Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The origins and functions of dendritic cells and macrophages in the skin

Key Points

  • Differential expression of CD64, CC-chemokine receptor 2 and the tyrosine protein kinase MER (MERTK) enables the complexity of mononuclear phagocytes in mouse skin to be resolved. XC-chemokine receptor 1 (XCR1)+CD11b conventional dendritic cells (cDCs), CD11b+ cDCs, Langerhans cells (LCs), monocyte-derived DCs and macrophages can be readily distinguished on the basis of the expression of these markers.

  • The study of transcriptomic signatures, and of migratory and T cell-stimulatory properties, has unravelled the functional specialization that exists among skin antigen-presenting cell (APC) types.

  • The ability to migrate to the lymph nodes so as to interact with naive T cells remains a cardinal feature of epidermal LCs and dermal cDCs. By contrast, the macrophages and monocyte-derived DCs of the healthy dermis are unable to migrate to the lymph nodes and thus exert their functions in the dermis.

  • Whereas macrophages are primarily endowed with phagocytic and anti-inflammatory properties, the T cell-stimulatory capacity of dermal monocyte-derived DCs indicates that they might contribute to the maintenance of the many T cell types that are found in healthy dermis.

  • The different APC types that are found in the skin do not contribute equally to the establishment of inflammatory skin diseases and further knowledge of their relative contributions will be essential for improving current therapeutic approaches.

  • The DC and macrophage subsets that have been identified in the mouse skin can be aligned with functionally equivalent human subsets, which will inform the translation of knowledge from mouse models to human settings.

Abstract

Immune cell populations in the skin are predominantly comprised of dendritic cells (DCs) and macrophages. A lack of consensus regarding how to define these cell types has hampered research in this area. In this Review, we focus on recent advances that, based on ontogeny and global gene-expression profiles, have succeeded in discriminating DCs from macrophages in the skin. We discuss how these studies have enabled researchers to revisit the origin, diversity and T cell-stimulatory properties of these cells, and have led to unifying principles that extend across tissues and species. By aligning the DC and macrophage subsets that are found in mouse skin with those that are present in human skin, these studies also provide crucial information for developing intradermal vaccines and for managing inflammatory skin conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antigen-presenting cell populations of the healthy skin.
Figure 2: Subsets of skin dendritic cells and macrophages.
Figure 3: Origin of dermal macrophages.

Similar content being viewed by others

References

  1. Gregorio, J. et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J. Exp. Med. 207, 2921–2930 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Guiducci, C. et al. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature 465, 937–941 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bursch, L. S. et al. Identification of a novel population of Langerin+ dendritic cells. J. Exp. Med. 204, 3147–3156 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ginhoux, F. et al. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J. Exp. Med. 204, 3133–3146 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Poulin, L. F. et al. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J. Exp. Med. 204, 3119–3131 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Crozat, K. et al. Cutting edge: expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8α+ type. J. Immunol. 187, 4411–4415 (2011).

    CAS  PubMed  Google Scholar 

  7. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilson, N. S. et al. Normal proportion and expression of maturation markers in migratory dendritic cells in the absence of germs or Toll-like receptor signaling. Immunol. Cell Biol. 86, 200–205 (2008).

    CAS  PubMed  Google Scholar 

  9. Hemmi, H. et al. Skin antigens in the steady state are trafficked to regional lymph nodes by transforming growth factor-β1-dependent cells. Int. Immunol. 13, 695–704 (2001).

    CAS  PubMed  Google Scholar 

  10. Probst, H. C., Lagnel, J., Kollias, G. & van den Broek, M. Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 18, 713–720 (2003).

    CAS  PubMed  Google Scholar 

  11. Sporri, R. & Reis, E. S. C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nature Immunol. 6, 163–170 (2005).

    Google Scholar 

  12. Waithman, J. et al. Skin-derived dendritic cells can mediate deletional tolerance of class I-restricted self-reactive T cells. J. Immunol. 179, 4535–4541 (2007).

    CAS  PubMed  Google Scholar 

  13. Hochweller, K. et al. Dendritic cells control T cell tonic signaling required for responsiveness to foreign antigen. Proc. Natl Acad. Sci. USA 107, 5931–5936 (2010).

    CAS  PubMed  Google Scholar 

  14. Pace, L. et al. Regulatory T cells increase the avidity of primary CD8+ T cell responses and promote memory. Science 338, 532–536 (2012).

    CAS  PubMed  Google Scholar 

  15. Muth, S., Schutze, K., Schild, H. & Probst, H. C. Release of dendritic cells from cognate CD4+ T-cell recognition results in impaired peripheral tolerance and fatal cytotoxic T-cell mediated autoimmunity. Proc. Natl Acad. Sci. USA 109, 9059–9064 (2012).

    CAS  PubMed  Google Scholar 

  16. Moreau, H. D. & Bousso, P. Visualizing how T cells collect activation signals in vivo. Curr. Opin. Immunol. 26, 56–62 (2014).

    CAS  PubMed  Google Scholar 

  17. Chorro, L. et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 206, 3089–3100 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vishwanath, M. et al. Development of intravital intermittent confocal imaging system for studying Langerhans cell turnover. J. Invest. Dermatol. 126, 2452–2457 (2006).

    CAS  PubMed  Google Scholar 

  20. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nature Immunol. 13, 753–760 (2012).

    CAS  Google Scholar 

  21. Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nature Immunol. 13, 1118–1128 (2012).

    CAS  Google Scholar 

  22. Satpathy, A. T., Wu, X., Albring, J. C. & Murphy, K. M. Re(de)fining the dendritic cell lineage. Nature Immunol. 13, 1145–1154 (2012).

    CAS  Google Scholar 

  23. Tamoutounour, S. et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39, 925–938 (2013).

    CAS  PubMed  Google Scholar 

  24. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jakubzick, C. et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39, 599–610 (2013). References 23 and 25 establish that monocyte-derived DCs are found in non-lymphoid tissues in the steady state and that they are continuously generated by extravasated LY6Chi monocytes. The data also indicate that the pool of dermal macrophages has a dual origin.

    CAS  PubMed  Google Scholar 

  26. Bain, C. C. et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 6, 498–510 (2013).

    CAS  PubMed  Google Scholar 

  27. Liu, K. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nature Immunol. 8, 578–583 (2007).

    CAS  Google Scholar 

  28. Serbina, N. V. & Pamer, E. G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nature Immunol. 7, 311–317 (2006).

    CAS  Google Scholar 

  29. Tamoutounour, S. et al. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol. 42, 3150–3166 (2012). References 21 and 29 establish that the expression of CD64 enables cDCs to be distinguished from monocyte-derived DCs and macrophages.

    CAS  PubMed  Google Scholar 

  30. Langlet, C. et al. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J. Immunol. 188, 1751–1760 (2012).

    CAS  PubMed  Google Scholar 

  31. Modi, B. G. et al. Langerhans cells facilitate epithelial DNA damage and squamous cell carcinoma. Science 335, 104–108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kissenpfennig, A. et al. Dynamics and function of Langerhans cells in vivo dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22, 643–654 (2005).

    CAS  PubMed  Google Scholar 

  33. Konradi, S. et al. Langerhans cell maturation is accompanied by induction of N-cadherin and the transcriptional regulators of epithelial–mesenchymal transition ZEB1/2. Eur. J. Immunol. 44, 553–560 (2014).

    CAS  PubMed  Google Scholar 

  34. Kaplan, D. H., Jenison, M. C., Saeland, S., Shlomchik, W. D. & Shlomchik, M. J. Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23, 611–620 (2005).

    CAS  PubMed  Google Scholar 

  35. Bennett, C. L. et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J. Cell Biol. 169, 569–576 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bobr, A. et al. Acute ablation of Langerhans cells enhances skin immune responses. J. Immunol. 185, 4724–4728 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kautz-Neu, K. et al. Langerhans cells are negative regulators of the anti-Leishmania response. J. Exp. Med. 208, 885–891 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gomez de Aguero, M. et al. Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8+ T cells and activating Foxp3+ regulatory T cells. J. Clin. Invest. 122, 1700–1711 (2012). This paper establishes a role for Langerhans cells in the induction of T Reg cells and in the dampening of allergic contact dermatitis.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Idoyaga, J. et al. Specialized role of migratory dendritic cells in peripheral tolerance induction. J. Clin. Invest. 123, 844–854 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Igyarto, B. Z. et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35, 260–272 (2011).

    CAS  PubMed  Google Scholar 

  41. Ouchi, T. et al. Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. J. Exp. Med. 208, 2607–2613 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. de Jong, A. et al. CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nature Immunol. 15, 177–185 (2014).

    CAS  Google Scholar 

  43. Shklovskaya, E. et al. Langerhans cells are precommitted to immune tolerance induction. Proc. Natl Acad. Sci. USA 108, 18049–18054 (2011).

    CAS  PubMed  Google Scholar 

  44. Bachem, A. et al. Expression of XCR1 characterizes the Batf3-dependent lineage of dendritic cells capable of antigen cross-presentation. Frontiers Immunol. 3, 214 (2012).

    Google Scholar 

  45. Yamazaki, C. et al. Conservation of a chemokine system, XCR1 and its ligand, XCL1, between human and mice. Biochem. Biophys. Res. Commun. 397, 756–761 (2010).

    CAS  PubMed  Google Scholar 

  46. Haniffa, M. et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37, 60–73 (2012). This study describes the presence of homologues of the mouse XCR1+ cDCs in human skin.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Henri, S. et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J. Exp. Med. 207, 189–206 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bedoui, S. et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nature Immunol. 10, 488–495 (2009).

    CAS  Google Scholar 

  49. Robbins, S. H. et al. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol. 9, R17 (2008).

    PubMed  PubMed Central  Google Scholar 

  50. Segura, E. et al. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 38, 336–348 (2013).

    CAS  PubMed  Google Scholar 

  51. Cohn, L. et al. Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation. J. Exp. Med. 210, 1049–1063 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, J. G. et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36, 646–657 (2012).

    CAS  PubMed  Google Scholar 

  53. Ahrens, S. et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36, 635–645 (2012).

    CAS  PubMed  Google Scholar 

  54. Satpathy, A. T. et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nature Immunol. 14, 937–948 (2013).

    CAS  Google Scholar 

  55. Tussiwand, R. et al. Compensatory dendritic cell development mediated by BATF–IRF interactions. Nature 490, 502–507 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Murphy, T. L., Tussiwand, R. & Murphy, K. M. Specificity through cooperation: BATF–IRF interactions control immune-regulatory networks. Nature Rev. Immunol. 13, 499–509 (2013).

    CAS  Google Scholar 

  57. Guilliams, M. et al. Skin-draining lymph nodes contain dermis-derived CD103 dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells. Blood 115, 1958–1968 (2010).

    CAS  PubMed  Google Scholar 

  58. Dudda, J. C., Perdue, N., Bachtanian, E. & Campbell, D. J. Foxp3+ regulatory T cells maintain immune homeostasis in the skin. J. Exp. Med. 205, 1559–1565 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yurchenko, E. et al. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J. Exp. Med. 203, 2451–2460 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kitajima, M. & Ziegler, S. F. Cutting edge: identification of the thymic stromal lymphopoietin-responsive dendritic cell subset critical for initiation of type 2 contact hypersensitivity. J. Immunol. 191, 4903–4907 (2013).

    CAS  PubMed  Google Scholar 

  61. Mollah, S. A. et al. Flt3L dependence helps define an uncharacterized subset of murine cutaneous dendritic cells. J. Investigative Dermatol. 134, 1265–1275 (2014).

    CAS  Google Scholar 

  62. Hohl, T. M. et al. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe 6, 470–481 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Satpathy, A. T. et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209, 1135–1152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Haniffa, M. et al. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J. Exp. Med. 206, 371–385 (2009). This study establishes the phenotype and dynamics of the DCs and macrophages that are found in human skin.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Abtin, A. et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nature Immunol. 15, 45–53 (2014).

    CAS  Google Scholar 

  66. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    CAS  PubMed  Google Scholar 

  67. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dominguez, P. M. & Ardavin, C. Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol. Rev. 234, 90–104 (2010).

    CAS  PubMed  Google Scholar 

  70. De Trez, C. et al. iNOS-producing inflammatory dendritic cells constitute the major infected cell type during the chronic Leishmania major infection phase of C57BL/6 resistant mice. PLoS Pathog. 5, e1000494 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. Flutter, B. & Nestle, F. O. TLRs to cytokines: Mechanistic insights from the imiquimod mouse model of psoriasis. Eur. J. Immunol. 43, 3138–3146 (2013).

    CAS  PubMed  Google Scholar 

  72. van der Fits, L. et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 182, 5836–5845 (2009).

    CAS  PubMed  Google Scholar 

  73. Wohn, C. et al. Langerinneg conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc. Natl Acad. Sci. USA 110, 10723–10728 (2013).

    CAS  PubMed  Google Scholar 

  74. McLachlan, J. B., Catron, D. M., Moon, J. J. & Jenkins, M. K. Dendritic cell antigen presentation drives simultaneous cytokine production by effector and regulatory T cells in inflamed skin. Immunity 30, 277–288 (2009). This study pioneers the analysis of antigen presentation to CD4+ T cells and T Reg cells in inflamed skin.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zaid, A. et al. Persistence of skin-resident memory T cells within an epidermal niche. Proc. Natl Acad. Sci. USA 111, 5307–5312 (2014).

    CAS  PubMed  Google Scholar 

  76. Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R. & Carbone, F. R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319, 198–202 (2008).

    CAS  PubMed  Google Scholar 

  77. Soudja, S. M., Ruiz, A. L., Marie, J. C. & Lauvau, G. Inflammatory monocytes activate memory CD8+ T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity 37, 549–562 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Seneschal, J., Clark, R. A., Gehad, A., Baecher-Allan, C. M. & Kupper, T. S. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36, 873–884 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wilson, N. S. et al. Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102, 2187–2194 (2003).

    CAS  PubMed  Google Scholar 

  80. Aldridge, J. R. Jr et al. TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc. Natl Acad. Sci. USA 106, 5306–5311 (2009).

    CAS  PubMed  Google Scholar 

  81. Lauterbach, H. et al. Mouse CD8α+ DCs and human BDCA3+ DCs are major producers of IFN-λ in response to poly IC. J. Exp. Med. 207, 2703–2717 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Vander Lugt, B. et al. Transcriptional programming of dendritic cells for enhanced MHC class II antigen presentation. Nature Immunol. 15, 161–167 (2014).

    CAS  Google Scholar 

  83. Segura, E., Durand, M. & Amigorena, S. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J. Exp. Med. 210, 1035–1037 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Caminschi, I. et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112, 3264–3273 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Joffre, O. P., Sancho, D., Zelenay, S., Keller, A. M. & Reis e Sousa, C. Efficient and versatile manipulation of the peripheral CD4+ T-cell compartment by antigen targeting to DNGR-1/CLEC9A. Eur. J. Immunol. 40, 1255–1265 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bergtold, A., Desai, D. D., Gavhane, A. & Clynes, R. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity 23, 503–514 (2005).

    CAS  PubMed  Google Scholar 

  87. Pooja Arora, A. B. et al. A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens. Immunity 40, 105–116 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. Sullivan, S. P. et al. Dissolving polymer microneedle patches for influenza vaccination. Nature Med. 16, 915–920 (2010).

    CAS  PubMed  Google Scholar 

  89. Weiss, R. et al. Transcutaneous vaccination via laser microporation. J. Control. Release 162, 391–399 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sancho, D. et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J. Clin. Invest. 118, 2098–2110 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kaplan, D. H., Igyarto, B. Z. & Gaspari, A. A. Early immune events in the induction of allergic contact dermatitis. Nature Rev. Immunol. 12, 114–124 (2012).

    CAS  Google Scholar 

  92. Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bos, P. D., Plitas, G., Rudra, D., Lee, S. Y. & Rudensky, A. Y. Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J. Exp. Med. 210, 2435–2466 (2013).

    PubMed  PubMed Central  Google Scholar 

  94. Baker, B. M., Gagnon, S. J., Biddison, W. E. & Wiley, D. C. Conversion of a T cell antagonist into an agonist by repairing a defect in the TCR/peptide/MHC interface: implications for TCR signaling. Immunity 13, 475–484 (2000).

    CAS  PubMed  Google Scholar 

  95. Bevaart, L. et al. The high-affinity IgG receptor, FcγRI, plays a central role in antibody therapy of experimental melanoma. Cancer Res. 66, 1261–1264 (2006).

    CAS  PubMed  Google Scholar 

  96. Plantinga, M. et al. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38, 322–335 (2013).

    CAS  PubMed  Google Scholar 

  97. Meredith, M. M. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209, 1153–1165 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Becker, A. M. et al. IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors. Blood 119, 2003–2012 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38, 970–983 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Welty, N. E. et al. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. J. Exp. Med. 210, 2011–2024 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bajana, S., Roach, K., Turner, S., Paul, J. & Kovats, S. IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation. J. Immunol. 189, 3368–3377 (2012). This study shows that the lack of the transcription factor IRF4 has complex effects on dermal CD11b+ cDCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tittel, A. P. et al. Functionally relevant neutrophilia in CD11c diphtheria toxin receptor transgenic mice. Nature Methods 9, 385–390 (2012).

    CAS  PubMed  Google Scholar 

  103. Autenrieth, S. E. et al. Depletion of dendritic cells enhances innate anti-bacterial host defense through modulation of phagocyte homeostasis. PLoS Pathog. 8, e1002552 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Shklovskaya, E., Roediger, B. & Fazekas de St Groth, B. Epidermal and dermal dendritic cells display differential activation and migratory behavior while sharing the ability to stimulate CD4+ T cell proliferation in vivo. J. Immunol. 181, 418–430 (2008).

    CAS  PubMed  Google Scholar 

  105. Waithman, J. et al. Resident CD8+ and migratory CD103+ dendritic cells control CD8 T cell immunity during acute influenza infection. PLoS ONE 8, e66136 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Elpek, K. G. et al. Lymphoid organ-resident dendritic cells exhibit unique transcriptional fingerprints based on subset and site. PLoS ONE 6, e23921 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Harman, A. N. et al. Identification of lineage relationships and novel markers of blood and skin human dendritic cells. J. Immunol. 190, 66–79 (2013).

    CAS  PubMed  Google Scholar 

  108. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Dalod, M. Guilliams, A. Mowat, H. Luche and D. Terhorst for their helpful discussions. B.M. is supported by Centre National de la Recherche Scientifique (CNRS), France, the Enhanced Epidermal Antigen Specific Immunotherapy (EE-ASI) European Collaborative Research Project and a European Research Council Advanced Grant ('Integrate' Project). S.T. is supported by the NANOASIT EuroNanoMed Project, France. S.H. is supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), France, the Agence Nationale de la Recherche (ANR; SkinDC Project) and the EE-ASI European Collaborative Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Malissen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Stratum corneum

The outermost layer of the epidermis, which consists of dead keratinocytes.

Mononuclear phagocyte system

A subgroup of leukocytes that comprises monocytes, macrophages and dendritic cells.

Contact hypersensitivity

Hapten-specific T cell-mediated skin inflammation that is induced by painting a hapten onto the skin. During the sensitization phase, hapten-bearing skin dendritic cells migrate to the lymph nodes where they induce hapten-specific T cells. Re-exposure to the same hapten results in the activation of the specific T cells in the dermis, which triggers the inflammatory process that is responsible for the cutaneous lesion.

Transcriptomic signature

The complete set of RNA transcripts that is produced by a given cell type at any one time.

Autofluorescent

Some cells contain molecules that become fluorescent when excited by radiation of suitable wavelength. This autofluorescence arises from endogenous fluorophores and differs from fluorescent signals that are obtained after adding antibodies that are conjugated to fluorophores.

Kupffer cells

Specialized macrophages located in the liver that line the walls of the sinusoids.

Microglia

Resident macrophages of the brain and spinal cord.

Incomplete Freund's adjuvant

A solution prepared from non-metabolizable oils that is the most commonly used adjuvant in research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malissen, B., Tamoutounour, S. & Henri, S. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol 14, 417–428 (2014). https://doi.org/10.1038/nri3683

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3683

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing