Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

On guard: coronin proteins in innate and adaptive immunity

Key Points

  • Coronin molecules are highly conserved proteins that are expressed throughout the eukaryotic kingdom.

  • There are seven mammalian genes that encode coronins, several of which are expressed in immune cells. Both in mice and in humans, coronin mutations have been associated with immunodeficiencies and resistance to autoimmunity.

  • Several coronin molecules associate with F-actin but whether or not mammalian coronins are directly involved in F-actin modulation remains to be elucidated.

  • Coronin 4 has an important role in the derepression of various inflammatory genes by being a core component of nuclear receptor co-repressor 1 complexes.

  • Coronin 1 is one of the most conserved and best-characterized coronin family members. It is abundantly expressed in leukocytes and protects mycobacteria in macrophages from lysosomal delivery through the activation of the calcium–calcineurin signalling pathway.

  • In lymphocytes, coronin 1 also regulates the calcium–calcineurin signalling pathway and is essential for the survival of naive T cells.

  • In mice and humans, coronin 1 deletion and/or mutation is associated with profound naive T cell deficiency. Moreover, mice that are deficient in coronin 1 are resistant to autoimmune stimuli.

Abstract

Recent work has implicated members of the evolutionarily conserved family of coronin proteins — in particular coronin 1 — in immune homeostasis. Coronins are involved in processes as diverse as pathogen survival in phagocytes and homeostatic T cell signalling. Notably, in both mice and humans, coronin mutations are associated with immune deficiencies and resistance to autoimmunity. In this article, we review what is currently known about these conserved molecules and discuss a potential common mechanism that underlies their diverse activities, which seem to involve cytoskeletal interactions as well as calcium–calcineurin signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The roles of coronin 1 and coronin 4 in macrophages.
Figure 2: The role of coronin 1 in the survival of naive T cells.

Similar content being viewed by others

References

  1. Eckert, C., Hammesfahr, B. & Kollmar, M. A holistic phylogeny of the coronin gene family reveals an ancient origin of the tandem-coronin, defines a new subfamily, and predicts protein function. BMC Evol. Biol. 11, 268 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gatfield, J., Albrecht, I., Zanolari, B., Steinmetz, M. O. & Pieters, J. Association of the leukocyte plasma membrane with the actin cytoskeleton through coiled coil-mediated trimeric coronin 1 molecules. Mol. Biol. Cell 16, 2786–2798 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kammerer, R. A. et al. A conserved trimerization motif controls the topology of short coiled coils. Proc. Natl Acad. Sci. USA 102, 13891–13896 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rybakin, V. et al. Coronin 7, the mammalian POD-1 homologue, localizes to the Golgi apparatus. FEBS Lett. 573, 161–167 (2004).

    CAS  PubMed  Google Scholar 

  5. Okumura, M., Kung, C., Wong, S., Rodgers, M. & Thomas, M. L. Definition of family of coronin-related proteins conserved between humans and mice: close genetic linkage between coronin-2 and CD45-associated protein. DNA Cell Biol. 17, 779–787 (1998).

    CAS  PubMed  Google Scholar 

  6. Nakamura, T. et al. A neurally enriched coronin-like protein, ClipinC, is a novel candidate for an actin cytoskeleton-cortical membrane-linking protein. J. Biol. Chem. 274, 13322–13327 (1999).

    CAS  PubMed  Google Scholar 

  7. de Hostos, E. L. The coronin family of actin-associated proteins. Trends Cell Biol. 9, 345–350 (1999).

    CAS  PubMed  Google Scholar 

  8. Rybakin, V. & Clemen, C. S. Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. Bioessays 27, 625–632 (2005).

    CAS  PubMed  Google Scholar 

  9. Gatfield, J. & Pieters, J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288, 1647–1650 (2000).

    CAS  PubMed  Google Scholar 

  10. Huang, W. et al. Coronin 2A mediates actin-dependent de-repression of inflammatory response genes. Nature 470, 414–418 (2011). The data in this paper suggest that coronin 4, which was previously detected by mass spectrometry in a complex containing NCOR1, functions as an NCOR1 exchange factor that is required for the derepression of pro-inflammatory genes in macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. de Hostos, E. L. et al. Dictyostelium mutants lacking the cytoskeletal protein coronin are defective in cytokinesis and cell motility. J. Cell Biol. 120, 163–173 (1993).

    CAS  PubMed  Google Scholar 

  12. de Hostos, E. L., Bradtke, B., Lottspeich, F., Guggenheim, R. & Gerisch, G. Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G protein β-subunits. EMBO J. 10, 4097–4104 (1991). This paper is the first description of coronin in the slime mould D. discoideum , where it was found to co-precipitate with an actin–myosin complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cai, L., Makhov, A. M. & Bear, J. E. F-actin binding is essential for coronin 1B function in vivo. J. Cell Sci. 120, 1779–1790 (2007).

    CAS  PubMed  Google Scholar 

  14. Cai, L., Marshall, T. W., Uetrecht, A. C., Schafer, D. A. & Bear, J. E. Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell 128, 915–929 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Foger, N., Rangell, L., Danilenko, D. M. & Chan, A. C. Requirement for coronin 1 in T lymphocyte trafficking and cellular homeostasis. Science 313, 839–842 (2006). This paper shows that deletion of coronin 1 in mice results in peripheral T cell deficiency.

    PubMed  Google Scholar 

  16. Galkin, V. E. et al. Coronin-1A stabilizes F-actin by bridging adjacent actin protomers and stapling opposite strands of the actin filament. J. Mol. Biol. 376, 607–613 (2008).

    CAS  PubMed  Google Scholar 

  17. Haraldsson, M. K. et al. The lupus-related Lmb3 locus contains a disease-suppressing coronin-1A gene mutation. Immunity 28, 40–51 (2008). In this study, a nonsense mutation in the coronin 1 gene was shown to suppress lupus erythematosus in disease-prone MLR– lpr mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Shiow, L. R. et al. Severe combined immunodeficiency (SCID) and attention deficit hyperactivity disorder (ADHD) associated with a Coronin-1A mutation and a chromosome 16p11.2 deletion. Clin. Immunol. 131, 24–30 (2009).

    CAS  PubMed  Google Scholar 

  19. Moshous, D. et al. Whole-exome sequencing identifies coronin-1A deficiency in three siblings with immunodeficiency and EBV-associated B cell lymphoproliferation. J. Allergy Clin. Immunol. 131, 1594–1603.e9 (2013).

    CAS  PubMed  Google Scholar 

  20. Armstrong, J. A. & Hart, P. D. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J. Exp. Med. 142, 1–16 (1975).

    CAS  PubMed  Google Scholar 

  21. Russell, D. G. Mycobacterium tuberculosis: here today, and here tomorrow. Nature Rev. Mol. Cell Biol. 2, 569–577 (2001).

    CAS  Google Scholar 

  22. Pieters, J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3, 399–407 (2008).

    CAS  PubMed  Google Scholar 

  23. Hasan, Z. et al. Isolation and characterization of the mycobacterial phagosome: segregation from the endosomal/lysosomal pathway. Mol. Microbiol. 24, 545–553 (1997).

    CAS  PubMed  Google Scholar 

  24. Ferrari, G., Langen, H., Naito, M. & Pieters, J. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97, 435–447 (1999). This article is the first description of a role for coronin 1 in macrophages, where it was found to protect intracellular pathogenic mycobacteria from lysosomal destruction.

    CAS  PubMed  Google Scholar 

  25. Suzuki, K. et al. Molecular cloning of a novel actin-binding protein, p57, with a WD repeat and a leucine zipper motif. FEBS Lett. 364, 283–288 (1995).

    CAS  PubMed  Google Scholar 

  26. Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    CAS  PubMed  Google Scholar 

  27. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  Google Scholar 

  28. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS  PubMed  Google Scholar 

  29. Jayachandran, R. et al. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 130, 37–50 (2007). This paper provides a description of a role for coronin 1 in promoting calcium–calcineurin signalling following macrophage infection with pathogenic mycobacteria.

    CAS  PubMed  Google Scholar 

  30. Jayachandran, R. et al. RNA interference in J774 macrophages reveals a role for coronin 1 in mycobacterial trafficking but not in actin-dependent processes. Mol. Biol. Cell 19, 1241–1251 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kumar, D. et al. Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140, 731–743 (2010).

    CAS  PubMed  Google Scholar 

  32. Seto, S., Tsujimura, K. & Koide, Y. Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages. Cell. Microbiol. 14, 710–727 (2012).

    CAS  PubMed  Google Scholar 

  33. Suzuki, K., Takeshita, F., Nakata, N., Ishii, N. & Makino, M. Localization of CORO1A in the macrophages containing Mycobacterium leprae. Acta Histochem. Cytochem. 39, 107–112 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sibley, L. D., Franzblau, S. G. & Krahenbuhl, J. L. Intracellular fate of Mycobacterium leprae in normal and activated mouse macrophages. Infect. Immun. 55, 680–685 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Montoya, D. & Modlin, R. L. Learning from leprosy: insight into the human innate immune response. Adv. Immunol. 105, 1–24 (2010).

    CAS  PubMed  Google Scholar 

  36. Zheng, P. Y. & Jones, N. L. Helicobacter pylori strains expressing the vacuolating cytotoxin interrupt phagosome maturation in macrophages by recruiting and retaining TACO (coronin 1) protein. Cell. Microbiol. 5, 25–40 (2003).

    CAS  PubMed  Google Scholar 

  37. Allen, L. A., Schlesinger, L. S. & Kang, B. Virulent strains of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. J. Exp. Med. 191, 115–128 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Falkow, S. Is persistent bacterial infection good for your health? Cell 124, 699–702 (2006).

    CAS  PubMed  Google Scholar 

  39. Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    CAS  PubMed  Google Scholar 

  40. Dory, D. et al. Generation and functional characterization of a clonal murine periportal Kupffer cell line from H-2Kb-tsA58 mice. J. Leukoc. Biol. 74, 49–59 (2003).

    CAS  PubMed  Google Scholar 

  41. Wardle, E. N. Kupffer cells and their function. Liver 7, 63–75 (1987).

    CAS  PubMed  Google Scholar 

  42. Brandborg, L. L. & Goldman, I. S. in Hepatology: A Textbook of Liver Disease (eds Zakim, D. & Boyer, T. D.) 1086–1098 (W.B. Saunders, 1990).

    Google Scholar 

  43. North, R. J. T cell dependence of macrophage activation and mobilization during infection with Mycobacterium tuberculosis. Infect. Immun. 10, 66–71 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mendez-Samperio, P., Palma-Barrios, J., Vazquez-Hernandez, A. & Garcia-Martinez, E. Secretion of interleukin-8 by human-derived cell lines infected with Mycobacterium bovis. Mediators Inflamm. 13, 45–49 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mendez-Samperio, P., Alba, L. & Trejo, A. Mycobacterium bovis-mediated induction of human β-defensin-2 in epithelial cells is controlled by intracellular calcium and p38MAPK. J. Infect. 54, 469–474 (2007).

    PubMed  Google Scholar 

  46. Mendez-Samperio, P., Trejo, A. & Miranda, E. Activation of ERK1/2 and TNF-α production are mediated by calcium/calmodulin, and PKA signaling pathways during Mycobacterium bovis infection. J. Infect. 52, 147–153 (2006).

    CAS  PubMed  Google Scholar 

  47. Rojas, M., Garcia, L. F., Nigou, J., Puzo, G. & Olivier, M. Mannosylated lipoarabinomannan antagonizes Mycobacterium tuberculosis-induced macrophage apoptosis by altering Ca2+-dependent cell signaling. J. Infect. Dis. 182, 240–251 (2000).

    CAS  PubMed  Google Scholar 

  48. Carrithers, L. M., Hulseberg, P., Sandor, M. & Carrithers, M. D. The human macrophage sodium channel NaV1.5 regulates mycobacteria processing through organelle polarization and localized calcium oscillations. FEMS Immunol. Med. Microbiol. 63, 319–327 (2011).

    CAS  PubMed  Google Scholar 

  49. Winslow, M. M., Neilson, J. R. & Crabtree, G. R. Calcium signalling in lymphocytes. Curr. Opin. Immunol. 15, 299–307 (2003).

    CAS  PubMed  Google Scholar 

  50. Klee, C. B., Crouch, T. H. & Krinks, M. H. Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc. Natl Acad. Sci. USA 76, 6270–6273 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Stewart, A. A., Ingebritsen, T. S., Manalan, A., Klee, C. B. & Cohen, P. Discovery of a Ca2+- and calmodulin-dependent protein phosphatase: probable identity with calcineurin (CaM-BP80). FEBS Lett. 137, 80–84 (1982).

    CAS  PubMed  Google Scholar 

  52. Combaluzier, B. & Pieters, J. Chemotaxis and phagocytosis in neutrophils is independent of coronin 1. J. Immunol. 182, 2745–2752 (2009).

    CAS  PubMed  Google Scholar 

  53. Moriceau, S. et al. Coronin-1 is associated with neutrophil survival and is cleaved during apoptosis: potential implication in neutrophils from cystic fibrosis patients. J. Immunol. 182, 7254–7263 (2009).

    CAS  PubMed  Google Scholar 

  54. Yan, M., Di Ciano-Oliveira, C., Grinstein, S. & Trimble, W. S. Coronin function is required for chemotaxis and phagocytosis in human neutrophils. J. Immunol. 178, 5769–5778 (2007).

    CAS  PubMed  Google Scholar 

  55. Westritschnig, K., Bosedasgupta, S., Tchang, V., Siegmund, K. & Pieters, J. Antigen processing and presentation by dendritic cells is independent of coronin 1. Mol. Immunol. 53, 379–386 (2013).

    CAS  PubMed  Google Scholar 

  56. Foger, N. et al. Differential regulation of mast cell degranulation versus cytokine secretion by the actin regulatory proteins coronin1a and coronin1b. J. Exp. Med. 208, 1777–1787 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. Arandjelovic, S. et al. Mast cell function is not altered by coronin-1A deficiency. J. Leukoc. Biol. 88, 737–745 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yoon, H. G. et al. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J. 22, 1336–1346 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Perissi, V., Jepsen, K., Glass, C. K. & Rosenfeld, M. G. Deconstructing repression: evolving models of co-repressor action. Nature Rev. Genet. 11, 109–123 (2010).

    CAS  PubMed  Google Scholar 

  60. Blaschke, F. et al. A nuclear receptor corepressor-dependent pathway mediates suppression of cytokine-induced C-reactive protein gene expression by liver X receptor. Circ. Res. 99, e88–e99 (2006).

    CAS  PubMed  Google Scholar 

  61. Ghisletti, S. et al. Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARγ. Mol. Cell 25, 57–70 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Marshall, T. W., Aloor, H. L. & Bear, J. E. Coronin 2A regulates a subset of focal-adhesion-turnover events through the cofilin pathway. J. Cell Sci. 122, 3061–3069 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mueller, P. et al. Regulation of T cell survival through coronin-1-mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nature Immunol. 9, 424–431 (2008). This article shows a role for coronin 1 in the activation of Ins(1,4,5)P 3 –calcium signalling following TCR stimulation.

    CAS  Google Scholar 

  64. Shiow, L. R. et al. The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency. Nature Immunol. 9, 1307–1315 (2008). This paper identifies a role for coronin 1 mutants in peripheral T cell deficiency in mice and humans.

    CAS  Google Scholar 

  65. Mueller, P., Liu, X. & Pieters, J. Migration and homeostasis of naive T cells depends on coronin 1-mediated prosurvival signals and not on coronin 1-dependent filamentous actin modulation. J. Immunol. 186, 4039–4050 (2011).

    CAS  PubMed  Google Scholar 

  66. Combaluzier, B., Mueller, P., Massner, J., Finke, D. & Pieters, J. Coronin 1 is essential for IgM-mediated Ca2+ mobilization in B cells but dispensable for the generation of immune responses in vivo. J. Immunol. 182, 1954–1961 (2009).

    CAS  PubMed  Google Scholar 

  67. Gallo, E. M., Cante-Barrett, K. & Crabtree, G. R. Lymphocyte calcium signaling from membrane to nucleus. Nature Immunol. 7, 25–32 (2006).

    CAS  Google Scholar 

  68. Manicassamy, S. et al. Requirement of calcineurin-αβ for the survival of naive T cells. J. Immunol. 180, 106–112 (2008).

    CAS  PubMed  Google Scholar 

  69. Kerstan, A., Armbruster, N., Leverkus, M. & Hunig, T. Cyclosporin A abolishes CD28-mediated resistance to CD95-induced apoptosis via superinduction of caspase-3. J. Immunol. 177, 7689–7697 (2006).

    CAS  PubMed  Google Scholar 

  70. Mugnier, B. et al. Coronin-1A links cytoskeleton dynamics to TCRαβ-induced cell signaling. PLoS ONE 3, e3467 (2008).

    PubMed  PubMed Central  Google Scholar 

  71. Ma, A. et al. Bclx regulates the survival of double-positive thymocytes. Proc. Natl Acad. Sci. USA 92, 4763–4767 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506–1510 (1995).

    CAS  PubMed  Google Scholar 

  73. Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    CAS  PubMed  Google Scholar 

  74. Bueno, O. F., Brandt, E. B., Rothenberg, M. E. & Molkentin, J. D. Defective T cell development and function in calcineurin-Aβ-deficient mice. Proc. Natl Acad. Sci. USA 99, 9398–9403 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Yagi, H. et al. Defect of thymocyte emigration in a T cell deficiency strain (CTS) of the mouse. J. Immunol. 157, 3412–3419 (1996).

    CAS  PubMed  Google Scholar 

  76. Polic, B., Kunkel, D., Scheffold, A. & Rajewsky, K. How αβ T cells deal with induced TCRα ablation. Proc. Natl Acad. Sci. USA 98, 8744–8749 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Labrecque, N. et al. How much TCR does a T cell need? Immunity 15, 71–82 (2001).

    CAS  PubMed  Google Scholar 

  78. Takeda, S., Rodewald, H. R., Arakawa, H., Bluethmann, H. & Shimizu, T. MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity 5, 217–228 (1996).

    CAS  PubMed  Google Scholar 

  79. Kirberg, J., Berns, A. & von Boehmer, H. Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J. Exp. Med. 186, 1269–1275 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tanchot, C., Lemonnier, F. A., Perarnau, B., Freitas, A. A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057–2062 (1997).

    CAS  PubMed  Google Scholar 

  81. Swain, S. L. CD4 T-cell memory can persist in the absence of class II. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 407–411 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286, 1377–1381 (1999).

    CAS  PubMed  Google Scholar 

  83. Siegmund, K. et al. Coronin 1-mediated naive T cell survival is essential for the development of autoimmune encephalomyelitis. J. Immunol. 186, 3452–3461 (2011).

    CAS  PubMed  Google Scholar 

  84. Cai, L., Makhov, A. M., Schafer, D. A. & Bear, J. E. Coronin 1B antagonizes cortactin and remodels Arp2/3-containing actin branches in lamellipodia. Cell 134, 828–842 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaminski, S. et al. Coronin 1A is an essential regulator of the TGFβ receptor/SMAD3 signaling pathway in Th17 CD4+ T cells. J. Autoimmun. 37, 198–208 (2011).

    CAS  PubMed  Google Scholar 

  86. Pareek, T. K. et al. Cyclin-dependent kinase 5 activity is required for T cell activation and induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 207, 2507–2519 (2010). References 83, 85 and 86 characterize the role of coronin 1 in the development of EAE.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bettelli, E., Oukka, M. & Kuchroo, V. K. TH17 cells in the circle of immunity and autoimmunity. Nature Immunol. 8, 345–350 (2007).

    CAS  Google Scholar 

  88. Weaver, C. T., Hatton, R. D., Mangan, P. R. & Harrington, L. E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    CAS  PubMed  Google Scholar 

  89. Hogquist, K. A. Immunodeficiency: when T cells are stuck at home. Nature Immunol. 9, 1207–1208 (2008).

    CAS  Google Scholar 

  90. Santiago-Raber, M. L., Haraldsson, M. K., Theofilopoulos, A. N. & Kono, D. H. Characterization of reciprocal Lmb1-4 interval MRL-Faslpr and C57BL/6-Faslpr congenic mice reveals significant effects from Lmb3. J. Immunol. 178, 8195–8202 (2007).

    CAS  PubMed  Google Scholar 

  91. Heil-Chapdelaine, R. A., Tran, N. K. & Cooper, J. A. The role of Saccharomyces cerevisiae coronin in the actin and microtubule cytoskeletons. Curr. Biol. 8, 1281–1284 (1998).

    CAS  PubMed  Google Scholar 

  92. Appleton, B. A., Wu, P. & Wiesmann, C. The crystal structure of murine coronin-1: a regulator of actin cytoskeletal dynamics in lymphocytes. Structure 14, 87–96 (2006).

    CAS  PubMed  Google Scholar 

  93. Goode, B. L. et al. Coronin promotes the rapid assembly and cross-linking of actin filaments and may link the actin and microtubule cytoskeletons in yeast. J. Cell Biol. 144, 83–98 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Shina, M. C. et al. Redundant and unique roles of coronin proteins in Dictyostelium. Cell. Mol. Life Sci. 68, 303–313 (2011).

    CAS  PubMed  Google Scholar 

  95. Robinson, D. N. & Spudich, J. A. Dynacortin, a genetic link between equatorial contractility and global shape control discovered by library complementation of a Dictyostelium discoideum cytokinesis mutant. J. Cell Biol. 150, 823–838 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gerisch, G., Albrecht, R., Heizer, C., Hodgkinson, S. & Maniak, M. Chemoattractant-controlled accumulation of coronin at the leading edge of Dictyostelium cells monitored using a green fluorescent protein–coronin fusion protein. Curr. Biol. 5, 1280–1285 (1995).

    CAS  PubMed  Google Scholar 

  97. Maniak, M., Rauchenberger, R., Albrecht, R., Murphy, J. & Gerisch, G. Coronin involved in phagocytosis: dynamics of particle-induced relocalization visualized by a green fluorescent protein tag. Cell 83, 915–924 (1995).

    CAS  PubMed  Google Scholar 

  98. Humphries, C. L. et al. Direct regulation of Arp2/3 complex activity and function by the actin binding protein coronin. J. Cell Biol. 159, 993–1004 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu, S. L., Needham, K. M., May, J. R. & Nolen, B. J. Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin. J. Biol. Chem. 286, 17039–17046 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Veltman, D. M. & Insall, R. H. WASP family proteins: their evolution and its physiological implications. Mol. Biol. Cell 21, 2880–2893 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Moshous, K. Siegmund, M. Stiess and A. Vinet for critical reading and comments, A. Roulier for illustrations and members of the laboratory for discussions. R.J. is a Max Cloëtta medical research fellow. Work in the laboratory of J.P. is financed by the Canton of Basel and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Pieters.

Ethics declarations

Competing interests

Patents related to this work have been filed (WO2007110385A2 and WO2009112542A1) by the University of Basel, Switzerland.

Related links

FURTHER INFORMATION

Jean Pieters' homepage

PowerPoint slides

Glossary

Actin-related protein 2/3 complex

(ARP2/3 complex). A complex composed of seven proteins, including ARP2, ARP3, and the ARP complex subunit 1 (ARPC1)–ARPC5. The complex has little activity on its own but, when bound to an ARP2/3 nucleation-promoting factor, it is activated to generate new actin filaments from pre-existing filaments.

Calcium signalling

Triggered by phospholipase Cγ1-mediated hydrolysis of phosphatidylinositol-4,5-bisphosphate into inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) and diacylglycerol. Binding of Ins(1,4,5)P3 to its receptor on the endoplasmic reticulum (ER) membrane causes the release of calcium ions from ER stores. This opens calcium-release-activated calcium channels in the plasma membrane, leading to the influx of calcium ions. The increased intracellular calcium ion concentration activates calcineurin, protein kinase C and several other enzymes that are required for gene expression.

Nuclear receptor co-repressor 1 complex

(NCOR1 complex). A large multimeric complex that mediates active transcriptional repression of various inflammatory genes in the basal resting state. Repression mediated by NCOR1 complexes occurs via modification of the chromatin structure of NCOR1by associated histone deacetylases. Some of the best characterized nuclear receptors that are transcriptionally repressed by NCOR1 complexes include the thyroid receptor, the retinoic acid receptor and the glucocorticoid receptor.

Liver X receptors

(LXRs). Oxysterol-activated nuclear receptors that regulate cholesterol homeostasis and that contribute to the repression of pro-inflammatory genes.

Immunological synapse

A large junctional structure that is formed between a T cell and an antigen-presenting cell (APC); it consists of molecules that are required for adhesion and signalling. This structure is important in establishing T cell adhesion and polarity, it is influenced by the cytoskeleton and it transduces highly controlled secretory signals, thereby facilitating the directed release of cytokines or lytic granules towards the APC or the target cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieters, J., Müller, P. & Jayachandran, R. On guard: coronin proteins in innate and adaptive immunity. Nat Rev Immunol 13, 510–518 (2013). https://doi.org/10.1038/nri3465

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3465

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing