HIGHLIGHTS

HIGHLIGHTS ADVISORS

CEZMI AKDIS

SWISS INSTITUTE OF ALLERGY AND ASTHMA RESEARCH, SWITZERLAND

MARCO BAGGIOLINI

UNIVERSITA DELLA SVIZZERA ITALIANA, SWITZERLAND

BRUCE BEUTLER

SCRIPPS RESEARCH INSTITUTE, USA

ANDREW CHAN GENENTECH, INC., USA

UNIVERSITY OF CAMBRIDGE, UK

JAMES DI SANTO

PASTEUR INSTITUTE, FRANCE

TASUKU HONJO

KYOTO UNIVERSITY, JAPAN GARY KORETZKY

UNIVERSITY OF PENNSYLVANIA, USA

CHARLES MACKAY

GARVAN INSTITUTE OF MEDICAL RESEARCH, AUSTRALIA

FIONA POWRIE UNIVERSITY OF OXFORD, UK

CAETANO REIS E SOUSA

IMPERIAL CANCER RESEARCH

ALAN SHER NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES, USA

ANDREAS STRASSER THE WALTER AND ELIZA HALL

INSTITUTE, MELBOURNE, AUSTRALIA

ERIC VIVIER

CENTRE D'IMMUNOLOGIE DE MARSEILLE-LUMINY, FRANCE

LYMPHOCYTE DEVELOPMENT

Out of sync

Central to Burnet's clonal-selection theory was the 'one lymphocyte, one antigen receptor' rule. With rare exceptions, we now know this to be true. But how is this achieved when for each antigen-receptor chain there is the choice of two alleles? Carefully regulated expression of the enzymes mediating T-cell receptor (TCR) and B-cell receptor (BCR) gene rearrangement is thought to be crucial, and now a report in *Nature* indicates that asynchronous replication of antigen-receptor genes might have a key role.

Allelic exclusion is not unique to the immune system. Olfactory receptor genes and the X chromosome in females are both monoallelically expressed, and these are known to replicate asynchronously — leading Mostoslavsky and co-workers to ask whether this is also true of immunoglobulin and TCR loci.

The technique of fluorescent in situ hybridization (FISH) allows replicating loci to be detected as a double dot; finding both a double and single dot during interphase is characteristic of an asynchronously replicating gene. Using this method, the authors found that the immunoglobulin κ , λ and μ loci, and the TCR β locus replicate asynchronously in both lymphoid and non-lymphoid cells. Further studies of the k locus in mature B cells showed that the non-expressed, germ-line copy consistently replicates late. By examining fibroblasts from mice heterozygous for a linked marker gene they confirmed that the selection of the early replicating κ allele — maternal or paternal — is entirely random,

and once established is stable within a clone.

So, when is this asynchronous replication of antigen-receptor loci established? To address this question the authors examined ĸ-locus replication in the very earliest stages of ontogeny. Immediately after fertilization, during the first cell division of the zygote, there is asynchronous replication of the κ locus, which seems to be inherited from the gametes. At later stages of embryogenesis (morula and blastula), the κ alleles replicate at the same time, but in embryonic stem cells and later developmental stages there is asynchronous replication. Interestingly, this developmental pattern mirrors that of X-chromosome inactivation.

The authors propose that the early replicating allele will have a head start, and become accessible to the rearrangement machinery first. Contrary to some prevailing models, these results imply that the availability of antigen-receptor alleles for rearrangement is not equivalent. The temporal advantage conferred by early replication might be crucial in allowing a single antigen receptor to be successfully formed and tested at the cell surface, before a competing receptor can be generated.

Jennifer Bell

O References and links

ORIGINAL RESEARCH PAPER Mostoslavsky, R. et al. Asynchronous replication and allelic exclusion in the immune system. *Nature* **414**, 221–225 (2001) ENCYCLOPEDIA OF LIFE SCIENCES Lymphocyte development