Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

NLRC5: a key regulator of MHC class I-dependent immune responses

Abstract

The expression of MHC class I molecules is crucial for the initiation and regulation of adaptive immune responses against pathogens. NOD-, LRR- and CARD-containing 5 (NLRC5) was recently identified as a specific transactivator of MHC class I genes (CITA). NLRC5 and the master regulator for MHC class II genes, class II transactivator (CIITA), interact with similar MHC promoter-bound factors. Here, we provide a broad overview of the molecular mechanisms behind MHC class I transcription and the role of the class I transactivator NLRC5 in MHC class I-dependent immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The MHC class I and MHC class II antigen-presentation pathways.
Figure 2: Cis-regulatory elements in the proximal promoters of MHC class I and MHC class II genes.
Figure 3: MHC class I and MHC class II gene transactivation.

Similar content being viewed by others

References

  1. Steimle, V., Otten, L. A., Zufferey, M. & Mach, B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 75, 135–146 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Chang, C. H., Guerder, S., Hong, S. C., van Ewijk, W. & Flavell, R. A. Mice lacking the MHC class II transactivator (CIITA) show tissue-specific impairment of MHC class II expression. Immunity 4, 167–178 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Ting, J. P. & Trowsdale, J. Genetic control of MHC class II expression. Cell 109, S21–S33 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Gobin, S. J., Peijnenburg, A., Keijsers, V. & van den Elsen, P. J. Site α is crucial for two routes of IFNγ-induced MHC class I transactivation: the ISRE-mediated route and a novel pathway involving CIITA. Immunity 6, 601–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Gobin, S. J. et al. The RFX complex is crucial for the constitutive and CIITA-mediated transactivation of MHC class I and β2-microglobulin genes. Immunity 9, 531–541 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Gobin, S. J., van Zutphen, M., Westerheide, S. D., Boss, J. M. & van den Elsen, P. J. The MHC-specific enhanceosome and its role in MHC class I and β2-microglobulin gene transactivation. J. Immunol. 167, 5175–5184 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Martin, B. K. et al. Induction of MHC class I expression by the MHC class II transactivator CIITA. Immunity 6, 591–600 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Williams, G. S. et al. Mice lacking the transcription factor CIITA — a second look. Int. Immunol. 10, 1957–1967 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Itoh-Lindstrom, Y. et al. Reduced IL-4-, lipopolysaccharide-, and IFN-γ-induced MHC class II expression in mice lacking class II transactivator due to targeted deletion of the GTP-binding domain. J. Immunol. 163, 2425–2431 (1999).

    CAS  PubMed  Google Scholar 

  10. Robbins, G. R. et al. Regulation of class I major histocompatibility complex (MHC) by nucleotide-binding domain, leucine-rich repeat-containing (NLR) proteins. J. Biol. Chem. 287, 24294–24303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meissner, T. B. et al. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc. Natl Acad. Sci. USA 107, 13794–13799 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meissner, T. B. et al. NLRC5 cooperates with the RFX transcription factor complex to induce MHC class I gene expression. J. Immunol. 188, 4951–4958 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Staehli, F. et al. NLRC5 deficiency selectively impairs MHC class I-dependent lymphocyte killing by cytotoxic T cells. J. Immunol. 188, 3820–3828 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Neerincx, A., Rodriguez, G. M., Steimle, V. & Kufer, T. A. NLRC5 controls basal MHC class I gene expression in an MHC enhanceosome-dependent manner. J. Immunol. 188, 4940–4950 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Biswas, A., Meissner, T. B., Kawai, T. & Kobayashi, K. S. Cutting edge: impaired MHC class I expression in mice deficient for Nlrc5/class I transactivator. J. Immunol. 189, 516–520 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Tong, Y. et al. Enhanced TLR-induced NF-κB signaling and type I interferon responses in NLRC5 deficient mice. Cell Res. 22, 822–835 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yao, Y. et al. NLRC5 regulates MHC class I antigen presentation in host defense against intracellular pathogens. Cell Res. 22, 836–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi, N. M., Majumder, P. & Boss, J. M. Regulation of major histocompatibility complex class II genes. Curr. Opin. Immunol. 23, 81–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. van den Elsen, P. J. Expression regulation of major histocompatibility complex class I and class II encoding genes. Front. Immunol. 2, 48 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Reith, W. et al. Congenital immunodeficiency with a regulatory defect in MHC class II gene expression lacks a specific HLA-DR promoter binding protein, RF-X. Cell 53, 897–906 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Steimle, V. et al. A novel DNA-binding regulatory factor is mutated in primary MHC class II deficiency (bare lymphocyte syndrome). Genes Dev. 9, 1021–1032 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Masternak, K. et al. A gene encoding a novel RFX-associated transactivator is mutated in the majority of MHC class II deficiency patients. Nature Genet. 20, 273–277 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Nagarajan, U. M. et al. RFX-B is the gene responsible for the most common cause of the bare lymphocyte syndrome, an MHC class II immunodeficiency. Immunity 10, 153–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Durand, B. et al. RFXAP, a novel subunit of the RFX DNA binding complex is mutated in MHC class II deficiency. EMBO J. 16, 1045–1055 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Masternak, K. et al. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev. 14, 1156–1166 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Moreno, C. S. et al. Purified X2 binding protein (X2BP) cooperatively binds the class II MHC X box region in the presence of purified RFX, the X box factor deficient in the bare lymphocyte syndrome. J. Immunol. 155, 4313–4321 (1995).

    CAS  PubMed  Google Scholar 

  27. Jabrane-Ferrat, N., Nekrep, N., Tosi, G., Esserman, L. & Peterlin, B. M. MHC class II enhanceosome: how is the class II transactivator recruited to DNA-bound activators? Int. Immunol. 15, 467–475 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Clausen, B. E. et al. Residual MHC class II expression on mature dendritic cells and activated B cells in RFX5-deficient mice. Immunity 8, 143–155 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Krawczyk, M. et al. Identification of CIITA regulated genetic module dedicated for antigen presentation. PLoS Genet. 4, e1000058 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. O'Keefe, G. M., Nguyen, V. T. & Benveniste, E. N. Class II transactivator and class II MHC gene expression in microglia: modulation by the cytokines TGF-β, IL-4, IL-13 and IL-10. Eur. J. Immunol. 29, 1275–1285 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Muhlethaler-Mottet, A., Otten, L. A., Steimle, V. & Mach, B. Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. EMBO J. 16, 2851–2860 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuenzel, S. et al. The nucleotide-binding oligomerization domain-like receptor NLRC5 is involved in IFN-dependent antiviral immune responses. J. Immunol. 184, 1990–2000 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Neerincx, A. et al. A role for the human nucleotide-binding domain, leucine-rich repeat-containing family member NLRC5 in antiviral responses. J. Biol. Chem. 285, 26223–26232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Benko, S., Magalhaes, J. G., Philpott, D. J. & Girardin, S. E. NLRC5 limits the activation of inflammatory pathways. J. Immunol. 185, 1681–1691 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Martinon, F. & Tschopp, J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 26, 447–454 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Cressman, D. E., Chin, K. C., Taxman, D. J. & Ting, J. P. A defect in the nuclear translocation of CIITA causes a form of type II bare lymphocyte syndrome. Immunity 10, 163–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Spilianakis, C., Papamatheakis, J. & Kretsovali, A. Acetylation by PCAF enhances CIITA nuclear accumulation and transactivation of major histocompatibility complex class II genes. Mol. Cell. Biol. 20, 8489–8498 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cressman, D. E., O'Connor, W. J., Greer, S. F., Zhu, X. S. & Ting, J. P. Mechanisms of nuclear import and export that control the subcellular localization of class II transactivator. J. Immunol. 167, 3626–3634 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Meissner, T. B., Li, A., Liu, Y. J., Gagnon, E. & Kobayashi, K. S. The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity. Biochem. Biophys. Res. Commun. 418, 786–791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muhlethaler-Mottet, A. et al. The S box of major histocompatibility complex class II promoters is a key determinant for recruitment of the transcriptional co-activator CIITA. J. Biol. Chem. 279, 40529–40535 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, X. S. et al. Transcriptional scaffold: CIITA interacts with NF-Y, RFX, and CREB to cause stereospecific regulation of the class II major histocompatibility complex promoter. Mol. Cell. Biol. 20, 6051–6061 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peijnenburg, A. et al. Discoordinate expression of invariant chain and MHC class II genes in class II transactivator-transfected fibroblasts defective for RFX5. J. Immunol. 163, 794–801 (1999).

    CAS  PubMed  Google Scholar 

  43. Cui, J. et al. NLRC5 negatively regulates the NF-κB and type I interferon signaling pathways. Cell 141, 483–496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Davis, B. K. et al. Cutting edge: NLRC5-dependent ctivation of the inflammasome. J. Immunol. 186, 1333–1337 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Kumar, H. et al. NLRC5 deficiency does not influence cytokine induction by virus and bacteria infections. J. Immunol. 186, 994–1000 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Meissner, T. B., Li, A. & Kobayashi, K. S. NLRC5: a newly discovered MHC class I transactivator (CITA). Microbes Infect. 14, 477–484 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Nickerson, K. et al. Dendritic cell-specific MHC class II transactivator contains a caspase recruitment domain that confers potent transactivation activity. J. Biol. Chem. 276, 19089–19093 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Steimle, V., Siegrist, C. A., Mottet, A., Lisowska-Grospierre, B. & Mach, B. Regulation of MHC class II expression by interferon-γ mediated by the transactivator gene CIITA. Science 265, 106–109 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Chang, C. H., Fontes, J. D., Peterlin, M. & Flavell, R. A. Class II transactivator (CIITA) is sufficient for the inducible expression of major histocompatibility complex class II genes. J. Exp. Med. 180, 1367–1374 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Muhlethaler-Mottet, A., Di Berardino, W., Otten, L. A. & Mach, B. Activation of the MHC class II transactivator CIITA by interferon-γ requires cooperative interaction between Stat1 and USF-1. Immunity 8, 157–166 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Piskurich, J. F., Wang, Y., Linhoff, M. W., White, L. C. & Ting, J. P. Identification of distinct regions of 5′ flanking DNA that mediate constitutive, IFN-γ, STAT1, and TGF-β-regulated expression of the class II transactivator gene. J. Immunol. 160, 233–240 (1998).

    CAS  PubMed  Google Scholar 

  52. Wright, K. L. et al. CIITA stimulation of transcription factor binding to major histocompatibility complex class II and associated promoters in vivo. Proc. Natl Acad. Sci. USA 95, 6267–6272 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bewry, N. N., Bolick, S. C., Wright, K. L. & Harton, J. A. GTP-dependent recruitment of CIITA to the class II major histocompatibility complex promoter. J. Biol. Chem. 282, 26178–26184 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health and the Broad Medical Research Program of the Eli and Edythe L. Broad Foundation (to K.S.K.). K.S.K. is a recipient of the Investigator Award from the Cancer Research Institute and the Claudia Adams Barr Award for Innovative Basic Cancer Research. The work of P.v.d.E. was supported by grants from the Dutch Cancer Society, the Dutch MS Research Foundation and the Netherlands Organization for Research. The authors thank Y.-J. Liu for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koichi S. Kobayashi or Peter J. van den Elsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Koichi S. Kobayashi's homepage

Glossary

BRG1

The ATPase BRG1 is the catalytic subunit of the human SWI/SNF complex that is needed for nucleosome remodelling to provide a more open chromatin structure. This open structure facilitates the interaction of transcription factors with their cognate binding sites in gene regulatory elements to promote transcription.

Enhanceosome

A multiprotein complex containing transcription factors, co-activators and additional proteins that binds to regulatory regions in genes (such as proximal promoters and/or enhancers) to accelerate gene transcription.

Histone acetyltransferases

Enzymes that mediate the addition of an acetyl group to lysine residues that are located at the N-termini of histones. Histone acetylation facilitates transcription.

Histone deacetylases

Enzymes that remove the acetyl groups from lysine residues that are located at the N-termini of histones. In general, decreased levels of histone acetylation are associated with the repression of gene expression. The balance of histone acetylation is maintained by the interplay between histone deacetylases and histone acetyltransferases.

Histone demethylases

Enzymes that remove the methyl groups from modified lysine residues in histones.

Histone methyltransferases

Enzymes that catalyse the transfer of methyl groups to lysine and/or arginine residues in histones. Depending on the residue that is methylated, this histone modification is associated with either gene repression or gene activation.

Inflammasome

A large multiprotein complex composed of an NLR protein, the adaptor protein ASC and caspase 1. Inflammasomes contribute to the secretion of IL-1β and IL-18 by activating caspase 1.

MHC class II deficiency

(Also known as bare lymphocyte syndrome (BLS)). A severe combined immune deficiency disease recognized by the lack of MHC class II molecule expression owing to defects in CIITA (type II BLS) or in RFX components (namely RFXBANK, RFXAP or RFX5; type III BLS).

NOD-like receptor

(NLR; also known as a nucleotide-binding domain, leucine-rich repeat-containing protein). A member of a diverse family of cytosolic pattern-recognition molecules that are involved in the innate immune sensing of pathogens and inflammatory responses.

Nucleotide-binding domain

(NBD; also known as a nucleotide-binding oligomerization domain). A domain that is crucial for the function of NLR proteins. The NBD induces the oligomerization or dimerization of proteins following the binding and hydrolysis of ATP or GTP.

Retinoic acid-inducible gene I signalling

(RIG-I signalling). A signalling pathway that is activated by the interaction of viral RNA with the receptor RIG-I. Through the adaptor protein MAVS (also known as IPS1, VISA and CARDIF), these signals activate the transcription factors IRF3 and IRF7, leading to the production of type I interferons.

Regulatory factor X complex

(RFX complex). RFX drives the assembly of the multiprotein complex on the SXY module of MHC gene promoters. RFX components fail to assemble this complex if genetic defects of RFX genes exist, and this results in rare hereditary immunodeficiency diseases (type III bare lymphocyte syndrome), characterized by the absence of MHC class II expression associated with reduced levels of MHC class I expression.

SUG1

The ATPase SUG1 is a component of the regulatory 19S proteasome cap complex and appears to be important for regulating histone H3 acetylation at MHC proximal promoters. Furthermore, SUG1 is also required for recruiting CBP and CIITA to MHC proximal promoters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, K., van den Elsen, P. NLRC5: a key regulator of MHC class I-dependent immune responses. Nat Rev Immunol 12, 813–820 (2012). https://doi.org/10.1038/nri3339

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3339

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing