonstra, A. et al. 1α,25-dihydroxyvitamin D3 has a direct effect on naive CD4+ T cells to enhance the development of Th2 cells. J. Immunol. 167, 4974–4980 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Nanzer, A. M. et al. Enhanced production of IL-17A in patients with severe asthma is inhibited by 1α,25-dihydroxyvitamin D3 in a glucocorticoid-independent fashion. J. Allergy Clin. Immunol. 132, 297–304.e3 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Litonjua, A. A. et al. The Vitamin D Antenatal Asthma Reduction Trial (VDAART): rationale, design, and methods of a randomized, controlled trial of vitamin D supplementation in pregnancy for the primary prevention of asthma and allergies in children. Contemp. Clin. Trials 38, 37–50 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Luukkainen, A. et al. Relationships of indoleamine 2,3-dioxygenase activity and cofactors with asthma and nasal polyps. Am. J. Rhinol. Allergy 28, e5–e10 (2014).

    Article  PubMed  Google Scholar 

  145. van der Sluijs, K. F. et al. Systemic tryptophan and kynurenine catabolite levels relate to severity of rhinovirus-induced asthma exacerbation: a prospective study with a parallel-group design. Thorax 68, 1122–1130 (2013).

    Article  PubMed  Google Scholar 

  146. Hayashi, T. et al. Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J. Clin. Invest. 114, 270–279 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Matteoli, G. et al. Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 59, 595–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Maneechotesuwan, K. et al. Der p 1 suppresses indoleamine 2,3-dioxygenase in dendritic cells from house dust mite-sensitive patients with asthma. J. Allergy Clin. Immunol. 123, 239–248 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Taher, Y. A. et al. Indoleamine 2,3-dioxygenase-dependent tryptophan metabolites contribute to tolerance induction during allergen immunotherapy in a mouse model. J. Allergy Clin. Immunol. 121, 983–991.e2 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Quintana, F. J. et al. Control of TReg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Sibilano, R. et al. The aryl hydrocarbon receptor modulates acute and late mast cell responses. J. Immunol. 189, 120–127 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Schulz, V. J. et al. Aryl hydrocarbon receptor activation affects the dendritic cell phenotype and function during allergic sensitization. Immunobiology 218, 1055–1062 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Jeong, K. T., Hwang, S. J., Oh, G. S. & Park, J. H. FICZ, a tryptophan photoproduct, suppresses pulmonary eosinophilia and Th2-type cytokine production in a mouse model of ovalbumin-induced allergic asthma. Int. Immunopharmacol. 13, 377–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. McCary, C. A., Abdala-Valencia, H., Berdnikovs, S. & Cook-Mills, J. M. Supplemental and highly elevated tocopherol doses differentially regulate allergic inflammation: reversibility of α-tocopherol and γ-tocopherol's effects. J. Immunol. 186, 3674–3685 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Cook-Mills, J. M., Abdala-Valencia, H. & Hartert, T. Two faces of vitamin E in the lung. Am. J. Respir. Crit. Care Med. 188, 279–284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wood, L. G. et al. Manipulating antioxidant intake in asthma: a randomized controlled trial. Am. J. Clin. Nutr. 96, 534–543 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Ozdemir, O. Various effects of different probiotic strains in allergic disorders: an update from laboratory and clinical data. Clin. Exp. Immunol. 160, 295–304 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Salazar, N. et al. The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations. Front. Genet. 5, 406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kuitunen, M. et al. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J. Allergy Clin. Immunol. 123, 335–341 (2009).

    Article  PubMed  Google Scholar 

  162. Foolad, N., Brezinski, E. A., Chase, E. P. & Armstrong, A. W. Effect of nutrient supplementation on atopic dermatitis in children: a systematic review of probiotics, prebiotics, formula, and fatty acids. JAMA Dermatol. 149, 350–355 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Taylor, A. L. et al. FOXP3 mRNA expression at 6 months of age is higher in infants who develop atopic dermatitis, but is not affected by giving probiotics from birth. Pediatr. Allergy Immunol. 18, 10–19 (2007).

    Article  PubMed  Google Scholar 

  164. Kwon, H. K. et al. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc. Natl Acad. Sci. USA 107, 2159–2164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Konieczna, P. et al. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut 61, 354–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Iemoli, E. et al. Probiotics reduce gut microbial translocation and improve adult atopic dermatitis. J. Clin. Gastroenterol. 46, S33–S40 (2012).

    Article  PubMed  Google Scholar 

  167. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Rao, R. R. et al. Meteorin-like is a hormone that regulates immune–adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Verhasselt, V. Neonatal tolerance under breastfeeding influence. Curr. Opin. Immunol. 22, 623–630 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Kunisawa, J. & Kiyono, H. Vitamin-mediated regulation of intestinal immunity. Front. Immunol. 4, 189 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Spencer, S. P. et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343, 432–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank B. Staels (Lille, France) for critical reading of the manuscript and F. Aguila (Nice, France) for help with the figures. They sincerely apologize to all of their colleagues whose important work could not be cited owing to space constraints. Work related to this review is funded in part by Fondation pour la Recherche Médicale (to V.J. and D.D.); European Genomic Institute for Diabetes (EGID) grant ANR-10-LABX-46 (to D.D.); Region Nord-Pas-de-Calais (to D.D.), and National Health and Medical Research Council grant APP1068890 (to L.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valerie Julia or David Dombrowicz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Allergic diseases

Diseases caused by an inappropriate initiation of type 2 immune responses to innocuous environmental antigens that result in several conditions, including asthma, allergic rhinitis, food allergy and atopic dermatitis.

Asthma

A respiratory disorder that is characterized by reversible expiratory airflow limitation or bronchial hyperresponsiveness, and has various clinical, biological and therapeutic characteristics.

Breastfeeding

Recognized as the main source of active and passive immunity in early life. Breast milk contains antibodies that react with infectious agents present in the mother's environment, and confers passive immunity to the breastfed child against infectious agents that the child is likely to encounter shortly after birth.

Oral tolerance

An immune state induced by the oral administration of innocuous antigens (such as food proteins) that leads to local and systemic unresponsiveness.

G protein-coupled receptors

(GPCRs). A large family of receptors that have seven transmembrane domains and are implicated in various signal transduction pathways and cellular responses.

Obesity

Defined by a body mass index of the 95th percentile or above for age and sex standards.

Polyunsaturated fatty acid

(PUFA). An unsaturated fatty acid with a carbon chain that has more than one double bond per molecule.

Mediterranean diet

A diet based on a high consumption of olive oil, fish and vegetables.

Vitamin A

A vitamin that is oxidized into retinal, which in turn is converted into retinoic acid (RA). Oxidation to retinal is mediated by alcohol dehydrogenases (ADHs) or retinol dehydrogenases (RDHs) and then by retinal dehydrogenases (RALDHs; also known as aldehyde dehydrogenases (ALDHs)), producing all-trans-RA and 9-cis-RA.

Immune complexes

Complexes of antigen bound to antibody and, sometimes, to components of the complement system. The levels of immune complexes are increased in many autoimmune disorders, in which they become deposited in tissues and cause tissue damage.

Triglycerides

Contained in oils and fats, triglycerides give rise to free fatty acids after their breakdown by pancreatic lipases. Dietary fats are dissolved in micelles by bile salts in the upper part of the gastrointestinal tract and are subsequently taken up by enterocytes.

White adipose tissue

A type of adipose tissue that specializes in energy storage and is most commonly found in subcutaneous and visceral adipose tissues.

Adipokines

Cytokines that are secreted by adipocytes.

Peroxisome proliferator-activated receptors

(PPARs). Nuclear receptors that are activated by many ligands, including food-derived saturated fatty acids, and that function as transcription factors to regulate the expression of genes that are involved in both metabolism and immune functions.

Dysbiosis

Modification of the commensal (gut) bacterial flora.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Julia, V., Macia, L. & Dombrowicz, D. The impact of diet on asthma and allergic diseases. Nat Rev Immunol 15, 308–322 (2015). https://doi.org/10.1038/nri3830

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3830

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing