Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intestinal epithelial cells: regulators of barrier function and immune homeostasis

Key Points

  • Intestinal epithelial cells (IECs) provide a physical and biochemical barrier that segregates host tissue and commensal bacteria to maintain intestinal homeostasis. Secretory IECs support this function through the secretion of mucins and antimicrobial peptides.

  • IECs maintain specialized pathways for the delivery of luminal antigens and bacteria to lamina propria-resident antigen-presenting cells.

  • Microbial signals are recognized by IECs to promote intestinal homeostasis. Host–commensal microorganism interactions not only support tissue repair in the setting of injury or acute inflammation but also promote the development of intestinal cancers during chronic inflammation.

  • IECs possess mechanisms for maintaining altered responsiveness to microbial signals that allow for tolerance to continuous exposure to commensal bacteria.

  • IECs convey microbial signals to mucosal immune cells and promote the coordination of appropriate immune responses against commensal bacteria and enteric pathogens. Interactions between antigen-presenting cells and IECs regulate B cell and T cell responses that act on the intestinal barrier.

  • Both innate and adaptive effector cell function and homeostasis are influenced by IEC-derived signals. This allows IECs to locally regulate immune response at the intestinal barrier and promote the maintenance of intestinal homeostasis.


The abundance of innate and adaptive immune cells that reside together with trillions of beneficial commensal microorganisms in the mammalian gastrointestinal tract requires barrier and regulatory mechanisms that conserve host–microbial interactions and tissue homeostasis. This homeostasis depends on the diverse functions of intestinal epithelial cells (IECs), which include the physical segregation of commensal bacteria and the integration of microbial signals. Hence, IECs are crucial mediators of intestinal homeostasis that enable the establishment of an immunological environment permissive to colonization by commensal bacteria. In this Review, we provide a comprehensive overview of how IECs maintain host–commensal microbial relationships and immune cell homeostasis in the intestine.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The IEC barrier.
Figure 2: Microbial recognition promotes IEC health and function.
Figure 3: IECs regulate innate and adaptive immunity.


  1. 1

    Mankertz, J. & Schulzke, J.-D. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr. Opin. Gastroenterol. 23, 379–383 (2007).

    CAS  PubMed  Google Scholar 

  2. 2

    Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nature Med. 12, 1365–1371 (2006).

    CAS  PubMed  Google Scholar 

  3. 3

    Sandler, N. G. et al. Host response to translocated microbial products predicts outcomes of patients with HBV or HCV infection. Gastroenterology 141, 1220–1230 (2011).

    PubMed  PubMed Central  Google Scholar 

  4. 4

    Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Amar, J. et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med. 3, 559–572 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Wen, L. et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455, 1109–1113 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Colloquium paper: Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 108, 4615–4622 (2010).

    PubMed  Google Scholar 

  8. 8

    Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011).

    CAS  Google Scholar 

  9. 9

    Wu, H.-J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Kamada, N., Seo, S.-U., Chen, G. Y. & Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nature Rev. Immunol. 13, 321–335 (2013).

    CAS  Google Scholar 

  11. 11

    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Honda, K. & Littman, D. R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30, 759–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Maynard, C. L., Elson, C. O., Hatton, R. D. & Weaver, C. T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Moon, C. & Stappenbeck, T. S. Viral interactions with the host and microbiota in the intestine. Curr. Opin. Immunol. 24, 405–410 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Crosnier, C., Stamataki, D. & Lewis, J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nature Rev. Genet. 7, 349–359 (2006).

    CAS  PubMed  Google Scholar 

  16. 16

    Van der Flier, L. G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71, 241–260 (2009).

    CAS  PubMed  Google Scholar 

  17. 17

    Kim, Y. S. & Ho, S. B. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr. Gastroenterol. Rep. 12, 319–330 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Gallo, R. L. & Hooper, L. V. Epithelial antimicrobial defence of the skin and intestine. Nature Rev. Immunol. 12, 503–516 (2012).

    CAS  Google Scholar 

  19. 19

    Johansson, M. E. V. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    CAS  Google Scholar 

  20. 20

    Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726–1729 (2002).

    CAS  PubMed  Google Scholar 

  21. 21

    Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129 (2006).

    CAS  Google Scholar 

  22. 22

    Taupin, D. R., Kinoshita, K. & Podolsky, D. K. Intestinal trefoil factor confers colonic epithelial resistance to apoptosis. Proc. Natl Acad. Sci. USA 97, 799–804 (2000).

    CAS  PubMed  Google Scholar 

  23. 23

    Dignass, A., Lynch-Devaney, K., Kindon, H., Thim, L. & Podolsky, D. K. Trefoil peptides promote epithelial migration through a transforming growth factor β-independent pathway. J. Clin. Invest. 94, 376–383 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Artis, D. et al. RELMβ/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc. Natl Acad. Sci. USA 101, 13596–13600 (2004).

    CAS  PubMed  Google Scholar 

  25. 25

    Nair, M. G. et al. Goblet cell-derived resistin-like molecule β augments CD4+ T cell production of IFN-γ and infection-induced intestinal inflammation. J. Immunol. 181, 4709–4715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Bevins, C. L. & Salzman, N. H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Rev. Microbiol. 9, 356–368 (2011).

    CAS  Google Scholar 

  27. 27

    Mukherjee, S. et al. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 505, 103–107 (2014).

    Google Scholar 

  28. 28

    Darmoul, D. & Ouellette, A. J. Positional specificity of defensin gene expression reveals Paneth cell heterogeneity in mouse small intestine. Am. J. Physiol. 271, G68–G74 (1996).

    CAS  PubMed  Google Scholar 

  29. 29

    Vaishnava, S. et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011). In this study, the antimicrobial protein REGIII γ is identified as being necessary for the physical separation of commensal bacteria from the surface of the small intestinal epithelium, thus limiting the activation of the intestinal immune response.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Meyer-Hoffert, U. et al. Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57, 764–771 (2008).

    CAS  PubMed  Google Scholar 

  31. 31

    Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature Genet. 39, 207–211 (2007).

    CAS  Google Scholar 

  32. 32

    Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nature Genet. 39, 596–604 (2007). References 31 and 32 report the association between genetic variants in the gene for the autophagy protein ATG16L1 and Crohn's disease susceptibility, establishing a Crohn's disease-specific genetic link between IBD and the autophagy pathway.

    CAS  Google Scholar 

  33. 33

    Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Brandl, K. et al. Enhanced sensitivity to DSS colitis caused by a hypomorphic Mbtps1 mutation disrupting the ATF6-driven unfolded protein response. Proc. Natl Acad. Sci. USA 106, 3300–3305 (2009).

    CAS  PubMed  Google Scholar 

  36. 36

    Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010). In this study, the interaction between environmental exposures and genetic susceptibility is shown to determine the penetrance of disease in mouse models of intestinal inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Khor, B., Gardet, A. & Xavier, R. J. Genetics and pathogenesis of inflammatory bowel disease. Nature 474, 307–317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Benjamin, J. L., Sumpter, R. Jr, Levine, B. & Hooper, L. V. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 13, 723–734 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013). This study demonstrates interactions between the regulation of the UPR and the autophagy pathway in Paneth cells and supports a model in which alterations in these two responses regulate the development of Crohn's disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Johansen, F.-E. & Kaetzel, C. S. Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity. Mucosal Immunol. 4, 598–602 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Johansen, F.-E. et al. Absence of epithelial immunoglobulin a transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component–deficient mice. J. Exp. Med. 190, 915–922 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Shulzhenko, N. et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nature Med. 17, 1585–1593 (2011). In this study, a compensatory response of IECs in the absence of adaptive IgA directed against commensal bacteria is characterized by the engagement of immune pathways and dysregulation of lipid metabolism.

    CAS  PubMed  Google Scholar 

  43. 43

    Suzuki, K. et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl Acad. Sci. USA 101, 1981–1986 (2004).

    CAS  Google Scholar 

  44. 44

    Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R. & Mahajan, A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 6, 666–677 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Mowat, A. M. Anatomical basis of tolerance and immunity to intestinal antigens. Nature Rev. Immunol. 3, 331–341 (2003).

    CAS  Google Scholar 

  46. 46

    Hase, K. et al. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462, 226–230 (2009).

    CAS  PubMed  Google Scholar 

  47. 47

    McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012). This report shows that goblet cells can transport soluble luminal antigens to lamina propria DCs, implicating a pathway by which IECs directly mediate antigen delivery to immune cells in addition to M cell-mediated transport.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).

    CAS  Google Scholar 

  49. 49

    Chieppa, M., Rescigno, M., Huang, A. Y. C. & Germain, R. N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203, 2841–2852 (2006). This paper demonstrates a role for epithelial cell TLR signalling in promoting DC sampling of antigens from the intestinal lumen.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Shan, M. et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342, 447–453 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Abreu, M. T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nature Rev. Immunol. 10, 131–144 (2010).

    CAS  Google Scholar 

  52. 52

    Chen, G. Y. & Núñez, G. Inflammasomes in intestinal inflammation and cancer. Gastroenterology 141, 1986–1999 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Elinav, E., Henao-Mejia, J. & Flavell, R. A. Integrative inflammasome activity in the regulation of intestinal mucosal immune responses. Mucosal Immunol. 6, 4–13 (2013).

    CAS  PubMed  Google Scholar 

  54. 54

    Li, X.-D. et al. Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis. Proc. Natl Acad. Sci. USA 108, 17390–17395 (2011).

    CAS  PubMed  Google Scholar 

  55. 55

    Broquet, A. H., Hirata, Y., McAllister, C. S. & Kagnoff, M. F. RIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium. J. Immunol. 186, 1618–1626 (2011).

    CAS  PubMed  Google Scholar 

  56. 56

    Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004). In this study, mice deficient in TLR signalling or greatly depleted of commensal bacteria exhibited increased susceptibility to experimentally induced intestinal inflammation, implicating commensal microorganism-dependent signals in the regulation of intestinal homeostasis and response to injury.

    CAS  Google Scholar 

  57. 57

    Brandl, K. et al. MyD88 signaling in nonhematopoietic cells protects mice against induced colitis by regulating specific EGF receptor ligands. Proc. Natl Acad. Sci. USA 107, 19967–19972 (2010).

    CAS  PubMed  Google Scholar 

  58. 58

    Podolsky, D. K., Gerken, G., Eyking, A. & Cario, E. Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3 deficiency. Gastroenterology 137, 209–220 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Cario, E., Gerken, G. & Podolsky, D. K. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127, 224–238 (2004).

    CAS  PubMed  Google Scholar 

  60. 60

    Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004). This study provides evidence that the NF-κB signalling pathway in IECs regulates the development of inflammation-induced cancer through the regulation of apoptosis.

    CAS  Google Scholar 

  61. 61

    Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    CAS  Google Scholar 

  62. 62

    Hugot, J.-P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    CAS  Google Scholar 

  63. 63

    Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001). References 62 and 63 provide the first examples of genetic variants linking bacterial recognition with susceptibility to human IBD.

    CAS  Google Scholar 

  64. 64

    Zaki, M. H., Lamkanfi, M. & Kanneganti, T.-D. The Nlrp3 inflammasome: contributions to intestinal homeostasis. Trends Immunol. 32, 171–179 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Swanson, P. A. et al. Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proc. Natl Acad. Sci. USA 108, 8803–8808 (2011).

    CAS  PubMed  Google Scholar 

  66. 66

    Leoni, G. et al. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J. Clin. Invest. 123, 443–454 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. 67

    Lee, W.-J. Bacterial-modulated host immunity and stem cell activation for gut homeostasis. Genes Dev. 23, 2260–2265 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Hochmuth, C. E., Biteau, B., Bohmann, D. & Jasper, H. Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell 8, 188–199 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Jones, R. M. et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J. 32, 3017–3028 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Rakoff-Nahoum, S. & Medzhitov, R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317, 124–127 (2007).

    CAS  PubMed  Google Scholar 

  71. 71

    Lee, S. H. et al. ERK activation drives intestinal tumorigenesis in Apcmin/+ mice. Nature Med. 16, 665–670 (2010).

    CAS  PubMed  Google Scholar 

  72. 72

    Vlantis, K. et al. Constitutive IKK2 activation in intestinal epithelial cells induces intestinal tumors in mice. J. Clin. Invest. 121, 2781–2793 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).

    CAS  Google Scholar 

  74. 74

    Fukata, M. et al. Toll-Like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133, 1869–1869 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Xiao, H. et al. The Toll–interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis. Immunity 26, 461–475 (2007).

    CAS  PubMed  Google Scholar 

  76. 76

    Dupaul-Chicoine, J. et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity 32, 367–378 (2010).

    CAS  Google Scholar 

  77. 77

    Hu, B. et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. PNAS 107, 21635–21640 (2010).

    PubMed  Google Scholar 

  78. 78

    Zaki, M. H. et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20, 649–660 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Normand, S. et al. Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc. Natl Acad. Sci. USA 108, 9601–9606 (2011).

    CAS  Google Scholar 

  80. 80

    Allen, I. C. et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity 36, 742–754 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Salcedo, R. et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J. Exp. Med. 207, 1625–1636 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Huber, S. et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491, 259–263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Otte, J.-M., Cario, E. & Podolsky, D. K. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 126, 1054–1070 (2004).

    CAS  PubMed  Google Scholar 

  84. 84

    Lotz, M. et al. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J. Exp. Med. 203, 973–984 (2006). This study demonstrates the inhibition of TLR signalling in IECs and the acquisition of tolerance to microbial colonization that occurs shortly after birth to establish host–microbial homeostasis in the intestine.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Vereecke, L. et al. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J. Exp. Med. 207, 1513–1523 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Chassin, C. et al. miR-146a mediates protective innate immune tolerance in the neonate intestine. Cell Host Microbe 8, 358–368 (2010).

    CAS  Google Scholar 

  87. 87

    Guma, M. et al. Constitutive intestinal NF-κB does not trigger destructive inflammation unless accompanied by MAPK activation. J. Exp. Med. 208, 1889–1900 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Neish, A. S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 289, 1560–1563 (2000).

    CAS  Google Scholar 

  89. 89

    Kumar, A. et al. The bacterial fermentation product butyrate influences epithelial signaling via reactive oxygen species-mediated changes in cullin-1 neddylation. J. Immunol. 182, 538–546 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Kondo, T., Kawai, T. & Akira, S. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 33, 449–458 (2012).

    CAS  Google Scholar 

  91. 91

    Blander, J. M. & Sander, L. E. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nature Rev. Immunol. 12, 215–225 (2012).

    CAS  Google Scholar 

  92. 92

    Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. & Madara, J. L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885 (2001).

    CAS  PubMed  Google Scholar 

  93. 93

    Rhee, S. H. et al. Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc. Natl Acad. Sci. USA 102, 13610–13615 (2005).

    CAS  PubMed  Google Scholar 

  94. 94

    Lee, J. et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nature Cell Biol. 8, 1327–1336 (2006).

    CAS  PubMed  Google Scholar 

  95. 95

    Barnich, N., Aguirre, J. E., Reinecker, H.-C., Xavier, R. & Podolsky, D. K. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-κB activation in muramyl dipeptide recognition. J. Cell Biol. 170, 21–26 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Lipinski, S. et al. RNAi screening identifies mediators of NOD2 signaling: Implications for spatial specificity of MDP recognition. Proc. Natl Acad. Sci. USA 109, 21426–21431 (2012).

    CAS  PubMed  Google Scholar 

  97. 97

    Matzinger, P. The danger model: A renewed sense of self. Science 296, 301–305 (2002).

    CAS  PubMed  Google Scholar 

  98. 98

    Sander, L. E. et al. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474, 385–389 (2011). In this study, bacterial mRNA is identified as a signal that enables the gauging of infectious risk posed by live versus dead bacteria, exemplifying a vita-PAMP.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Hooper, L. V., Stappenbeck, T. S., Hong, C. V. & Gordon, J. I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nature Immunol. 4, 269–273 (2003).

    CAS  Google Scholar 

  100. 100

    Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    CAS  Google Scholar 

  101. 101

    Vaishnava, S., Behrendt, C. L., Ismail, A. S., Eckmann, L. & Hooper, L. V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl Acad. Sci. USA 105, 20858–20863 (2008).

    CAS  Google Scholar 

  102. 102

    Bruno, M. E. C., Frantz, A. L., Rogier, E. W., Johansen, F.-E. & Kaetzel, C. S. Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-κB pathways in intestinal epithelial cells. Mucosal Immunol. 4, 468–478 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nature Immunol. 6, 507–514 (2005). This study describes the conditioning of mucosal DCs towards a non-inflammatory phenotype by interactions with IECs, representing a mechanism for the indirect IEC-mediated regulation of adaptive immune cell priming.

    CAS  Google Scholar 

  104. 104

    Zeuthen, L. H., Fink, L. N. & Frokiaer, H. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-β. Immunology 123, 197–208 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Zaph, C. et al. Epithelial-cell-intrinsic IKKβ expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007). This study demonstrates a crucial role for IEC-intrinsic NF-κB signalling and the production of the cytokine TSLPthymic stromal lymphopoietin in regulating intestinal immune responses and coordinating anti-helminth immunity.

    CAS  Google Scholar 

  106. 106

    Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    CAS  Google Scholar 

  107. 107

    Zaph, C. et al. Commensal-dependent expression of IL-25 regulates the IL-23–IL-17 axis in the intestine. J. Exp. Med. 205, 2191–2198 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    He, B. et al. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26, 812–826 (2007).

    CAS  PubMed  Google Scholar 

  109. 109

    Xu, W. et al. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nature Immunol. 8, 294–303 (2007). References 108 and 109 identify IEC production of APRIL and BAFF in response to microbial stimulation as important for the regulation of B cell CSR and the mucosal IgA response.

    CAS  Google Scholar 

  110. 110

    Taylor, B. C. et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J. Exp. Med. 206, 655–667 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Pabst, O. & Bernhardt, G. The puzzle of intestinal lamina propria dendritic cells and macrophages. Eur. J. Immunol. 40, 2107–2111 (2010).

    CAS  PubMed  Google Scholar 

  112. 112

    Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    CAS  Google Scholar 

  114. 114

    Rivollier, A., He, J., Kole, A., Valatas, V. & Kelsall, B. L. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209, 139–155 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Zigmond, E. & Jung, S. Intestinal macrophages: well educated exceptions from the rule. Trends Immunol. 34, 162–168 (2013).

    CAS  Google Scholar 

  116. 116

    Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101–3114 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    CAS  Google Scholar 

  118. 118

    Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Sun, C.-M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93 (2003).

    CAS  PubMed  Google Scholar 

  121. 121

    Johansson-Lindbom, B. et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 202, 1063–1073 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    CAS  PubMed  Google Scholar 

  123. 123

    Jaensson, E. et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 205, 2139–2149 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Mora, J. R. & von Andrian, U. H. Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 1, 96–109 (2008).

    CAS  PubMed  Google Scholar 

  125. 125

    Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    CAS  Google Scholar 

  126. 126

    Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34, 237–246 (2011).

    CAS  PubMed  Google Scholar 

  127. 127

    Murai, M. et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nature Immunol. 10, 1178–1184 (2009).

    CAS  Google Scholar 

  128. 128

    Kayama, H. et al. Intestinal CX3C chemokine receptor 1high (CX3CR1high) myeloid cells prevent T-cell-dependent colitis. Proc. Natl Acad. Sci. USA 109, 5010–5015 (2012).

    CAS  PubMed  Google Scholar 

  129. 129

    Kang, S. et al. Intestinal epithelial cell-derived semaphorin 7A negatively regulates development of colitis via αvβ1 integrin. J. Immunol. 188, 1108–1116 (2012).

    CAS  Google Scholar 

  130. 130

    Saenz, S. A. et al. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses. Nature 464, 1362–1366 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Siracusa, M. C. et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477, 229–233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Saenz, S. A. et al. IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells. J. Exp. Med. 210, 1823–1837 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Siracusa, M. C. et al. Thymic stromal lymphopoietin-mediated extramedullary hematopoiesis promotes allergic inflammation. Immunity 39, 1158–1170 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Spits, H. & Cupedo, T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 30, 647–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Monticelli, L. A., Sonnenberg, G. F. & Artis, D. Innate lymphoid cells: critical regulators of allergic inflammation and tissue repair in the lung. Curr. Opin. Immunol. 24, 284–289 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Kim, B. S. et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci. Transl. Med. 5, 170ra16 (2013).

    PubMed  PubMed Central  Google Scholar 

  137. 137

    Tait Wojno, E. D. & Artis, D. Innate lymphoid cells: balancing immunity, inflammation, and tissue repair in the intestine. Cell Host Microbe 12, 445–457 (2012).

    CAS  PubMed  Google Scholar 

  138. 138

    Walker, J. A., Barlow, J. L. & McKenzie, A. N. J. Innate lymphoid cells — how did we miss them? Nature Rev. Immunol. 13, 75–87 (2013).

    CAS  Google Scholar 

  139. 139

    Cherrier, M., Ohnmacht, C., Cording, S. & Eberl, G. Development and function of intestinal innate lymphoid cells. Curr. Opin. Immunol. 24, 277–283 (2012).

    CAS  PubMed  Google Scholar 

  140. 140

    Spits, H. et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nature Rev. Immunol. 13, 145–149 (2013).

    CAS  Google Scholar 

  141. 141

    Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nature Immunol. 14, 221–229 (2013).

    CAS  Google Scholar 

  142. 142

    Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2009).

    PubMed  Google Scholar 

  144. 144

    Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010). References 143 and 144 identify a population of innate lymphoid cells that mediate early T H 2 cytokine production in response to the cytokines IL-25 and IL-33 and during intestinal helminth infection, that promotes goblet cell hyperplasia and worm expulsion.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).

    CAS  Google Scholar 

  146. 146

    Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunol. 12, 1045–1054 (2011).

    CAS  Google Scholar 

  147. 147

    Chang, Y.-J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nature Immunol. 12, 631–638 (2011).

    CAS  Google Scholar 

  148. 148

    Wilhelm, C. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nature Immunol. 12, 1071–1077 (2011).

    CAS  Google Scholar 

  149. 149

    Halim, T. Y. F., Krauß, R. H., Sun, A. C. & Takei, F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36, 451–463 (2012).

    CAS  Google Scholar 

  150. 150

    Mjösberg, J. et al. The transcription factor GATA3 Is essential for the function of human type 2 innate lymphoid cells. Immunity 37, 649–659 (2012).

    PubMed  Google Scholar 

  151. 151

    Mebius, R. E., Rennert, P. & Weissman, I. L. Developing lymph nodes collect, CD4+CD3 LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997).

    CAS  PubMed  Google Scholar 

  152. 152

    Zenewicz, L. A. et al. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29, 947–957 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Sonnenberg, G. F., Monticelli, L. A., Elloso, M. M., Fouser, L. A. & Artis, D. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 34, 122–134 (2011).

    CAS  Google Scholar 

  154. 154

    Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012). In this study, innate lymphoid cell-derived IL-22 is demonstrated to mediate the containment of specialized intestinal lymphoid tissue-resident commensal bacteria to prevent systemic immune activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Hanash, A. M. et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity 37, 339–350 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Kirchberger, S. et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210, 917–931 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Muñoz, M. et al. Interleukin (IL)-23 mediates Toxoplasma gondii–induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. J. Exp. Med. 206, 3047–3059 (2009).

    PubMed  PubMed Central  Google Scholar 

  158. 158

    Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Geremia, A. et al. IL-23–responsive innate lymphoid cells are increased in inflammatory bowel disease. J. Exp. Med. 208, 1127–1133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Coccia, M. et al. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells. J. Exp. Med. 209, 1595–1609 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Sawa, S. et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nature Immunol. 12, 320–326 (2011).

    CAS  Google Scholar 

  162. 162

    Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 33, 736–751 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    CAS  Google Scholar 

  164. 164

    Yu, Q. et al. MyD88-dependent signaling for IL-15 production plays an important role in maintenance of CD8αα TCRαβ and TCRγδ intestinal intraepithelial lymphocytes. J. Immunol. 176, 6180–6185 (2006).

    CAS  PubMed  Google Scholar 

  165. 165

    Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nature Rev. Immunol. 11, 445–456 (2011).

    CAS  Google Scholar 

  166. 166

    Edelblum, K. L. et al. Dynamic migration of γδ intraepithelial lymphocytes requires occludin. Proc. Natl Acad. Sci. USA 109, 7097–7102 (2012).

    CAS  Google Scholar 

  167. 167

    Ismail, A. S. et al. γδ intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc. Natl Acad. Sci. USA 108, 8743–8748 (2011).

    CAS  Google Scholar 

  168. 168

    Mucida, D. et al. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nature Immunol. 14, 281–289 (2013).

    CAS  Google Scholar 

  169. 169

    Gebhardt, T., Mueller, S. N., Heath, W. R. & Carbone, F. R. Peripheral tissue surveillance and residency by memory T cells. Trends Immunol. 34, 27–32 (2013).

    CAS  Google Scholar 

  170. 170

    Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

    CAS  Google Scholar 

  171. 171

    Schön, M. P. et al. Mucosal T lymphocyte numbers are selectively reduced in integrin αE (CD103)-deficient mice. J. Immunol. 162, 6641–6649 (1999).

    PubMed  Google Scholar 

  172. 172

    El-Asady, R. et al. TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J. Exp. Med. 201, 1647–1657 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Huang, Y. et al. Mucosal memory CD8+ T cells are selected in the periphery by an MHC class I molecule. Nature Immunol. 12, 1086–1095 (2011).

    CAS  Google Scholar 

  174. 174

    Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012).

    CAS  PubMed  Google Scholar 

  175. 175

    Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176

    Hansen, S. G. et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473, 523–527 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. 177

    Cerutti, A. The regulation of IgA class switching. Nature Rev. Immunol. 8, 421–434 (2008).

    CAS  Google Scholar 

  178. 178

    Mora, J. R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    CAS  PubMed  Google Scholar 

  179. 179

    Litinskiy, M. B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nature Immunol. 3, 822–829 (2002).

    CAS  Google Scholar 

  180. 180

    Castigli, E. et al. TACI and BAFF-R mediate isotype switching in B cells. J. Exp. Med. 201, 35–39 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181

    Salzer, U. et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nature Genet. 37, 820–828 (2005).

    CAS  Google Scholar 

  182. 182

    Castigli, E. et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nature Genet. 37, 829–834 (2005).

    CAS  Google Scholar 

  183. 183

    Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    CAS  Google Scholar 

  184. 184

    Takeda, N. et al. Interconversion between intestinal stem cell populations in distinct niches. Science 334, 1420–1424 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185

    Yan, K. S. et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc. Natl Acad. Sci. USA 109, 466–471 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186

    Capaldo, C. T. et al. IFN-γ and TNF-α-induced GBP-1 inhibits epithelial cell proliferation through suppression of β-catenin/TCF signaling. Mucosal Immunol. 5, 681–690 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187

    Nava, P. et al. Interferon-γ regulates intestinal epithelial homeostasis through converging β-catenin signaling pathways. Immunity 32, 392–402 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188

    Alenghat, T. et al. Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis. Nature 504, 153–157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189

    Blair, S. A., Kane, S. V., Clayburgh, D. R. & Turner, J. R. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab. Invest. 86, 191–201 (2006).

    CAS  PubMed  Google Scholar 

  190. 190

    Marchiando, A. M. et al. Caveolin-1–dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J. Cell Biol. 189, 111–126 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191

    Wang, F. et al. Active deformation of apoptotic intestinal epithelial cells with adhesion-restricted polarity contributes to apoptotic clearance. Lab. Invest. 91, 462–471 (2011).

    CAS  PubMed  Google Scholar 

  192. 192

    Eisenhoffer, G. T. et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484, 546–549 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193

    D'Incà, R. et al. Intestinal permeability test as a predictor of clinical course in Crohn's disease. Am. J. Gastroenterol. 94, 2956–2960 (1999).

    PubMed  Google Scholar 

  194. 194

    Wyatt, J. & Vogelsang, H. Intestinal permeability and the prediction of relapse in Crohn's disease. Lancet 341, 1437 (1993).

    CAS  PubMed  Google Scholar 

  195. 195

    Khounlotham, M. et al. Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity 37, 563–573 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. 196

    Su, L. et al. Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology 136, 551–563 (2009).

    CAS  PubMed  Google Scholar 

Download references


The authors thank all members of the Artis laboratory for discussions and critical reading of the manuscript. This work is supported by US National Institutes of Health grants (AI061570, AI095608, AI087990, AI074878, AI095466, AI106697, AI102942 and AI097333 to D.A.; T32AI00744 to L.W.P.), the Burroughs Wellcome Fund Investigator in Pathogenesis of Infectious Disease Award (D.A.) and the Crohn's and Colitis Foundation of America (D.A.).

Author information



Corresponding authors

Correspondence to Lance W. Peterson or David Artis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

The role of pattern recognition receptors (PRRs) in regulating intestinal epithelial cells (IECs) and tissue homeostasis. (PDF 713 kb)

PowerPoint slides


Inflammatory bowel disease

(IBD). A chronic condition of the intestine characterized by severe inflammation and mucosal destruction. The most common forms of IBD in humans are ulcerative colitis and Crohn's disease, which have both distinct and overlapping pathological and clinical characteristics.


Heavily glycosylated proteins that are the major component of the mucus that coats epithelial barrier surfaces.


Tubular invaginations of the intestinal epithelium. Lining the base of the crypts are small intestinal Paneth cells, which produce numerous antimicrobial proteins, and stem cells, which continuously divide to give rise to the entire intestinal epithelium.


Projections of the intestinal epithelium into the lumen of the small intestine that have an outer layer consisting of mature, absorptive enterocytes, mucus-secreting goblet cells and enteroendocrine cells.

Pluripotent intestinal epithelial stem cells

(Pluripotent IESCs). Tissue-resident stem cells that undergo continuous self-renewal and are responsible for regenerating all lineages of mature intestinal epithelial cells, including enterocytes, enteroendocrine cells, goblet cells and Paneth cells.


A cellular process by which cytoplasmic organelles and macromolecular complexes are engulfed by double membrane-bound vesicles for delivery to lysosomes and subsequent degradation. This process is involved in constitutive turnover of proteins and organelles and is central to cellular activities that maintain a balance between the synthesis and breakdown of various proteins.

Unfolded protein response

(UPR). A response that increases the ability of the endoplasmic reticulum to fold and translocate proteins, decreases the synthesis of proteins, causes the arrest of the cell cycle and promotes apoptosis.

Plasma cells

Terminally differentiated cells of the B cell lineage that secrete large amounts of antibodies.

Lamina propria

Connective tissue that underlies the epithelium of the mucosa and contains stromal and haematopoietic cells.

Peyer's patches

Groups of lymphoid aggregates located in the submucosa of the small intestine that contain many immune cells, including B cells, T cells and dendritic cells. They have a luminal barrier consisting of specialized epithelial cells, called microfold cells, which sample the lumen and transport antigens.

Pattern-recognition receptors

(PRRs). Receptors that recognize structures shared by foreign microorganisms or endogenous molecules associated with pathogenesis. Signalling through these receptors promotes tissue-specific innate immune responses including the production of cytokines.

Toll-like receptor

(TLR). An evolutionarily conserved pattern-recognition receptor located at the cell surface or at intracellular membranes. The natural ligands of TLRs are conserved molecular structures found in bacteria, viruses and fungi.

NOD-like receptor

(NLR). A pattern-recognition receptor located in the cytosol. NLRs recognize a wide range of foreign structures and patterns associated with pathogenesis. Some members of this family form multiprotein complexes known as inflammasomes, which regulate the processing and secretion of pro-inflammatory cytokines.

RIG-I-like receptor

(RLR). A pattern-recognition receptor located in the cytosol that responds to viral RNA.

Dextran sodium sulphate

(DSS). A large polysaccharide that causes epithelial injury and inflammation in the intestinal tract and is commonly used in models of experimentally induced colitis for studying the response to intestinal injury.

Nuclear factor-κB

(NF-κB). A family of transcription factors important for pro-inflammatory and anti-apoptotic responses that are activated by the ubiquitin-dependent degradation of their respective inhibitors, members of the inhibitor of NF-κB (IκB) family. This process is mediated by the kinases, IκB kinase 1 (IKK1) and IKK2.


Multiprotein complexes that contain a member of the NOD-like receptor family, adaptor proteins and the protease caspase 1. These complexes regulate the catalytic processing and secretion of pro-inflammatory cytokines, including interleukin-1β (IL-1β) and IL-18.

Reactive oxygen species

(ROS). Chemically reactive molecules containing oxygen that, when produced in large amounts, have pro-inflammatory and antimicrobial effects. Physiological levels of ROS have been shown to regulate cellular signalling pathways.

Viability-associated PAMPs

(Vita-PAMPs). Members of a special class of pathogen-associated molecular patterns recognized by the innate immune system to signify microbial life. These patterns differentiate dead and living microorganisms to allow for scaling of appropriate immune responses based on the level of threat the microbial signals represents.

Innate lymphoid cells

(ILCs). A group of innate immune cells that are lymphoid in morphology and developmental origin, but lack properties of adaptive B cells and T cells such as recombined antigen-specific receptors. They function in the regulation of immunity, tissue homeostasis and inflammation in response to cytokine stimulation.

Natural killer cells

(NK cells). A subset of innate lymphoid cells originally defined on the basis of their cytolytic activity against tumour targets but now recognized to serve a broader role in host defence and inflammation through the production of cytokines.

Class-switch recombination

(CSR). The process by which proliferating B cells rearrange their DNA to switch from expressing IgM (or another class of immunoglobulin) to expressing a different immunoglobulin heavy-chain constant region, thereby producing antibody with different effector functions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peterson, L., Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14, 141–153 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing