## T CELLS

## Flexibility in humans

Different types of CD4+ T helper  $(T_{H})$  cell — such as  $T_{H}1$ ,  $T_{H}2$  and T<sub>11</sub>17 cells — protect the host against diverse classes of microorganisms through the production of distinct cytokines. These  $\mathrm{T}_{_{\mathrm{H}}}$  cell subsets were originally considered to be alternative fates of differentiating naive CD4+ T cells, but  $T_{_{\rm H}}$  cell plasticity has been shown recently in in vitro and animal experiments. Now, Federica Sallusto and colleagues show that there is a vast flexibility in human CD4+ T cell responses, as multiple kinds of T<sub>u</sub> cells can act against a single pathogen and pathogen challenge can induce a single naive T cell to adopt multiple T<sub>H</sub> cell fates.

several of the TCR clonotypes were shared between all of the  $T_{H}$  cell subsets

To investigate the heterogeneity of human CD4<sup>+</sup> T cells, the authors isolated four memory  $T_{\rm H}$  cell subsets —  $T_{\rm H}$ 1,  $T_{\rm H}$ 2,  $T_{\rm H}$ 17 and non-conventional



 $T_{H}1$  cells (which express the lineagespecifying transcription factors T-bet and retinoic acid receptor-related orphan receptor- $\gamma$ t) — from the blood of healthy donors on the basis of their chemokine receptor profiles. The  $T_{H}$  cells were labelled with a fluorescent dye and stimulated with Candida albicans in the presence of autologous monocytes in vitro; dilution of the fluorescent dye indicated proliferation of specific T<sub>u</sub> cell subsets. Similarly to previous results, the authors found high numbers of proliferating T<sub>11</sub>17 cells and nonconventional T<sub>H</sub>1 cells, and low numbers of proliferating  $T_{H}1$  cells and  $T_{\mbox{\tiny u}}2$  cells in the cultures. Thus, human memory CD4+ T cells primed by C. albicans are functionally heterogeneous.

Next, the authors carried out deep sequencing to analyse the unique T cell receptor (TCR) clonotypes of antigen-specific memory T cells within each  $\mathrm{T}_{_{\mathrm{H}}}$  cell subset. The number of clonotypes was similar for each  $T_{H}$  cell subset, although the frequency of antigen-specific cells in the T<sub>u</sub> cell subsets differed. Furthermore, several of the TCR clonotypes were shared between all of the  $\mathrm{T}_{_{\mathrm{H}}}$  cell subsets, and the overlap was highest between  $T_{\mu}17$  cells and non-conventional T<sub>H</sub>1 cells. Whereas several of the shared clonotypes had a high frequency in both  $T_{\rm H}$ 17 cell and non-conventional T<sub>H</sub>1 cell subsets, several clonotypes were found only in one T<sub>11</sub> cell subset. Thus, C. albicansspecific memory T cells are highly polyclonal and include both clones that are polarized to a single fate and clones that have diversified into multiple fates.

So, is clonotype sharing a general property of memory T cell subsets or specific for the response to C. albicans? To address this, the authors analysed memory T cells specific for Mycobacterium tuberculosis or for the tetanus toxoid vaccine. The diversity of TCR clonotypes among T<sub>u</sub> cell subsets in M. tuberculosisspecific memory T cells was similar to that of C. albicans-specific T<sub>u</sub> cells, despite differences in proliferation. However, only very few clonotypes were shared between M. tuberculosis-specific T<sub>u</sub>17 cells and non-conventional  $T_{\mu}1$  cells. Interestingly, memory T cells primed by the tetanus toxoid vaccine showed similar levels of proliferation in all T<sub>u</sub> cell subsets and a high level of clonotype sharing between all T<sub>u</sub> cell subsets. Hence, the pattern and extent of clonotype sharing between different T<sub>H</sub> cell subsets depend on the antigen.

Finally, the authors primed highly purified naive CD4<sup>+</sup> T cells *in vitro* with *C. albicans* to investigate whether one round of stimulation could imprint heterogeneous fates on a single naive T cell. Indeed, proliferating CD4<sup>+</sup> T cell subsets produced various combinations of cytokines and not only the cytokines that are characteristic of each specific subset; that is, some interferon- $\gamma$ - and some interleukin-17 (IL-17)-sorted T cells acquired the ability to produce IL-4.

In summary, these results show that human memory CD4<sup>+</sup> T cells primed by pathogens or vaccines are highly heterogeneous and indicate that polarized T cell responses result from selective expansion rather than the priming of naive T cell clones.

Elisabeth Kugelberg

ORIGINAL RESEARCH PAPER Becattini, S. et al. Functional heterogeneity of human memory CD4\* T cell clones primed by pathogens or vaccines. *Science* http://dx.doi.org/10.1126/science.1260668 (2014)