Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion?

Abstract

Chronic viral infections and malignant tumours induce T cells that have a reduced ability to secrete effector cytokines and have upregulated expression of the inhibitory receptor PD1 (programmed cell death protein 1). These features have so far been considered to mark terminally differentiated 'exhausted' T cells. However, several recent clinical and experimental observations indicate that phenotypically exhausted T cells can still mediate a crucial level of pathogen or tumour control. In this Opinion article, we propose that the exhausted phenotype results from a differentiation process in which T cells stably adjust their effector capacity to the needs of chronic infection. We argue that this phenotype is optimized to cause minimal tissue damage while still mediating a critical level of pathogen control. In contrast to the presently held view of functional exhaustion, this new concept better reflects the pathophysiology and clinical manifestations of persisting infections, and it provides a rationale for emerging therapies that enhance T cell activity in chronic infection and cancer by blocking inhibitory receptors.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Assessing T cell differentiation in acute and chronic infections.
Figure 2: Proposed model for T cell responses in chronic infection.

References

  1. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    CAS  PubMed  Google Scholar 

  2. Badovinac, V. P., Haring, J. S. & Harty, J. T. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8+ T cell response to infection. Immunity 26, 827–841 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller, J. D. et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28, 710–722 (2008).

    CAS  PubMed  Google Scholar 

  4. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nature Rev. Immunol. 12, 749–761 (2012).

    CAS  Google Scholar 

  5. Arens, R. & Schoenberger, S. P. Plasticity in programming of effector and memory CD8 T-cell formation. Immunol. Rev. 235, 190–205 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, N. & Bevan, M. J. CD8+ T cells: foot soldiers of the immune system. Immunity 35, 161–168 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zehn, D., King, C., Bevan, M. J. & Palmer, E. TCR signaling requirements for activating T cells and for generating memory. Cell. Mol. Life Sci. 69, 1565–1575 (2012).

    CAS  PubMed  Google Scholar 

  8. Jameson, S. C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Harari, A. et al. Functional signatures of protective antiviral T-cell immunity in human virus infections. Immunol. Rev. 211, 236–254 (2006).

    CAS  PubMed  Google Scholar 

  10. Kuchroo, V. K., Anderson, A. C. & Petrovas, C. Coinhibitory receptors and CD8 T cell exhaustion in chronic infections. Curr. Opin. HIV AIDS 9, 439–445 (2014).

    CAS  PubMed  Google Scholar 

  11. Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nature Rev. Immunol. 13, 227–242 (2013).

    Google Scholar 

  12. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R. M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758–761 (1993).

    CAS  PubMed  Google Scholar 

  14. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nature Immunol. 10, 29–37 (2009).

    CAS  Google Scholar 

  16. Wherry, E. J. T cell exhaustion. Nature Immunol. 12, 492–499 (2011).

    CAS  Google Scholar 

  17. Klenerman, P. & Hill, A. T cells and viral persistence: lessons from diverse infections. Nature Immunol. 6, 873–879 (2005).

    CAS  Google Scholar 

  18. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nature Rev. Cancer 12, 252–264 (2012).

    CAS  Google Scholar 

  19. Kim, P. S. & Ahmed, R. Features of responding T cells in cancer and chronic infection. Curr. Opin. Immunol. 22, 223–230 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Crespo, J., Sun, H., Welling, T. H., Tian, Z. & Zou, W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 25, 214–221 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl Acad. Sci. USA 101, 16004–16009 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefining chronic viral infection. Cell 138, 30–50 (2009).

    CAS  PubMed  Google Scholar 

  23. Gairin, J. E., Mazarguil, H., Hudrisier, D. & Oldstone, M. B. Optimal lymphocytic choriomeningitis virus sequences restricted by H-2Db major histocompatibility complex class I molecules and presented to cytotoxic T lymphocytes. J. Virol. 69, 2297–2305 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    CAS  PubMed  Google Scholar 

  25. Shin, H., Blackburn, S. D., Blattman, J. N. & Wherry, E. J. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J. Exp. Med. 204, 941–949 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    CAS  PubMed  Google Scholar 

  27. Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S. & Honjo, T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nature Immunol. 14, 1212–1218 (2013).

    CAS  Google Scholar 

  28. Price, D. A. et al. T cell receptor recognition motifs govern immune escape patterns in acute SIV infection. Immunity 21, 793–803 (2004).

    CAS  PubMed  Google Scholar 

  29. Walker, B. & McMichael, A. The T-cell response to HIV. Cold Spring Harb. Perspect. Med. 2, a007054 (2012).

    PubMed  PubMed Central  Google Scholar 

  30. Hess, C. et al. HIV-1 specific CD8+ T cells with an effector phenotype and control of viral replication. Lancet 363, 863–866 (2004).

    CAS  PubMed  Google Scholar 

  31. Ortiz, G. M. et al. Structured antiretroviral treatment interruptions in chronically HIV-1-infected subjects. Proc. Natl Acad. Sci. USA 98, 13288–13293 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fink, P. J. The biology of recent thymic emigrants. Annu. Rev. Immunol. 31, 31–50 (2013).

    CAS  PubMed  Google Scholar 

  33. Douek, D. C. et al. Evidence for increased T cell turnover and decreased thymic output in HIV infection. J. Immunol. 167, 6663–6668 (2001).

    CAS  PubMed  Google Scholar 

  34. Freel, S. A., Saunders, K. O. & Tomaras, G. D. CD8+T-cell-mediated control of HIV-1 and SIV infection. Immunol. Res. 49, 135–146 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmitz, J. E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860 (1999).

    CAS  PubMed  Google Scholar 

  36. Jin, X. et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. 189, 991–998 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hansen, S. G. et al. Immune clearance of highly pathogenic SIV infection. Nature 502, 100–104 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mahnke, Y. D. et al. Human melanoma-specific CD8+ T-cells from metastases are capable of antigen-specific degranulation and cytolysis directly ex vivo. Oncoimmunology 1, 467–530 (2012).

    PubMed  PubMed Central  Google Scholar 

  39. Baitsch, L. et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Invest. 121, 2350–2360 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. New Engl. J. Med. 348, 203–213 (2003).

    CAS  PubMed  Google Scholar 

  42. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    CAS  PubMed  Google Scholar 

  43. Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nature Rev. Cancer 12, 298–306 (2012).

    CAS  PubMed  Google Scholar 

  44. Blackburn, S. D. et al. Tissue-specific differences in PD-1 and PD-L1 expression during chronic viral infection: implications for CD8 T-cell exhaustion. J. Virol. 84, 2078–2089 (2010).

    CAS  PubMed  Google Scholar 

  45. Zelinskyy, G. et al. Virus-specific CD8+ T cells upregulate programmed death-1 expression during acute friend retrovirus infection but are highly cytotoxic and control virus replication. J. Immunol. 187, 3730–3737 (2011).

    CAS  PubMed  Google Scholar 

  46. Larsen, M. et al. Exhausted cytotoxic control of Epstein-Barr virus in human lupus. PLoS Pathog. 7, e1002328 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sakhdari, A. et al. Tim-3 negatively regulates cytotoxicity in exhausted CD8+ T cells in HIV infection. PLoS ONE 7, e40146 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med. 207, 2175–2186 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jin, H. T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA 107, 14733–14738 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakamoto, N. et al. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog. 5, e1000313 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187–2194 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    CAS  PubMed  Google Scholar 

  53. Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc. Natl Acad. Sci. USA 105, 15016–15021 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Matloubian, M., Concepcion, R. J. & Ahmed, R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J. Virol. 68, 8056–8063 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Snyder, C. M. et al. Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity 29, 650–659 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ibegbu, C. C. et al. Expression of killer cell lectin-like receptor G1 on antigen-specific human CD8+ T lymphocytes during active, latent, and resolved infection and its relation with CD57. J. Immunol. 174, 6088–6094 (2005).

    CAS  PubMed  Google Scholar 

  57. Hislop, A. D., Taylor, G. S., Sauce, D. & Rickinson, A. B. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu. Rev. Immunol. 25, 587–617 (2007).

    CAS  PubMed  Google Scholar 

  58. Freeman, M. L., Burkum, C. E., Jensen, M. K., Woodland, D. L. & Blackman, M. A. γ-Herpesvirus reactivation differentially stimulates epitope-specific CD8 T cell responses. J. Immunol. 188, 3812–3819 (2012).

    CAS  PubMed  Google Scholar 

  59. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med. 8, 379–385 (2002).

    CAS  PubMed  Google Scholar 

  60. Hertoghs, K. M. et al. Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation. J. Clin. Invest. 120, 4077–4090 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lichterfeld, M. et al. Selective depletion of high-avidity human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells after early HIV-1 infection. J. Virol. 81, 4199–4214 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Vigano, S. et al. Rapid perturbation in viremia levels drives increases in functional avidity of HIV-specific CD8 T cells. PLoS Pathog. 9, e1003423 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Utzschneider, D. T. et al. T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nature Immunol. 14, 603–610 (2013).

    CAS  Google Scholar 

  64. Youngblood, B. et al. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8+ T cells. Immunity 35, 400–412 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Youngblood, B. et al. Cutting edge: Prolonged exposure to HIV reinforces a poised epigenetic program for PD-1 expression in virus-specific CD8 T cells. J. Immunol. 191, 540–544 (2013).

    CAS  PubMed  Google Scholar 

  66. Kasprowicz, V. et al. High level of PD-1 expression on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. J. Virol. 82, 3154–3160 (2008).

    CAS  PubMed  Google Scholar 

  67. Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gerlach, C. et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340, 635–639 (2013).

    CAS  PubMed  Google Scholar 

  69. Buchholz, V. R. et al. Disparate individual fates compose robust CD8+ T cell immunity. Science 340, 630–635 (2013).

    CAS  PubMed  Google Scholar 

  70. Williams, M. A. & Bevan, M. J. Effector and memory CTL differentiation. Annu. Rev. Immunol. 25, 171–192 (2007).

    CAS  PubMed  Google Scholar 

  71. Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun, J. C. & Bevan, M. J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Waggoner, S. N., Cornberg, M., Selin, L. K. & Welsh, R. M. Natural killer cells act as rheostats modulating antiviral T cells. Nature 481, 394–398 (2012).

    CAS  Google Scholar 

  74. Angelosanto, J. M., Blackburn, S. D., Crawford, A. & Wherry, E. J. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J. Virol. 86, 8161–8170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Doering, T. A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity 37, 1130–1144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cornberg, M. et al. Clonal exhaustion as a mechanism to protect against severe immunopathology and death from an overwhelming CD8 T cell response. Frontiers Immunol. 4, 475 (2013).

    Google Scholar 

  77. Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nature Immunol. 14, 1173–1182 (2013).

    CAS  Google Scholar 

  78. Frebel, H. et al. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. J. Exp. Med. 209, 2485–2499 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mueller, S. N. et al. PD-L1 has distinct functions in hematopoietic and nonhematopoietic cells in regulating T cell responses during chronic infection in mice. J. Clin. Invest. 120, 2508–2515 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hirano, F. et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 65, 1089–1096 (2005).

    CAS  PubMed  Google Scholar 

  81. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  Google Scholar 

  82. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R. & Carbone, F. R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319, 198–202 (2008).

    CAS  PubMed  Google Scholar 

  84. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nature Immunol. 10, 524–530 (2009).

    CAS  Google Scholar 

  85. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mueller, S. N., Gebhardt, T., Carbone, F. R. & Heath, W. R. Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 31, 137–161 (2013).

    CAS  PubMed  Google Scholar 

  87. Wakim, L. M. et al. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J. Immunol. 189, 3462–3471 (2012).

    CAS  PubMed  Google Scholar 

  88. Zhu, J. et al. Immune surveillance by CD8αα+ skin-resident T cells in human herpes virus infection. Nature 497, 494–497 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. New Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  Google Scholar 

  90. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. New Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  Google Scholar 

  91. Ribas, A. Tumor immunotherapy directed at PD-1. New Engl. J. Med. 366, 2517–2519 (2012).

    CAS  PubMed  Google Scholar 

  92. Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. New Engl. J. Med. 369, 134–144 (2013).

    CAS  PubMed  Google Scholar 

  93. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. New Engl. J. Med. 369, 122–133 (2013).

    CAS  PubMed  Google Scholar 

  94. Riley, J. L. Combination checkpoint blockade — taking melanoma immunotherapy to the next level. New Engl. J. Med. 369, 187–189 (2013).

    CAS  PubMed  Google Scholar 

  95. Korman, A. J., Peggs, K. S. & Allison, J. P. Checkpoint blockade in cancer immunotherapy. Adv. Immunol. 90, 297–339 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gardiner, D. et al. A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection. PLoS ONE 8, e63818 (2013).

    PubMed  PubMed Central  Google Scholar 

  97. Fuller, M. J. et al. Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1). Proc. Natl Acad. Sci. USA 110, 15001–15006 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Velu, V. et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 458, 206–210 (2009).

    CAS  PubMed  Google Scholar 

  99. Minter, S., Willner, I. & Shirai, K. Ipilimumab-induced hepatitis C viral suppression. J. Clin. Oncol. 31, e307–e308 (2013).

    PubMed  Google Scholar 

Download references

Acknowledgements

D.E.S., C.M., P.R. and D.Z. are supported by a Swiss National Science Sinergia grant (FNS CRSII3_141879).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Zehn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

ClinicalTrials.gov

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Speiser, D., Utzschneider, D., Oberle, S. et al. T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion?. Nat Rev Immunol 14, 768–774 (2014). https://doi.org/10.1038/nri3740

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3740

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing