Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytokines and immunodeficiency diseases

Key Points

  • Mutations in the common cytokine receptor γ-chain (γc) cause X-linked severe combined immunodeficiency disease (XSCID).

  • Because Janus-activated kinase 3 (JAK3) associates with γc, we predicted that mutations in JAK3 cause autosomal-recessive SCID. Indeed, this was confirmed.

  • Mutations in the interleukin-7 receptor (IL-7R) gene causes TB+NK+ SCID.

  • Mice that lack various Jaks and Stats (signal transducers and activators of transcription) have major immunological and non-immunological defects.

  • Most of the cytokines we have discussed are type I cytokines; interferons and IL-10 are examples of type II cytokines.

Abstract

Severe combined immunodeficiency disease (SCID) refers to a spectrum of inherited immunodeficiencies that together represent the most severe forms of primary immunodeficiency in humans. Recent work has shown that many of these diseases, as well as other forms of immunodeficiency, result from defects in cytokine signalling pathways. Such defects can prevent normal development of lymphoid lineages and/or compromise cytokine signalling by these cells. These natural 'experiments' in human genetics have shown the non-redundant role for several cytokines or cytokine signalling molecules. Moreover, a comparison of the phenotypes of humans with SCID to analogous mouse-knockout models has shown not only expected similarities, but also unexpected differences in cytokine signalling between humans and mice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Actions of cytokines whose receptors share γc.
Figure 2: Signalling by the JAK/STAT pathway for a typical type I cytokine.

Similar content being viewed by others

References

  1. Leonard, W. J. The molecular basis of X-linked severe combined immunodeficiency: defective cytokine receptor signaling. Annu. Rev. Med. 47, 229–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Buckley, R. H. et al. Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J. Pediatr. 130, 378–387 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Buckley, R. H. et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N. Engl. J. Med. 340, 508–516 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Fischer, A. et al. Naturally occurring primary deficiencies of the immune system. Annu. Rev. Immunol. 15, 93–124 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Lo, M. et al. Restoration of lymphoid populations in a murine model of X-linked severe combined immunodeficiency by a gene-therapy approach. Blood 94, 3027–3036 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Fischer, A., Hacein-Bey, S., Le Deist, F., de Saint Basile, G. & Cavazzana-Calvo, M. Gene therapy for human severe combined immunodeficiencies. Immunity 15, 1–4 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Noguchi, M. et al. Interleukin-2 receptor γ chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157 (1993). The discovery of mutations in IL-2Rγ as the genetic basis of XSCID.

    Article  CAS  PubMed  Google Scholar 

  9. de Saint Basile, G. et al. Close linkage of the locus for X chromosome-linked severe combined immunodeficiency to polymorphic DNA markers in Xq11-q13. Proc. Natl Acad. Sci. USA 84, 7576–7579 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Puck, J. M., Nussbaum, R. L., Smead, D. L. & Conley, M. E. X-linked severe combined immunodeficiency: localization within the region Xq13.1–q21.1 by linkage and deletion analysis. Am. J. Hum. Genet. 44, 724–730 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Takeshita, T. et al. Cloning of the γ chain of the human IL-2 receptor. Science 257, 379–382 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Schorle, H., Holtschke, T., Hunig, T., Schimpl, A. & Horak, I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352, 621–624 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Pahwa, R. et al. Recombinant interleukin 2 therapy in severe combined immunodeficiency disease. Proc. Natl Acad. Sci. USA 86, 5069–5073 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weinberg, K. & Parkman, R. Severe combined immunodeficiency due to a specific defect in the production of interleukin-2. N. Engl J. Med. 322, 1718–1723 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Kondo, M. et al. Sharing of the interleukin-2 (IL-2) receptor γ chain between receptors for IL-2 and IL-4. Science 262, 1874–1877 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Russell, S. M. et al. Interleukin-2 receptor γ chain: a functional component of the interleukin-4 receptor. Science 262, 1880–1883 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Noguchi, M. et al. Interleukin-2 receptor γ chain: a functional component of the interleukin-7 receptor. Science 262, 1877–1880 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Kondo, M. et al. Functional participation of the IL-2 receptor γ chain in IL-7 receptor complexes. Science 263, 1453–1454 (1994). References 15–18 were the first to show that IL-2Rγ is shared by the IL-4 and IL-7 receptors, leading it to be renamed as the common cytokine receptor γ, γc.

    Article  CAS  PubMed  Google Scholar 

  19. Russell, S. M. et al. Interaction of IL-2R β and γc chains with Jak1 and Jak3: implications for XSCID and XCID. Science 266, 1042–1045 (1994).Predicted that mutations in Jak3 would cause autosomal-recessive SCID.

    Article  CAS  PubMed  Google Scholar 

  20. Kimura, Y. et al. Sharing of the IL-2 receptor γ chain with the functional IL-9 receptor complex. Int. Immunol. 7, 115–120 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Giri, J. G. et al. Utilization of the β and γ chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 13, 2822–2830 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Asao, H. et al. Cutting edge: the common γ-chain is an indispensable subunit of the IL-21 receptor complex. J. Immunol. 167, 1–5 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Leonard, W. J., Noguchi, M., Russell, S. M. & McBride, O. W. The molecular basis of X-linked severe combined immunodeficiency: the role of the interleukin-2 receptor gamma chain as a common γ chain, γc . Immunol. Rev. 138, 61–86 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Leonard, W. J. in Fundamental Immunology 771–774 (Lippincott Raven, Philadelphia, 1999).

    Google Scholar 

  25. Darnell, J. E. Jr. STATs and gene regulation. Science 277, 1630–1635 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Horvath, C. M. & Darnell, J. E. The state of the STATs: recent developments in the study of signal transduction to the nucleus. Curr. Opin. Cell Biol. 9, 233–239 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Leonard, W. J. & O'Shea, J. J. Jaks and STATs: biological implications. Annu. Rev. Immunol. 16, 293–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Multiple reviews of STAT proteins in Oncogene 19, 2466–2656 (2000).

  29. Ramana, C. V., Chatterjee-Kishore, M., Nguyen, H. & Stark, G. R. Complex roles of Stat1 in regulating gene expression. Oncogene 19, 2619–2627 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. May, M. J. & Ghosh, S. Signal transduction through NF-κB. Immunol. Today 19, 80–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Kiani, A., Rao, A. & Aramburu, J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 12, 359–372 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Massague, J. & Wotton, D. Transcriptional control by the TGF-β/Smad signaling system. EMBO J. 19, 1745–1754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnston, J. A. et al. Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature 370, 151–153 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Witthuhn, B. A. et al. Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 370, 153–157 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Kovanen, P. E. & Leonard, W. J. Inhibitors keep cytokines in check. Curr. Biol. 9, R899–R902 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Kile, B. T., Nicola, N. A. & Alexander, W. S. Negative regulators of cytokine signaling. Int. J. Hematol. 73, 292–298 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Boussiotis, V. A. et al. Prevention of T cell anergy by signaling through the γc chain of the IL-2 receptor. Science 266, 1039–1042 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Miyazaki, T. et al. Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science 266, 1045–1047 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Macchi, P. et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Russell, S. M. et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797–800 (1995).References 40 and 41 showed that mutations in Jak3 cause SCID.

    Article  CAS  PubMed  Google Scholar 

  42. Riedy, M. C. et al. Genomic sequence, organization, and chromosomal localization of human JAK3. Genomics 37, 57–61 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. DiSanto, J. P., Muller, W., Guy-Grand, D., Fischer, A. & Rajewsky, K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor γ chain. Proc. Natl Acad. Sci. USA 92, 377–381 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor γ chain. Immunity 2, 223–238 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Ohbo, K. et al. Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor γ chain. Blood 87, 956–967 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Thomis, D. C. & Berg, L. J. The role of Jak3 in lymphoid development, activation, and signaling. Curr. Opin. Immunol. 9, 541–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Nosaka, T. et al. Defective lymphoid development in mice lacking Jak3. Science 270, 800–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Suzuki, K. et al. Janus kinase 3 (Jak3) is essential for common cytokine receptor γ chain (γc)-dependent signaling: comparative analysis of γc, Jak3, and γc and Jak3 double-deficient mice. Int. Immunol. 12, 123–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Puel, A., Ziegler, S. F., Buckley, R. H. & Leonard, W. J. Defective IL7R expression in TB+NK+ severe combined immunodeficiency. Nature Genet. 20, 394–397 (1998).Identification of IL-7Rα-deficient SCID.

    Article  CAS  PubMed  Google Scholar 

  50. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Suzuki, H. et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science 268, 1472–1476 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Kuhn, R., Rajewsky, K. & Muller, W. Generation and analysis of interleukin-4 deficient mice. Science 254, 707–710 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Townsend, J. M. et al. IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity 13, 573–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Renauld, J. C. et al. Thymic lymphomas in interleukin 9 transgenic mice. Oncogene 9, 1327–1332 (1994).

    CAS  PubMed  Google Scholar 

  56. Peschon, J. J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Rodig, S. J. et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93, 373–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Parganas, E. et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93, 385–395 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Neubauer, H. et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93, 397–409 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Karaghiosoff, M. et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 13, 549–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Shimoda, K. et al. Tyk2 plays a restricted role in IFNα signaling, although it is required for IL-12-mediated T cell function. Immunity 13, 561–571 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Meraz, M. A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK—STAT signaling pathway. Cell 84, 431–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Durbin, J. E., Hackenmiller, R., Simon, M. C. & Levy, D. E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443–450 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Dupuis, S. et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293, 300–303 (2001).Impairment of mycobacterial infections associated with mutations in the STAT1 gene.

    Article  CAS  PubMed  Google Scholar 

  65. Park, C., Li, S., Cha, E. & Schindler, C. Immune response in Stat2 knockout mice. Immunity 13, 795–804 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Kaplan, M. H., Sun, Y. L., Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of TH2 cells in Stat4-deficient mice. Nature 382, 174–177 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Thierfelder, W. E. et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382, 171–174 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Kaplan, M. H., Schindler, U., Smiley, S. T. & Grusby, M. J. Stat6 is required for mediating responses to IL-4 and for development of TH2 cells. Immunity 4, 313–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Shimoda, K. et al. Lack of IL-4-induced TH2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380, 630–633 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Takeda, K. et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl Acad. Sci. USA 94, 3801–3804 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, X. et al. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11, 179–186 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Udy, G. B. et al. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc. Natl Acad. Sci. USA 94, 7239–7244 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Teglund, S. et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93, 841–850 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Azam, M. et al. Interleukin-3 signals through multiple isoforms of Stat5. EMBO J. 14, 1402–1411 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mui, A. L., Wakao, H., Harada, N., O'Farrell, A. M. & Miyajima, A. Interleukin-3, granulocyte-macrophage colony-stimulating factor, and interleukin-5 transduce signals through two forms of STAT5. J. Leukoc. Biol. 57, 799–803 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Lin, J. X., Mietz, J., Modi, W. S., John, S. & Leonard, W. J. Cloning of human Stat5B. Reconstitution of interleukin-2-induced Stat5A and Stat5B DNA binding activity in COS-7 cells. J. Biol. Chem. 271, 10738–10744 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Nakajima, H. et al. An indirect effect of Stat5a in IL-2-induced proliferation: a critical role for Stat5a in IL-2-mediated IL-2 receptor α chain induction. Immunity 7, 691–701 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Imada, K. et al. Stat5b is essential for natural killer cell-mediated proliferation and cytolytic activity. J. Exp. Med. 188, 2067–2074 (1998).References 77 and 78 show impaired immunological phenotype in Stat5a and 5b knockout mice, respectively.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sperisen, P. et al. Mouse interleukin-2 receptor α gene expression. Interleukin-1 and interleukin-2 control transcription via distinct cis-acting elements. J. Biol. Chem. 270, 10743–10753 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. John, S., Robbins, C. M. & Leonard, W. J. An IL-2 response element in the human IL-2 receptor α chain promoter is a composite element that binds Stat5, Elf-1, HMG-I(Y) and a GATA family protein. EMBO J. 15, 5627–5635 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lecine, P. et al. Elf-1 and Stat5 bind to a critical element in a new enhancer of the human interleukin-2 receptor α gene. Mol. Cell. Biol. 16, 6829–6840 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim, H. P., Kelly, J. & Leonard, W. J. The basis for IL-2-induced IL-2 receptor α chain gene regulation: importance of two widely separated IL-2 response elements. Immunity 15, 159–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Socolovsky, M., Fallon, A. E., Wang, S., Brugnara, C. & Lodish, H. F. Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-XL induction. Cell 98, 181–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Kagami, S. et al. Both Stat5a and Stat5b are required for antigen-induced eosinophil and T-cell recruitment into the tissue. Blood 95, 1370–1377 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Suzuki, H. et al. Deregulated T-cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science 268, 1472–1476 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Gilmour, K. C. et al. Defective expression of the interleukin-2/ interleukin-15 receptor β subunit leads to a natural killer cell-deficient form of severe combined immunodeficiency. Blood 98, 877–879 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, J., Scordi, I., Smyth, M. J. & Lichtenheld, M. G. Interleukin 2 receptor signaling regulates the perforin gene through signal transducer and activator of transcription (Stat)5 activation of two enhancers. J. Exp. Med. 190, 1297–1308 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Moriggl, R. et al. Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity 10, 249–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Puel, A. & Leonard, W. J. Mutations in the gene for the IL-7 receptor result in TB+NK+ severe combined immunodeficiency disease. Curr. Opin. Immunol. 12, 468–473 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R. & Weissman, I. L. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89, 1033–1041 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Kondo, M., Akashi, K., Domen, J., Sugamura, K. & Weissman, I. L. Bcl-2 rescues T lymphopoiesis, but not B or NK cell development, in common γ chain-deficient mice. Immunity 7, 155–162 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Maraskovsky, E. et al. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant Rag-1−/− mice. Cell 89, 1011–1019 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Nakajima, H. & Leonard, W. J. Role of Bcl-2 in αβ T cell development in mice deficient in the common cytokine receptor γ-chain: the requirement for Bcl-2 differs depending on the TCR/MHC affinity. J. Immunol. 162, 782–790 (1999).

    CAS  PubMed  Google Scholar 

  94. Jacobs, H. et al. PIM1 reconstitutes thymus cellularity in interleukin 7- and common γ chain-mutant mice and permits thymocyte maturation in Rag- but not CD3γ-deficient mice. J. Exp. Med. 190, 1059–1068 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Willerford, D. M. et al. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Sharfe, N., Dadi, H. K., Shahar, M. & Roifman, C. M. Human immune disorder arising from mutation of the α chain of the interleukin-2 receptor. Proc. Natl Acad. Sci. USA 94, 3168–3171 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Roifman, C. M. Human IL-2 receptor α chain deficiency. Pediatr. Res. 48, 6–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Altare, F. et al. Inherited interleukin-12 deficiency in a child with Bacille Calmette–Guérin and Salmonella enteritidis disseminated infection. J. Clin. Invest. 102, 2035–2040 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Altare, F. et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 280, 1435–1438 (1998).

    Article  PubMed  Google Scholar 

  100. Jouanguy, E. et al. Partial interferon-γ receptor 1 deficiency in a child with tuberculoid Bacillus Calmette–Guérin infection and a sibling with clinical tuberculosis. J. Clin. Invest. 100, 2658–2664 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Doffinger, R. et al. Partial interferon-γ receptor signaling chain deficiency in a patient with Bacille Calmette–Guérin and Mycobacterium abscessus infection. J. Infect. Dis. 181, 379–384 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Bazan, J. F. Haemopoietic receptors and helical cytokines. Immunol. Today 11, 350–354 (1990).

    Article  CAS  PubMed  Google Scholar 

  103. Davies, D. R. & Wlodawer, A. Cytokines and their receptor complexes. FASEB J. 9, 50–56 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Senda, T. et al. Three-dimensional crystal structure of recombinant murine interferon-β. EMBO J. 11, 3193–3201 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ealick, S. E. et al. Three-dimensional structure of recombinant human interferon-γ. Science 252, 698–702 (1991).

    Article  CAS  PubMed  Google Scholar 

  106. Josephson, K., Logsdon, N. J. & Walter, M. R. Crystal structure of the IL-10/IL-10R1 complex reveals a shared receptor binding site. Immunity 15, 35–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Argetsinger, L. S. et al. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 74, 237–244 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Witthuhn, B. A. et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74, 227–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Vinkemeier, U. et al. DNA binding of in vitro activated Stat1α, Stat1β and truncated Stat1: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites. EMBO J. 15, 5616–5626 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vinkemeier, U., Moarefi, I., Darnell, J. E. Jr & Kuriyan, J. Structure of the amino-terminal protein interaction domain of Stat4. Science 279, 1048–1052 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. John, S., Vinkemeier, U., Soldaini, E., Darnell, J. E. Jr & Leonard, W. J. The significance of tetramerization in promoter recruitment by Stat5. Mol. Cell. Biol. 19, 1910–1918 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lew, D. J., Decker, T., Strehlow, I. & Darnell, J. E. Overlapping elements in the guanylate-binding protein gene promoter mediate transcriptional induction by α and γ interferons. Mol. Cell. Biol. 11, 182–191 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Akaishi, H. et al. Defective IL-2-mediated IL-2 receptor α chain expression in Stat3-deficient T lymphocytes. Int. Immunol. 10, 1747–1751 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Takeda, K. et al. Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J. Immunol. 161, 4652–4660 (1998).

    CAS  PubMed  Google Scholar 

  115. Akira, S. Roles of STAT3 defined by tissue-specific gene targeting. Oncogene 19, 2607–2611 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Chapman, R. S. et al. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev. 13, 2604–2616 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Socolovsky, M., Fallon, A. E., Wang, S., Brugnara, C. & Lodish, H. F. Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-XL induction. Cell 98, 181–191 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASES

LocusLink

Bcl-2

cardiotrophin 1

CDk6

ciliary neurotrophic factor

CIS

c-kit

cyclin D2

cyclin D3

epidermal growth factor

erythropoietin

γc

gp130

IFN-γ

IFNGR1

IFNGR2

IL-2

IL-2R

IL2RG

IL-3

IL-4

IL-6

IL-7

IL-9

IL-10

IL-11

IL12B

IL12RB1

IL-13

IL-15

IL-21

ISGF3

JAK1–3

leukaemia-inhibitory factor

oncostatin M

Pim-1

SOCS1

SSI-1

STAT1–4

STAT5A

STAT5B

STAT6

TYK2

OMIM

XSCID

FURTHER INFORMATION

Cytokines

Cytokines as mediators of disease

Cytokine receptors

Immune deficiency: severe combined immune deficiency

Interleukins

Signal transduction pathways in development: the JAK/STAT pathway

JAK3base

X-Linked SCID Mutation Database

Glossary

NATURAL KILLER CELLS

(NK cells). Lymphocytes that confer innate immunity. They were originally defined on the basis of their cytolytic activity against tumour targets, but it is now recognized that they have a broader role in host defence against invading pathogens.

XSCID

X-linked severe combined immunodeficiency disease. This is a profound immunodeficiency that accounts for approximately half of the cases of SCID. It is characterized by an absence of T cells and natural killer cells. B cells are normal in number but are non-functional.

COMMON CYTOKINE RECEPTOR γ-CHAIN

c). A type I cytokine receptor chain that is shared by the receptors for interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15 and IL-21.

JAK

Janus-activated kinase. There are four JAKs — JAK1, JAK2, JAK3 and TYK2 — which are activated by cytokines and interferons, inducing the phosphorylation of the cytokine/interferon receptors and other cellular substrates, including STAT proteins.

STAT

Signal transducer and activator of transcription. These are proteins that are recruited to cytokine and interferon receptors following ligand binding to the receptor. STAT proteins are 'activated' by tyrosine phosphorylation so that they can form dimers and translocate to the nucleus, where they function as transcription factors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonard, W. Cytokines and immunodeficiency diseases. Nat Rev Immunol 1, 200–208 (2001). https://doi.org/10.1038/35105066

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35105066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing