Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunity in Drosophila melanogaster — from microbial recognition to whole-organism physiology

Key Points

  • The gut response to microorganisms comprises mechanisms of bacterial elimination — through the production of reactive oxygen species and antimicrobial peptides — that are coordinated with stress and repair mechanisms.

  • The gut microorganisms of Drosophila melanogaster alter the growth of larvae and the physiology of adults, modulating nutrition and intestinal homeostasis.

  • Hyperactivation of inflammatory signalling leads to metabolic shifts and altered growth.

  • Organism-wide metabolic changes influence immunity through changes in inflammatory signalling and antimicrobial peptide expression.

  • Systemic alterations in steroid hormones modulate multiple aspects of the immune response.

  • Immune signalling components are involved in newly discovered cell death and neurodegeneration pathways.

  • Classic Toll- and Imd-induced nuclear factor-κB pathways, along with phagocytosis, are central pillars of antimicrobial defence in D. melanogaster.

Abstract

Since the discovery of antimicrobial peptide responses 40 years ago, the fruit fly Drosophila melanogaster has proven to be a powerful model for the study of innate immunity. Early work focused on innate immune mechanisms of microbial recognition and subsequent nuclear factor-κB signal transduction. More recently, D. melanogaster has been used to understand how the immune response is regulated and coordinated at the level of the whole organism. For example, researchers have used this model in studies investigating interactions between the microbiota and the immune system at barrier epithelial surfaces that ensure proper nutritional and immune homeostasis both locally and systemically. In addition, studies in D. melanogaster have been pivotal in uncovering how the immune response is regulated by both endocrine and metabolic signalling systems, and how the immune response modifies these systems as part of a homeostatic circuit. In this Review, we briefly summarize microbial recognition and antiviral immunity in D. melanogaster, and we highlight recent studies that have explored the effects of organism-wide regulation of the immune response and, conversely, the effects of the immune response on organism physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Innate immunity in Drosophila melanogaster.
Figure 2: Immune recognition of microbial agents in Drosophila melanogaster.
Figure 3: Nucleic acid recognition and antiviral defences in Drosophila melanogaster.
Figure 4: Drosophila melanogaster intestinal immune response to infection.
Figure 5: Systemic regulation of Drosophila melanogaster immune responses.

Similar content being viewed by others

References

  1. St Johnston, D. & Nusslein-Volhard, C. The origin of pattern and polarity in the Drosophila embryo. Cell 68, 201–219 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Padmanabha, D. & Baker, K. D. Drosophila gains traction as a repurposed tool to investigate metabolism. Trends Endocrinol. Metab. 25, 518–527 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Lemaitre, B. & Hoffmann, J. A. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Limmer, S. et al. Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc. Natl Acad. Sci. USA 108, 17378–17383 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Vallet-Gely, I., Lemaitre, B. & Boccard, F. Bacterial strategies to overcome insect defences. Nature Rev. Microbiol. 6, 302–313 (2008).

    Article  CAS  Google Scholar 

  6. Xu, J. & Cherry, S. Viruses and antiviral immunity in Drosophila. Dev. Comparative Immunol. 42, 67–84 (2014).

    Article  CAS  Google Scholar 

  7. Venken, K. J. T. & Bellen, H. J. Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster. Methods 68, 15–28 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohr, S. E., Hu, Y., Kim, K., Housden, B. E. & Perrimon, N. Resources for functional genomics studies in Drosophila melanogaster. Genetics 197, 1–18 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boman, H. G., Nilsson, I. & Rasmuson, B. Inducible antibacterial defence system in Drosophila. Nature 237, 232–235 (1972).

    Article  CAS  PubMed  Google Scholar 

  10. Strominger, J. L. Animal antimicrobial peptides: ancient players in innate immunity. J. Immunol. 182, 6633–6634 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate immunity: an evolutionary perspective. Nature Immunol. 3, 121–126 (2002).

    Article  CAS  Google Scholar 

  12. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Lemaitre, B., Reichhart, J. M. & Hoffmann, J. A. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl Acad. Sci. USA 94, 14614–14619 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Shelly, S., Lukinova, N., Bambina, S., Berman, A. & Cherry, S. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30, 588–598 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakamoto, M. et al. Virus recognition by Toll-7 activates antiviral autophagy in Drosophila. Immunity 36, 658–667 (2012). This study establishes that D. melanogaster Toll-7 directly senses RNA viruses, similar to the function of mammalian TLRs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moy, R. H., Gold, B. & Molleston, J. Antiviral autophagy restricts Rift Valley fever virus infection and is conserved from flies to mammals. Immunity 40, 51–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Hymowitz, S. G. et al. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J. 20, 5332–5341 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chamy, L. E., Leclerc, V., Caldelari, I. & Reichhart, J. M. Sensing of 'danger signals' and pathogen-associated molecular patterns defines binary signaling pathways 'upstream' of Toll. Nature Immunol. 9, 1165–1170 (2008).

    Article  CAS  Google Scholar 

  19. Gottar, M. et al. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127, 1425–1437 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ming, M., Obata, F., Kuranaga, E. & Miura, M. Persephone/Spätzle pathogen sensors mediate the activation of Toll receptor signaling in response to endogenous danger signals in apoptosis-deficient Drosophila. J. Biol. Chem. 289, 7558–7568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gobert, V. et al. Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302, 2126–2130 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Buchon, N. et al. A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway. Proc. Natl Acad. Sci. USA 106, 12442–12447 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Kaneko, T. et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nature Immunol. 7, 715–723 (2006).

    Article  CAS  Google Scholar 

  24. Lim, J.-H. et al. Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J. Biol. Chem. 281, 8286–8295 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Chang, C., Chelliah, Y., Borek, D., Mengin-Lecreulx, D. & Deisenhofer, J. Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311, 1761–1764 (2006). References 24 and 25 provide atomic detail on the specific recognition of DAP-type peptidoglycan by the D. melanogaster Imd pathway.

    Article  CAS  PubMed  Google Scholar 

  26. Yano, T. et al. Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nature Immunol. 9, 908–916 (2008).

    Article  CAS  Google Scholar 

  27. Gürtler, C. & Bowie, A. G. Innate immune detection of microbial nucleic acids. Trends Microbiol. 21, 413–420 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ding, S.-W. & Voinnet, O. Antiviral immunity directed by small RNAs. Cell 130, 413–426 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Costa, A., Jan, E., Sarnow, P. & Schneider, D. S. The Imd pathway is involved in antiviral immune responses in Drosophila. PLoS ONE 4, e7436 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zambon, R. A., Nandakumar, M., Vakharia, V. N. & Wu, L. P. The Toll pathway is important for an antiviral response in Drosophila. Proc. Natl Acad. Sci. USA 102, 7257–7262 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Dostert, C. et al. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nature Immunol. 6, 946–953 (2005).

    Article  CAS  Google Scholar 

  32. van Rij, R. P. & Berezikov, E. Small RNAs and the control of transposons and viruses in Drosophila. Trends Microbiol. 17, 163–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Kemp, C. & Imler, J.-L. Antiviral immunity in drosophila. Curr. Opin. Immunol. 21, 3–9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Galiana-Arnoux, D., Dostert, C., Schneemann, A., Hoffmann, J. A. & Imler, J.-L. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nature Immunol. 7, 590–597 (2006).

    Article  CAS  Google Scholar 

  35. Wang, X. et al. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312, 452–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sabin, L. R. et al. Ars2 regulates both miRNA- and siRNA-dependent silencing and suppresses RNA virus infection in Drosophila. Cell 138, 340–351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zambon, R., Vakharia, V. & Wu, L. P. RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cell. Microbiol. 8, 880–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Aliyari, R. et al. Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in Drosophila. Cell Host Microbe 4, 387–397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mueller, S. et al. RNAi-mediated immunity provides strong protection against the negative-strand RNA vesicular stomatitis virus in Drosophila. Proc. Natl Acad. Sci. USA 107, 19390–19395 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Kemp, C. et al. Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila. J. Immunol. 190, 650–658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bronkhorst, A. et al. The DNA virus Invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery. Proc. Natl Acad. Sci. USA 109, E3604–E3613 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Sabin, L. R. et al. Dicer-2 processes diverse viral RNA species. PLoS ONE 8, e55458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brackney, D. E., Beane, J. E. & Ebel, G. D. RNAi targeting of west nile virus in mosquito midguts promotes virus diversification. PLoS Pathog. 5, e1000502 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Flynt, A., Liu, N., Martin, R. & Lai, E. C. Dicing of viral replication intermediates during silencing of latent Drosophila viruses. Proc. Natl Acad. Sci. USA 106, 5270–5275 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Goic, B. et al. RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nature Immunol. 14, 396–403 (2013). The data in this study suggest a mechanism for the amplification and persistence of the RNAi pathway in insects.

    Article  CAS  Google Scholar 

  46. Nayak, A. et al. Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. Nature Struct. Mol. Biol. 17, 547–554 (2010).

    Article  CAS  Google Scholar 

  47. Chao, J. A. et al. Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nature Struct. Mol. Biol. 12, 952–957 (2005).

    Article  CAS  Google Scholar 

  48. Fagegaltier, D. et al. The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. Proc. Natl Acad. Sci. 106, 21258–21263 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Berry, B., Deddouche, S., Kirschner, D., Imler, J.-L. & Antoniewski, C. Viral suppressors of RNA silencing hinder exogenous and endogenous small RNA pathways in Drosophila. PLoS ONE 4, e5866 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Mierlo, J. T. et al. Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses. PLoS Pathog. 8, e1002872 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cullen, B. R., Cherry, S. & tenOever, B. R. Is RNA interference a physiologically relevant innate antiviral immune response in mammals? Cell Host Microbe 14, 374–378 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Maillard, P. V. et al. Antiviral RNA interference in mammalian cells. Science 342, 235–238 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Li, Y., Lu, J., Han, Y., Fan, X. & Ding, S.-W. RNA interference functions as an antiviral immunity mechanism in mammals. Science 342, 231–234 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Mukherjee, K., Korithoski, B. & Kolaczkowski, B. Ancient origins of vertebrate-specific innate antiviral immunity. Mol. Biol. Evol. 31, 140–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Loo, Y.-M. & Gale, M. Immune signaling by RIG-I-like receptors. Immunity 34, 680–692 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Deddouche, S. et al. The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in drosophila. Nature Immunol. 9, 1425–1432 (2008).

    Article  CAS  Google Scholar 

  57. Moy, R. H. et al. Stem-loop recognition by DDX17 facilitates miRNA processing and antiviral defense. 158, 764–777 (2014). This paper shows that additional RNA sensors detect RNA viruses and that these are conserved across species.

  58. Hopkins, K. C. et al. A genome-wide RNAi screen reveals that mRNA decapping restricts bunyaviral replication by limiting the pools of Dcp2-accessible targets for cap-snatching. Genes Dev. 27, 1511–1525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Buchon, N., Broderick, N. A. & Lemaitre, B. Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nature Rev. Microbiol. 11, 615–626 (2013).

    Article  CAS  Google Scholar 

  60. Hegedus, D., Erlandson, M., Gillott, C. & Toprak, U. New insights into peritrophic matrix synthesis, architecture, and function. Annu. Rev. Entomol. 54, 285–302 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Syed, Z. A., Härd, T., Uv, A. & van Dijk-Härd, I. F. A potential role for Drosophila mucins in development and physiology. PLoS ONE 3, e3041 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Buchon, N., Broderick, N. A., Poidevin, M., Pradervand, S. & Lemaitre, B. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5, 200–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Ryu, J.-H. et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Ren, C., Webster, P., Finkel, S. & Tower, J. Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell. Metab. 6, 144–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Cox, C. R. & Gilmore, M. S. Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infection Immun. 75, 1565–1576 (2007).

    Article  CAS  Google Scholar 

  66. Corby-Harris, V. et al. Geographical distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster. Appl. Environ. Microbiol. 73, 3470–3479 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chandler, J., Lang, J., Bhatnagar, S. & Eisen, J. Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet. 7, e1002272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wong, C. N. A., Ng, P. & Douglas, A. E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 13, 1889–1900 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Broderick, N. A., Buchon, N. & Lemaitre, B. Microbiota-induced changes in Drosophila melanogaster host gene expression and gut morphology. MBio 5, e01117–01114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Broderick, N. A. & Lemaitre, B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3, 307–321 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shin, S. C. et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334, 670–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell. Metab. 14, 403–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Ridley, E. V., Wong, A. C.-N., Westmiller, S. & Douglas, A. E. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS ONE 7, e36765 (2012). References 71, 72 and 73 show that the gut microbiota modulates host physiology, with references 71 and 72 showing that it promotes larval growth in an insulin-dependent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 6150 (2013).

    Article  CAS  Google Scholar 

  75. Buchon, N., Broderick, N. A., Chakrabarti, S. & Lemaitre, B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev. 23, 2333–2344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cronin, S. J. F. et al. Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325, 340–343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jiang, H. et al. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137, 1343–1355 (2009). References 62, 69, 75 and 77 show that both commensals and pathogens alter stem cell activity in the gut.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sears, C. L. & Garrett, W. S. Microbes, microbiota, and colon cancer. Cell Host Microbe 15, 317–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tadokoro, T. et al. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc. Natl. Acad. Sci. USA 111, E3641–E3649 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Glittenberg, M. T. et al. Pathogen and host factors are needed to provoke a systemic host response to gastrointestinal infection of Drosophila larvae by Candida albicans. Dis. Model. Mech. 4, 515–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Britton, R. A. & Young, V. B. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 146, 1547–1553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ha, E.-M., Oh, C.-T., Bae, Y. S. & Lee, W.-J. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Bae, Y. S., Choi, M. K. & Lee, W.-J. Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends Immunol. 31, 278–287 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Jones, R. M. et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J. 32, 3017–3028 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Juarez, M. T., Patterson, R. A., Sandoval-Guillen, E. & McGinnis, W. Duox, Flotillin-2, and Src42A are required to activate or delimit the spread of the transcriptional response to epidermal wounds in Drosophila. PLoS Genet. 7, e1002424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Razzell, W., Evans, I. R., Martin, P. & Wood, W. Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr. Biol. 23, 424–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Anh, N. T. T., Nishitani, M., Harada, S., Yamaguchi, M. & Kamei, K. Essential role of Duox in stabilization of Drosophila wing. J. Biol. Chem. 286, 33244–33251 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ha, E.-M. et al. Regulation of DUOX by the Gαq-phospholipase Cβ-Ca2+ pathway in Drosophila gut immunity. Dev. Cell 16, 386–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Krause, K.-H. Aging: a revisited theory based on free radicals generated by NOX family NADPH oxidases. Exp. Gerontol. 42, 256–262 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Ha, E.-M. et al. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nature Immunol. 10, 949–957 (2009).

    Article  CAS  Google Scholar 

  91. Lee, K.-A. et al. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153, 797–811 (2013). This article provides evidence that the bacteria-derived small metabolite uracil can activate Duox activity in the gut of D. melanogaster.

    Article  CAS  PubMed  Google Scholar 

  92. Tiller, G. R. & Garsin, D. A. The SKPO-1 peroxidase functions in the hypodermis to protect Caenorhabditis elegans from bacterial infection. Genetics 197, 515–526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Grasberger, H., El-Zaatari, M., Dang, D. T. & Merchant, J. L. Dual oxidases control release of hydrogen peroxide by the gastric epithelium to prevent Helicobacter felis infection and inflammation in mice. Gastroenterology 145, 1045–1054 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ryu, J.-H. et al. An essential complementary role of NF-κB pathway to microbicidal oxidants in Drosophila gut immunity. EMBO J. 25, 3693–3701 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Buchon, N. et al. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep. 3, 1725–1738 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Eckmann, L. Defence molecules in intestinal innate immunity against bacterial infections. Curr. Opin. Gastroenterol. 21, 147–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Bosco-Drayon, V. et al. Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe 12, 153–165 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Osman, D. et al. Autocrine and paracrine unpaired signaling regulate intestinal stem cell maintenance and division. J. Cell Sci. 125, 5944–5949 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Zhou, F., Rasmussen, A., Lee, S. & Agaisse, H. The UPD3 cytokine couples environmental challenge and intestinal stem cell division through modulation of JAK/STAT signaling in the stem cell microenvironment. Dev. Biol. 373, 383–393 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Zaidmanremy, A. et al. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24, 463–473 (2006).

    Article  CAS  Google Scholar 

  102. Bischoff, V. et al. Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog. 2, e14 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Paredes, J. C., Welchman, D. P., Poidevin, M. & Lemaitre, B. Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection. Immunity 35, 770–779 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Kleino, A. et al. Pirk is a negative regulator of the Drosophila Imd pathway. J. Immunol. 180, 5413–5422 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Lhocine, N. et al. PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 4, 147–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Aggarwal, K. et al. Rudra interrupts receptor signaling complexes to negatively regulate the IMD pathway. PLoS Pathog. 4, e1000120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Persson, C., Oldenvi, S. & Steiner, H. Peptidoglycan recognition protein LF: a negative regulator of Drosophila immunity. Insect Biochem. Mol. Biol. 37, 1309–1316 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Khush, R., Cornwell, W., Uram, J. & Lemaitre, B. A ubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade. Curr. Biol. 12, 1728–1737 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Saha, S. et al. Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-γ. Cell Host Microbe 8, 147–162 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rera, M., Clark, R. I. & Walker, D. W. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc. Natl Acad. Sci. USA 109, 21528–21533 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Biteau, B., Hochmuth, C. E. & Jasper, H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3, 442–455 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Guo, L., Karpac, J., Tran, S. L. & Jasper, H. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell 156, 109–122 (2014). References 63, 101, 103 and 112 show the importance of negative regulation of the gut immune response in maintaining gut and organism homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Biagi, E. et al. Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol. Res. 69, 11–20 (2013).

    Article  PubMed  Google Scholar 

  114. Sternberg, E. M. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nature Rev. Immunol. 6, 318–328 (2006).

    Article  CAS  Google Scholar 

  115. Stone, E. F. et al. The circadian clock protein timeless regulates phagocytosis of bacteria in Drosophila. PLoS Pathog. 8, e1002445 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lee, J.-E. & Edery, I. Circadian regulation in the ability of Drosophila to combat pathogenic infections. Curr. Biol. 18, 195–199 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gibbs, J. E. et al. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc. Natl Acad. Sci. USA 109, 582–587 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Hotamisligil, G. S. & Erbay, E. Nutrient sensing and inflammation in metabolic diseases. Nature Rev. Immunol. 8, 923–934 (2008).

    Article  CAS  Google Scholar 

  119. Baker, K. D. & Thummel, C. S. Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell. Metab. 6, 257–266 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Léopold, P. & Perrimon, N. Drosophila and the genetics of the internal milieu. Nature 450, 186–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Colombani, J. et al. A nutrient sensor mechanism controls Drosophila growth. Cell 114, 739–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Géminard, C., Rulifson, E. J. & Léopold, P. Remote control of insulin secretion by fat cells in Drosophila. Cell. Metab. 10, 199–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Kim, S. K. & Rulifson, E. J. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 431, 316–320 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Kannan, K. & Fridell, Y.-W. C. Functional implications of Drosophila insulin-like peptides in metabolism, aging, and dietary restriction. Front. Physiol. 4, 288 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Grönke, S., Clarke, D.-F., Broughton, S., Andrews, T. D. & Partridge, L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 6, e1000857 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rajan, A. & Perrimon, N. Of flies and men: insights on organismal metabolism from fruit flies. BMC Biol. 11, 38 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhang, W., Thompson, B. J., Hietakangas, V. & Cohen, S. M. MAPK/ERK signaling regulates insulin sensitivity to control glucose metabolism in Drosophila. PLoS Genet. 7, e1002429 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee, K.-S. et al. Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nature Cell Biol. 10, 468–475 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Broughton, S. J. et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl Acad. Sci. USA 102, 3105–3110 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. DiAngelo, J. R., Bland, M. L., Bambina, S., Cherry, S. & Birnbaum, M. J. The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proc. Natl Acad. Sci. USA 106, 20853–20858 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Dionne, M. S., Pham, L. N., Shirasu-Hiza, M. M. & Schneider, D. S. Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila. Curr. Biol. 16, 1977–1985 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Fitzpatrick, M. & Young, S. P. Metabolomics — a novel window into inflammatory disease. Swiss Med. Wkly 143, w13743 (2013).

    PubMed  PubMed Central  Google Scholar 

  133. Chambers, M. C., Song, K. H. & Schneider, D. S. Listeria monocytogenes infection causes metabolic shifts in Drosophila melanogaster. PLoS ONE 7, e50679 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Becker, T. et al. FOXO-dependent regulation of innate immune homeostasis. Nature 463, 369–373 (2010). The data in this study show an evolutionarily conserved mechanism of cross-regulation of metabolism and innate immunity that allows an organism to adapt to changing environmental conditions.

    Article  CAS  PubMed  Google Scholar 

  135. Rajan, A. & Perrimon, N. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 151, 123–137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Clark, R. I. et al. MEF2 is an in vivo immune-metabolic switch. Cell 155, 435–447 (2013). This study shows that Mef2 is a crucial transcriptional switch in the adult fat body that mediates switching between promoting anabolic or immune genes in response to metabolic changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lazzaro, B. P. & Galac, M. R. Disease pathology: wasting energy fighting infection. Curr. Biol. 16, R964–R965 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Zerofsky, M., Harel, E., Silverman, N. & Tatar, M. Aging of the innate immune response in Drosophila melanogaster. Aging Cell 4, 103–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Obata, F. et al. Necrosis-driven systemic immune response alters SAM metabolism through the FOXO-GNMT axis. Cell Rep. 7, 821–833 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Karpac, J., Younger, A. & Jasper, H. Dynamic coordination of innate immune signaling and insulin signaling regulates systemic responses to localized DNA damage. Dev. Cell 20, 841–854 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pallavi, S. K., Ho, D. M., Hicks, C., Miele, L. & Artavanis-Tsakonas, S. Notch and Mef2 synergize to promote proliferation and metastasis through JNK signal activation in Drosophila. EMBO J. 31, 2895–2907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Manzanillo, P. S. et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501, 512–516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ragab, A. et al. Drosophila Ras/MAPK signalling regulates innate immune responses in immune and intestinal stem cells. EMBO J. 30, 1123–1136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Xu, J. et al. ERK signaling couples nutrient status to antiviral defense in the insect gut. Proc. Natl Acad. Sci. USA 110, 15025–15030 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Ayres, J. S. & Schneider, D. S. The role of anorexia in resistance and tolerance to infections in Drosophila. PLoS Biol. 7, e1000150 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Di Cara, F. & King-Jones, K. How clocks and hormones act in concert to control the timing of insect development. Curr. Top. Dev. Biol. 105, 1–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. King-Jones, K. & Thummel, C. S. Nuclear receptors — a perspective from Drosophila. Nature Rev. Genet. 6, 311–323 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Tan, K. L., Vlisidou, I. & Wood, W. Ecdysone mediates the development of immunity in the Drosophila embryo. Curr. Biol. 24, 1145–1152 (2014). This paper shows that immune responsiveness of the D. melanogaster embryo requires developmentally programmed Ecdysone production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Meister, M. & Richards, G. Ecdysone and insect immunity: the maturation of the inducibility of the diptericin gene in Drosophila larvae. Insect Biochem. Mol. Biol. 26, 155–160 (1996).

    Article  CAS  PubMed  Google Scholar 

  151. Reichhart, J. M. et al. Insect immunity: developmental and inducible activity of the Drosophila diptericin promoter. 11, 1469–1477 (1992).

  152. Rus, F. et al. Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity. EMBO J. 32, 1626–1638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Franc, N. C., Dimarcq, J. L., Lagueux, M., Hoffmann, J. A. & Ezekowitz, R. A. Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4, 431–443 (1996).

    Article  CAS  PubMed  Google Scholar 

  154. Regan, J. C. et al. Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila. PLoS Pathog. 9, e1003720 (2013). References 152 and 154 establish that the steroid hormone Ecdysone controls cellular and humoral immune defences in larval and adult stages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hirashima, A., Rauschenbach, I. Y. & Sukhanova, M. J. Ecdysteroids in stress responsive and nonresponsive Drosophila virilis lines under stress conditions. Biosci. Biotechnol. Biochem. 64, 2657–2662 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Terashima, J., Takaki, K., Sakurai, S. & Bownes, M. Nutritional status affects 20-hydroxyecdysone concentration and progression of oogenesis in Drosophila melanogaster. J. Endocrinol. 187, 69–79 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Simon, A. F., Shih, C., Mack, A. & Benzer, S. Steroid control of longevity in Drosophila melanogaster. Science 299, 1407–1410 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Beyenbach, K. W., Skaer, H. & Dow, J. A. T. The developmental, molecular, and transport biology of Malpighian tubules. Annu. Rev. Entomol. 55, 351–374 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Terhzaz, S., Overend, G., Sebastian, S., Dow, J. A. T. & Davies, S. A. The D. melanogaster capa-1 neuropeptide activates renal NF-kB signaling. Peptides 53, 218–224 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Overend, G. et al. The receptor guanylate cyclase Gyc76C and a peptide ligand, NPLP1-VQQ, modulate the innate immune IMD pathway in response to salt stress. Peptides 34, 209–218 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Heneka, M. T., Kummer, M. P. & Latz, E. Innate immune activation in neurodegenerative disease. Nature Rev. Immunol. 14, 463–477 (2014).

    Article  CAS  Google Scholar 

  162. Stewart, C. R. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nature Immunol. 11, 155–161 (2010).

    Article  CAS  Google Scholar 

  163. Tan, L., Schedl, P., Song, H.-J., Garza, D. & Konsolaki, M. The Toll→NFκB signaling pathway mediates the neuropathological effects of the human Alzheimer's Aβ42 polypeptide in Drosophila. PLoS ONE 3, e3966 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cao, Y., Chtarbanova, S., Petersen, A. J. & Ganetzky, B. Dnr1 mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Proc. Natl Acad. Sci. USA 110, E1752–E1760 (2013). This study establishes that the classic Imd pathway and individual AMPs can trigger neurodegeneration when activated in the brain.

    Article  CAS  PubMed  Google Scholar 

  165. Guntermann, S., Primrose, D. A. & Foley, E. Dnr1-dependent regulation of the Drosophila immune deficiency signaling pathway. Dev. Comp. Immunol. 33, 127–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Petersen, A. J., Rimkus, S. A. & Wassarman, D. A. ATM kinase inhibition in glial cells activates the innate immune response and causes neurodegeneration in Drosophila. Proc. Natl Acad. Sci. USA 109, E656–E664 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Petersen, A. J., Katzenberger, R. J. & Wassarman, D. A. The innate immune response transcription factor relish is necessary for neurodegeneration in a Drosophila model of ataxia-telangiectasia. Genetics 194, 133–142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chinchore, Y., Gerber, G. F. & Dolph, P. J. Alternative pathway of cell death in Drosophila mediated by NF-κB transcription factor Relish. Proc. Natl Acad. Sci. USA 109, E605–612 (2012).

    Article  PubMed  Google Scholar 

  169. Hanke, M. L. & Kielian, T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin. Sci. 121, 367–387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sackton, T. B. et al. Dynamic evolution of the innate immune system in Drosophila. Nature Genet. 39, 1461–1468 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Obbard, D. J., Jiggins, F. M., Halligan, D. L. & Little, T. J. Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr. Biol. 16, 580–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, e2 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Chrostek, E. et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 9, e1003896 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Frentiu, F. D. et al. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl. Trop. Dis. 8, e2688 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Schneider, D. S. & Ayres, J. S. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nature Rev. Immunol. 8, 889–895 (2008).

    Article  CAS  Google Scholar 

  176. Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ferrandon, D. The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: from resistance to resilience. Curr. Opin. Immunol. 25, 59–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Howick, V. M. & Lazzaro, B. P. Genotype and diet shape resistance and tolerance across distinct phases of bacterial infection. BMC Evol. Biol. 14, 56 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Hedges, L. M., Brownlie, J. C., O'Neill, S. L. & Johnson, K. N. Wolbachia and virus protection in insects. Science 322, 702 (2008). References 173, 174 and 179 have established Wolbachia as a tenable strategy for blocking the transmission of arboviruses in vector insects.

    Article  CAS  PubMed  Google Scholar 

  180. Hoffmann, A. A. et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476, 454–457 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.B. is supported by New York State Stem Cell Science (grant C029542) and the US National Science Foundation (grant 1354421). S.C is supported by Burroughs Wellcome Fund, and both S.C. and N.S. are supported by the US Department of Health and Human Services and National Institutes of Health, National Institute of Allergy and Infectious Diseases grants: R01 AI095500-01A1 and R01 AI074951-06A1 (to S.C.), and R01 AI060025, R01 AI099708 and P01 AG033561 (to N.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Cherry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Selfish genetic elements

DNA sequences that enhance their own transmission relative to other elements in the genome, and that are thought to be either neutral or detrimental to the fitness of the organism. These elements, which include transposons, constitute a large proportion of eukaryotic genomes.

RNA interference

(RNAi). RNA-directed inhibition of gene expression that is typically achieved by causing the degradation of specific mRNA molecules.

Autophagy

An evolutionarily conserved process in which an acidic double-membrane-bound vesicle, known as an autophagosome, sequesters intracellular contents (such as damaged organelles and macromolecules, or pathogens) and targets them for degradation through fusion to lysosomes. This process is essential for the response to starvation because it facilitates the recycling of cellular components, and it can also be targeted to intracellular bacteria or viruses to restrict their growth.

Haemocytes

Cells found within the haemolymph of an insect that are equivalent to the blood cells in vertebrates. Different types of haemocyte are plasmatocytes, crystal cells and lamellocytes. These cells have important roles in immunity through the secretion of cytokines and phagocytic clearance of invaders.

Mitophagy

A specialized form of autophagy that selectively targets and degrades mitochondria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchon, N., Silverman, N. & Cherry, S. Immunity in Drosophila melanogaster — from microbial recognition to whole-organism physiology. Nat Rev Immunol 14, 796–810 (2014). https://doi.org/10.1038/nri3763

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3763

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing