REGULATORY T CELLS

Alarmin(g) control

Regulatory T ($T_{\rm Reg}$) cells expressing the transcription factor forkhead box P3 (FOXP3) are important for maintaining immune homeostasis in the intestine, but the key factors that control $T_{\rm Reg}$ cell activity at this site are poorly defined. Now, Fiona Powrie and colleagues show that interleukin-33 (IL-33) — which is an alarmin produced in response to tissue damage — promotes $T_{\rm Reg}$ cell function in the intestine.

The authors set out to identify potential tissue-specific regulators of colonic T_{Reg} cells; mRNA expression profiles of T_{Reg} cells from the mesenteric lymph nodes and the colon of mice showed that one of the genes that was most highly upregulated in colonic T_{Reg} cells was Il1rl1, which encodes the IL-33 receptor ST2 (also known as IL-1 receptor-like 1). $ST2^+T_{Reg}$ cells are abundant in the intestine, so the authors hypothesized that IL-33 might modulate T_{Reg} cell differentiation. Naive CD4+ T cells were isolated from Foxp3gfp reporter mice and activated in the presence of transforming growth factor β1 (TGFβ1). The addition of IL-33 to these cultures increased the percentage and number of FOXP3-expressing cells, but only in the presence of TGF β 1. Thus, IL-33 is a novel cofactor for TGFβ1-mediated *in vitro* generation of T_{Reg} cells.

IL-33

IL-33 ... promotes T_{Reg} cell function in the intestine

whether IL-33 has a role in the *in vivo* proliferation of thymus-derived $T_{\rm Reg}$ cells, which constitute a substantial proportion of the ST2+ colonic $T_{\rm Reg}$ cells. Indeed, IL-33 induced proliferation in splenic $T_{\rm Reg}$ cells but not in effector T cells. Furthermore, $Il1rl1^{-/-}$ $T_{\rm Reg}$ cells showed impaired proliferation after injection of IL-33 into chimeric mice that contained a mixture of wild-type and $Il1rl1^{-/-}$ haematopoietic cells. Hence, IL-33 promotes the proliferation and accumulation of thymus-derived $T_{\rm Reg}$ cells *in vivo*.

Next, the authors investigated

The T-cell-specific transcription factor GATA-binding protein 3 (GATA3) is known to be important for T_{Reg} cell stability and function, and to regulate ST2 expression in T helper 2 (T_{H} 2) cells. Hence, the authors investigated the role of GATA3

in IL-33-mediated regulation of intestinal T_{Reg} cells and found that GATA3 was phosphorylated after IL-33 stimulation of $TGF\beta 1$ -activated naive CD4⁺ T cells. This stimulation induced the recruitment of GATA3 and RNA polymerase II to the *Foxp3* promoter, which indicates that IL-33 regulates *Foxp3* expression. In addition, the authors found that GATA3 was recruited to the *Il1rl1* enhancer element. Thus, IL-33 seems to have a role in *Foxp3* induction, as well as in promoting the expression of its own receptor.

Using the T cell transfer model of colitis, the authors examined the ability of $Il1rl1^{-/-}$ T_{Reg} cells to protect mice from disease; naive T cells were injected into $Rag1^{-/-}$ mice (which lack the gene encoding recombination-activating gene 1) either alone, or together with wild-type or $Il1rl1^{-/-}$ T_{Reg} cells. The ability of $Il1rl1^{-/-}$ T_{Reg} cells to prevent colitis was substantially impaired, which indicates that IL-33 signalling is important for the suppressive function of T_{Reg} cells in vivo.

Finally, the authors examined whether IL-23 — which can promote intestinal inflammation by inhibiting T_{Reg} cell differentiation — limits T cell responsiveness to IL-33. Indeed, the ability of IL-33 to promote FOXP3 expression *in vitro* in the presence of TGF β 1 was abolished after the addition of IL-23. The authors showed that IL-23 prevents T cells from responding to IL-33 by inhibiting ST2 expression and ST2 signal transduction.

Taken together, this study shows that IL-33 produced in response to tissue damage can enhance local intestinal $T_{\rm Reg}$ cell responses. Notably, IL-23 can limit this regulatory mechanism by inhibiting the responsiveness of $T_{\rm Reg}$ cells to IL-33.

Elisabeth Kugelberg

ORIGINAL RESEARCH PAPER Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature http://dx.doi.org/10.1038/nature13577 (2014)

NPG/S.Bradbrook