Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging links between hypermutation of antibody genes and DNA polymerases

Key Points

  • Hypermutation of antibody variable genes is restricted to discrete regions of DNA and occurs in B lymphocytes located in germinal centres. The process generates nucleotide substitutions, which can change amino acids and give an antibody molecule higher affinity for binding antigen.

  • DNA strand breaks are found in a 2-kilobase region that includes the rearranged variable gene and flanking sequences. Point mutations are distributed in the same area, which suggests that strand breaks initiate hypermutation.

  • The high frequency of mutation, one per 100 bases, suggests that error-prone DNA polymerases are involved. Several enzymes are being considered.

  • DNA polymerase ζ is present in mutating B cells, and antisense suppression of polymerase ζ decreases the mutation frequency by a few-fold. Further analyses will be complicated because polymerase - ζ-deficient mouse embryos die during mid-gestation.

  • DNA polymerase η is deficient in humans with the variant form of the disorder xeroderma pigmentosum (XP-V). Variable genes from XP-V individuals have a normal frequency of hypermutation, but the spectrum is shifted towards more mutations of G and C compared with A and T. A role for polymerase η as an A–T mutator in hypermutation is consistent with the types of error it makes when copying DNA in vitro.

  • DNA polymerase ι copies undamaged DNA with a very low fidelity. When filling in at the end of a template, its fidelity decreases even further. This might be relevant to hypermutation in which mutations are associated with sites of strand breaks.

  • DNA polymerase μ is highly expressed in B and T cells located in germinal centres, and has been suggested to be involved in hypermutation.

  • No single polymerase has been found to be responsible for all hypermutation. Several polymerases might participate in a specialized pathway for repair of directed strand breaks and mutations might be introduced in the process.

Abstract

Substantial antibody variability is created when nucleotide substitutions are introduced into immunoglobulin variable genes by a controlled process of hypermutation. Evidence points to a mechanism involving DNA repair events at sites of targeted breaks. In vertebrate cells, there are many recently identified DNA polymerases that inaccurately copy templates. Some of these are candidates for enzymes that introduce base changes during hypermutation. Recent research has focused on possible roles for DNA polymerases ζ (POLZ), η (POLH), ι (POLI), and μ (POLM) in the process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of mutations correlates with positions of strand breaks.
Figure 2: Speculative model for hypermutation.

Similar content being viewed by others

References

  1. Brenner, S. & Milstein, C. Origin of antibody variation. Nature 211, 242–243 (1966).

    Article  CAS  Google Scholar 

  2. Hood, L. & Talmage, D. W. Mechanism of antibody diversity: germ line basis for variability. Science 168, 325–334 (1970).

    Article  CAS  Google Scholar 

  3. Weigert, M. G., Cesari, I. M., Yonkovich, S. J. & Cohn, M. Variability in the lambda light chain sequences of mouse antibody. Nature 228, 1045–1047 (1970).

    Article  CAS  Google Scholar 

  4. Bernard, O., Hozumi, N. & Tonegawa, S. Sequences of mouse immunoglobulin light chain genes before and after somatic changes. Cell 15, 1133–1144 (1978).

    Article  CAS  Google Scholar 

  5. Crews, S., Griffin, J., Huang, H., Calame, K. & Hood, L. A single VH gene segment encodes the immune response to phosphorylcholine: somatic mutation is correlated with the class of the antibody. Cell 25, 59–66 (1981).

    Article  CAS  Google Scholar 

  6. Selsing, E. & Storb, U. Somatic mutation of immunoglobulin light-chain variable-region genes. Cell 25, 47–58 (1981).

    Article  CAS  Google Scholar 

  7. Pech, M., Höchtl, J., Schnell, H. & Zachau, H. G. Differences between germ-line and rearranged immunoglobulin Vκ coding sequences suggest a localized mutation mechanism. Nature 291, 668–670 (1981).

    Article  CAS  Google Scholar 

  8. Kim, S., Davis, M., Sinn, E., Patten, P. & Hood, L. Antibody diversity: somatic hypermutation of rearranged VH genes. Cell 27, 573–581 (1981).

    Article  CAS  Google Scholar 

  9. Gearhart, P. J. & Bogenhagen, D. F. Clusters of point mutations are found exclusively around rearranged antibody variable genes. Proc. Natl Acad. Sci. USA 80, 3439–3443 (1983).

    Article  CAS  Google Scholar 

  10. Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature 354, 389–392 (1991).

    Article  CAS  Google Scholar 

  11. Jacob, J., Przylepa, J., Miller, C. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells. J. Exp. Med. 178, 1293–1307 (1993).

    Article  CAS  Google Scholar 

  12. González-Fernández, A. & Milstein, C. Analysis of somatic hypermutation in mouse Peyer's patches using immunoglobulin κ light-chain transgenes. Proc. Natl Acad. Sci. USA 90, 9862–9866 (1993).

    Article  Google Scholar 

  13. Pascual, V. et al. Analysis of somatic mutation in five B cell subsets of human tonsil. J. Exp. Med. 180, 329–339 (1994).

    Article  CAS  Google Scholar 

  14. Liu, Y.-J. et al. Mechanism of antigen-driven selection in germinal centres. Nature 342, 929–931 (1989).

    Article  CAS  Google Scholar 

  15. Griffiths, G. M., Berek, C., Kaartinen, M. & Milstein, C. Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature 312, 271–275 (1984).

    Article  CAS  Google Scholar 

  16. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  Google Scholar 

  17. Lebecque, S. & Gearhart, P. J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is about 1 kb from V(D)J gene. J. Exp. Med. 172, 1717–1727 (1990).

    Article  CAS  Google Scholar 

  18. O'Brien, R. L., Brinster, R. L. & Storb, U. Somatic hypermutation of an immunoglobulin transgene in κ transgenic mice. Nature 326, 405–409 (1987).

    Article  CAS  Google Scholar 

  19. Yélamos, J. et al. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 376, 225–229 (1995).

    Article  Google Scholar 

  20. Betz, A. G. et al. Elements regulating somatic hypermutation of an immunoglobulin κ gene: critical role for the intron enhancer/matrix attachment region. Cell 77, 239–248 (1994).

    Article  CAS  Google Scholar 

  21. Peters, A. & Storb, U. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4, 57–65 (1996).

    Article  CAS  Google Scholar 

  22. Shen, H. M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).

    Article  CAS  Google Scholar 

  23. Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).

    Article  CAS  Google Scholar 

  24. Rogozin, I. B. & Kolchanov, N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochem. Biophys. Acta 1171, 11–18 (1992).

    CAS  PubMed  Google Scholar 

  25. Foster, S. J., Dörner, T. & Lipsky, P. E. Somatic hypermutation of VκJκ rearrangements: targeting of RGYW motifs on both DNA strands and preferential selection of mutated codons within RGYW motifs. Eur. J. Immunol. 29, 4011–4021 (1999).

    Article  CAS  Google Scholar 

  26. Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-strand breaks in somatic hypermutation of immunoglobulin genes. Nature 408, 216–221 (2000).

    Article  CAS  Google Scholar 

  27. Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity 13, 589–597 (2000).

    Article  CAS  Google Scholar 

  28. Kong, Q. & Maizels, N. DNA breaks in hypermutating immunoglobulin genes: evidence for a break-and-repair pathway of somatic hypermutation. Genetics 158, 369–378 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wood, R. D. DNA repair: knockouts still mutating after first round. Curr. Biol. 8, R757–R760 (1998).

    Article  CAS  Google Scholar 

  30. Weill, J.-C. et al. Ig gene hypermutation: a mechanism is due. Adv. Immunol. (in the press).

  31. Golding, G. B., Gearhart, P. J. & Glickman, B. W. Patterns of somatic mutations in immunoglobulin variable genes. Genetics 115, 169–176 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith, D. S. et al. Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J. Immunol. 156, 2642–2652 (1996).

    CAS  PubMed  Google Scholar 

  33. Spencer, J., Dunn, M. & Dunn-Walters, D. K. Characteristics of sequences around individual nucleotide substitutions in IgVH genes suggest different GC and AT mutators. J. Immunol. 162, 6596–6601 (1999).

    CAS  PubMed  Google Scholar 

  34. Milstein, C., Neuberger, M. S. & Staden, R. Both DNA strands of antibody genes are hypermutation targets. Proc. Natl Acad. Sci. USA 95, 8791–8794 (1998).

    Article  CAS  Google Scholar 

  35. Snow, E. T., Kunkel, T. A. & Loeb, L. A. Base substitution mutagenesis by terminal transferase: its role in somatic mutagenesis. Mutat. Res. 180, 137–146 (1987).

    Article  CAS  Google Scholar 

  36. Texidó, G. et al. Somatic hypermutation occurs in B cells of terminal deoxynucleotidyl transferase-, CD23-, interleukin-4-, IgD- and CD30-deficient mouse mutants. Eur. J. Immunol. 26, 1966–1969 (1996).

    Article  Google Scholar 

  37. Steele, E. J. & Blanden, R. V. The reverse transcriptase model of somatic hypermutation. Phil. Trans. R. Soc. Lond. B 356, 61–66 (2001).

    Article  CAS  Google Scholar 

  38. Esposito, G. et al. Mice reconstituted with DNA polymerase β-deficient fetal liver cells are able to mount a T cell-dependent immune response and mutate their Ig genes normally. Proc. Natl Acad. Sci. USA 97, 1166–1171 (2000).

    Article  CAS  Google Scholar 

  39. Ohashi, E. et al. Fidelity and processivity of DNA synthesis by DNA polymerase κ, the product of the human DINB1 gene. J. Biol. Chem. 275, 39678–39684 (2000).

    Article  CAS  Google Scholar 

  40. Oshige, M., Aoyagi, N., Harris, P. V., Burtis, K. C. & Sakaguchi, K. A new DNA polymerase species from Drosophila melanogaster: a probable mus308 gene product. Mutat. Res. 433, 183–192 (1999).

    Article  CAS  Google Scholar 

  41. Garcia-Diaz, M. et al. DNA polymerase lambda (Pol λ), a novel eukaryotic DNA polymerase with a potential role in meiosis. J. Mol. Biol. 301, 851–867 (2000).

    Article  CAS  Google Scholar 

  42. Carson, E. R. & Christman, M. F. Evidence that replication fork components catalyze establishment of cohesion between sister chromatids. Proc. Natl Acad. Sci. USA 98, 8270–8275 (2001).

    Article  CAS  Google Scholar 

  43. Lawrence, C. W. & Maher, V. M. Mutagenesis in eukaryotes dependent on DNA polymerase zeta and Rev1p. Philos Trans R Soc Lond B Biol Sci 356, 41–46 (2001).

    Article  CAS  Google Scholar 

  44. Holbeck, S. L. & Strathern, J. N. A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae. Genetics 147, 1017–1024 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S. & Prakash, L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature 406, 1015–1019 (2000).

    Article  CAS  Google Scholar 

  46. Winter, D. B., Phung, A. H., Wood, R. D. & Gearhart, P. J. Differential expression of DNA polymerase ɛ in resting and activated B lymphocytes is consistent with an in vivo role in replication and not repair. Mol. Immunol. 37, 125–131 (2000).

    Article  CAS  Google Scholar 

  47. Zan, H. et al. The translesion DNA polymerase ζ plays a major role in Ig and bcl-6 somatic hypermutation. Immunity 14, 643–653 (2001).

    Article  CAS  Google Scholar 

  48. Zeng, X. et al. DNA polymerase η is an A–T mutator in somatic hypermutation of immunoglobulin variable genes. Nature Immunol. 2, 537–541 (2001).

    Article  CAS  Google Scholar 

  49. Poltoratsky, V. et al. Expression of error-prone polymerases in BL2 cells activated for Ig somatic hypermutation. Proc. Natl Acad. Sci. USA 98, 7976–7981 (2001).

    Article  CAS  Google Scholar 

  50. Bemark, M., Khamlichi, A. A., Davies, S. L., & Neuberger, M. S. Disruption of mouse polymerase ζ (Rev3) leads to embryonic lethality and impairs blastocyst development in vitro. Curr. Biol. 10, 1213–1216 (2000).

    Article  CAS  Google Scholar 

  51. Wittschieben, J. et al. Disruption of the developmentally regulated Rev3l gene causes embryonic lethality. Curr. Biol. 10, 1217–1220 (2000).

    Article  CAS  Google Scholar 

  52. Esposito, G. et al. Disruption of the Rev3l-encoded catalytic subunit of polymerase ζ in mice results in early embryonic lethality. Curr. Biol. 10, 1221–1224 (2000).

    Article  CAS  Google Scholar 

  53. Kajiwara, K. . et al. Sez4 gene encoding an elongation subunit of DNA polymerase ζ is required for normal embryogenesis. Genes Cells 6, 99–106 (2001).

    Article  CAS  Google Scholar 

  54. Diaz, M., Verkoczy, L. K., Flajnik, M. F. & Klinman, N. R. Decreased frequency of somatic hypermutation and impaired affinity maturation but intact germinal center formation in mice expressing antisense RNA to DNA polymerase ζ. J. Immunol. 167, 327–335 (2001).

    Article  CAS  Google Scholar 

  55. Gibbs, P. E. M. et al. The function of the human homolog of Saccharomyces cerevisiae REV1 is required for mutagenesis induced by UV light. Proc. Natl Acad. Sci. USA 97, 4186–4191 (2000).

    Article  CAS  Google Scholar 

  56. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704 (1999).

    Article  CAS  Google Scholar 

  57. Masutani, C. et al. Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J. 18, 3491–3501 (1999).

    Article  CAS  Google Scholar 

  58. Zhang, Y. et al. Error-prone lesion bypass by human DNA polymerase η. Nucleic Acids Res. 28, 4717–4724 (2000).

    Article  CAS  Google Scholar 

  59. Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F. & Kunkel, T. A. Low fidelity DNA synthesis by human DNA polymerase-η. Nature 404, 1011–1013 (2000).

    Article  CAS  Google Scholar 

  60. Trincao, J. et al. Structure of the catalytic core of S. cerevisiae DNA polymerase η: implications for translesion DNA synthesis. Mol. Cell 8, 417–426 (2001).

    Article  CAS  Google Scholar 

  61. Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107, 91–102 (2001).

    Article  CAS  Google Scholar 

  62. Kannouche, P. et al. Domain structure, localization, and function of DNA polymerase η, defective in xeroderma pigmentosum variant cells. Genes Dev. 15, 158–172 (2001).

    Article  CAS  Google Scholar 

  63. Yamada, A., Masutani, C., Iwai, S. & Hanaoka, F. Complementation of defective translesion synthesis and UV light sensitivity in xeroderma pigmentosum variant cells by human and mouse DNA polymerase η. Nucleic Acids Res. 28, 2473–2480 (2000).

    Article  CAS  Google Scholar 

  64. Rogozin, I. B., Pavlov, Y. I., Bebenek, K., Matsuda, T. & Kunkel, T. A. Somatic mutation hotspots correlate with DNA polymerase η error spectrum. Nature Immunol. 2, 530–536 (2001).

    Article  CAS  Google Scholar 

  65. Tissier, A., McDonald, J. P., Frank, E. G. & Woodgate, R. Pol ι, a remarkably error-prone human DNA polymerase. Genes Dev. 14, 1642–1650 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Vaisman, A. & Woodgate, R. Unique misinsertion specificity of pol ι may decrease the mutagenic potential of deaminated cytosines. EMBO J. (in the press).

  67. Frank, E. G. et al. Altered nucleotide misinsertion fidelity associated with polι-dependent replication at the end of a DNA template. EMBO J. 20, 2914–2922 (2001).

    Article  CAS  Google Scholar 

  68. Ruiz, J. F. et al. DNA polymerase μ, a candidate hypermutase? Philos Trans R Soc Lond B Biol Sci 356, 99–109 (2001).

    Article  CAS  Google Scholar 

  69. Dominguez, O. et al. DNA polymerase μ (Pol μ), homologous to TdT, could act as a DNA mutator in eukaryotic cells. EMBO J. 19, 1731–1742 (2000).

    Article  CAS  Google Scholar 

  70. Aoufouchi, S. et al. Two novel human and mouse DNA polymerases of the polX family. Nucleic Acids Res. 28, 3684–3693 (2000).

    Article  CAS  Google Scholar 

  71. Tissier, A. et al. Misinsertion and bypass of thymine– thymine dimers by human DNA polymerase ι. EMBO J. 19, 5259–5266 (2000).

    Article  CAS  Google Scholar 

  72. Bemark, M. et al. Somatic hypermutation in the absence of DNA-dependent protein kinase catalytic subunit (DNA-PKCS) or recombination-activating gene (RAG)1 activity. J. Exp. Med. 192, 1509–1514 (2000).

    Article  CAS  Google Scholar 

  73. Sale, J. E., Calandrini, D. M., Takata, M., Takeda, S. & Neuberger, M. S. Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation. Nature 412, 921–926 (2001).

    Article  CAS  Google Scholar 

  74. Reynaud, C.-A., Anquez, V., Grimal, H. & Weill, J.-C. A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 48, 379–388 (1987).

    Article  CAS  Google Scholar 

  75. Roberts, J. D. & Kunkel, T. A. in DNA Replication in Eukaryotic Cells: Concepts, Enzymes and Systems (ed. Pamphilis, M. D.) 217–247 (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1996).

    Google Scholar 

  76. Sharief, F. S., Vojta, P. J., Ropp, P. A. & Copeland, W. C. Cloning and chromosomal mapping of the human DNA polymerase θ (POLQ), the eighth human DNA polymerase. Genomics 59, 90–96 (1999).

    Article  CAS  Google Scholar 

  77. Lin, W. et al. The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res. 27, 4468–4475 (1999).

    Article  CAS  Google Scholar 

  78. Sale, J. E. & Neuberger, M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity 9, 859–869 (1998).

    Article  CAS  Google Scholar 

  79. Goodman, M. F. & Tippin, B. The expanding polymerase universe. Nature Rev. Mol. Cell Biol. 1, 101–109 (2000).

    Article  CAS  Google Scholar 

  80. Honjo, T. & Alt, F. W. (eds) Immunoglobulin Genes 2nd edn (Academic Press, London, 1996).

    Google Scholar 

Download references

Acknowledgements

We thank C. Reynaud, R. Woodgate and L. Blanco for preprints and for sharing unpublished data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia J. Gearhart.

Related links

Related links

DATABASES

The following terms in this article are linked online to: LocusLink

AID

BCL6

DNA-PKCS

pol α

pol β

pol δ

pol ɛ

pol η

pol ι

pol κ

pol λ

pol μ

pol θ

pol ζ

Rag1

Rev1

TRF4

XRCC2

XRCC3

OMIM

HIGM2

XP-V

FURTHER INFORMATION

Human DNA repair genes

Patricia Gearhart's lab

Richard Wood's lab

Glossary

COMPLEMENTARITY-DETERMINING REGIONS

Amino acids found in three areas of each of the heavy and light chains that physically contact antigen, that is, they are complementary to the antigen.

AID

Activation-induced cytidine deaminase. A potential RNA-editing enzyme that is necessary for hypermutation and class-switch recombination.

CLASS SWITCHING

DNA rearrangement of the VDJ gene from IgM to any of the IgG, IgA and IgE constant genes at the heavy-chain locus. Recombination occurs in repetitive sequences of DNA located upstream of each constant gene.

NUCLEOTIDE EXCISION REPAIR

A DNA-repair pathway that repairs helix-distorting, covalent adducts in DNA (such as ultraviolet light-induced pyrimidine dimers). Incisions are made on the damaged strand flanking a lesion to release the damage in an oligonucleotide that is 24–32 residues long. The gap is filled by DNA-repair synthesis.

MISMATCH REPAIR

Mismatches arising in DNA because of errors made by replicative DNA polymerases are repaired by an excision system that removes a tract of DNA including the mismatch, and re-copies the original strand.

BASE EXCISION REPAIR

A DNA-repair pathway that removes single bases from DNA, such as uracil residues arising by deamination of cytosine. Repair is initiated by a DNA glycosylase enzyme that is specialized for a particular class of damage.

DNA CROSSLINKS

Covalent linkage of the two double-helical strands of DNA. Interstrand crosslinks can be caused by radiation and by chemicals, such as nitrogen mustards, photoactivated psoralens and mitomycin C.

XERODERMA PIGMENTOSUM

(XP). A rare inherited human disorder, in which patients display great sensitivity to the DNA-damaging effects of sunlight. XP can be caused by disabling any of eight different genes. The genes, denoted XPAXPG, encode components of the nucleotide excision-repair pathway. The XPV gene encodes DNA polymerase η.

HOMOLOGOUS RECOMBINATION

Genetic recombination that occurs between DNAs with long stretches of homology. Double-strand breaks can be repaired if a chromosome or chromatid homologous with the broken DNA is available in the cell.

NON-HOMOLOGOUS END-JOINING

A pathway that rejoins DNA strand breaks without relying on significant homology. The main known pathway uses the Ku-end binding complex and is regulated by DNA protein kinase. The pathway is often used in mammalian cells to repair strand breaks caused by DNA-damaging agents, and some of the same enzymes are used during the strand-joining steps of V(D)J recombination.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gearhart, P., Wood, R. Emerging links between hypermutation of antibody genes and DNA polymerases. Nat Rev Immunol 1, 187–192 (2001). https://doi.org/10.1038/35105009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35105009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing