Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling

Key Points

  • It is now clear that the functions of inhibitor of apoptosis proteins (IAPs) are not restricted to the inhibition of apoptosis. Some family members, such as X-linked IAP (XIAP), cellular IAP1 (cIAP1) and cIAP2, have emerged as crucial regulators of the host innate immune responses to infection or injury in part by regulating the signalling pathways activated downstream of several pattern-recognition receptors (PRRs).

  • XIAP, cIAP1 and cIAP2 positively regulate induction of pro-inflammatory cytokines downstream of nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and NOD2, Toll-like receptor 2 (TLR2) and TLR4, and retinoic acid-inducible gene I (RIG-I). Importantly, the function of the fly orthologue DIAP2 in the IMD pathway shows that the role of IAPs in the regulation of PRR signalling is phylogenetically and functionally conserved.

  • IAPs regulate PRR signalling through their E3 ubiquitin ligase activities.

  • The roles of cIAP1 and cIAP2 in NOD1, NOD2 and RIG-I signalling pathways seem to be non-redundant, as a single IAP deletion is sufficient to repress innate immune responses downstream of these PRRs.

  • XIAP, cIAP1 and cIAP2 have also been reported to regulate inflammasome activation and interleukin-1β secretion. However, further studies are required to clearly establish whether they positively or negatively regulate these processes.

  • Small-molecule IAP antagonists, termed SMAC mimetics, inhibit cIAP1, cIAP2 and XIAP and therefore represent attractive tools for the treatment of inflammatory diseases mediated by IAP-dependent PRR signalling.

Abstract

An inflammatory response is initiated when innate immune pattern-recognition receptors (PRRs) expressed by different cell types detect constituents of invading microorganisms and endogenous intracellular molecules released by dying cells. The intracellular cascades activated by PRRs induce the expression and maturation of inflammatory molecules that coordinate the removal of the infectious agents and of the infected or damaged cells. In this Review, we discuss the findings implicating members of the inhibitor of apoptosis protein (IAP) family in the ubiquitylation-dependent regulation of PRR signalling. Understanding the role of IAPs in innate immunity may open new therapeutic perspectives for the treatment of PRR-dependent inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ubiquitylation system.
Figure 2: IAPs in the regulation of the innate immune response.
Figure 3: Model of DIAP2-dependent regulation of the IMD pathway.
Figure 4: Model of IAP-dependent regulation of NOD1 and NOD2 immunity.
Figure 5: Model of cIAP1- and cIAP2-dependent regulation of the TLR4–MYD88 pathway.
Figure 6: cIAP1 and cIAP2 in the regulation of RIG-I-mediated antiviral response.
Figure 7: The apparently discrepant roles of IAPs in inflammasome regulation.

Similar content being viewed by others

References

  1. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  2. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    CAS  PubMed  Google Scholar 

  3. Kersse, K., Bertrand, M. J., Lamkanfi, M. & Vandenabeele, P. NOD-like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev. 22, 257–276 (2011).

    CAS  PubMed  Google Scholar 

  4. Jiang, X. & Chen, Z. J. The role of ubiquitylation in immune defence and pathogen evasion. Nature Rev. Immunol. 12, 35–48 (2012).

    CAS  Google Scholar 

  5. Chen, G., Shaw, M. H., Kim, Y. G. & Nunez, G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu. Rev. Pathol. 4, 365–398 (2009).

    CAS  PubMed  Google Scholar 

  6. Sun, S. C. Deubiquitylation and regulation of the immune response. Nature Rev. Immunol. 8, 501–511 (2008).

    CAS  Google Scholar 

  7. Komander, D. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 37, 937–953 (2009).

    CAS  PubMed  Google Scholar 

  8. Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628–1632 (2007).

    CAS  PubMed  Google Scholar 

  9. Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304 (1997).

    CAS  PubMed  Google Scholar 

  10. Srinivasula, S. M. & Ashwell, J. D. IAPs: what's in a name? Mol. Cell 30, 123–135 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gyrd-Hansen, M. & Meier, P. IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nature Rev. Cancer 10, 561–574 (2010).

    CAS  Google Scholar 

  12. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).

    CAS  PubMed  Google Scholar 

  13. Vanlangenakker, N. et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ. 18, 656–665 (2011).

    CAS  PubMed  Google Scholar 

  14. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    CAS  PubMed  Google Scholar 

  15. Geserick, P. et al. Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J. Cell Biol. 187, 1037–1054 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tenev, T. et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432–448 (2011).

    CAS  PubMed  Google Scholar 

  17. Feoktistova, M. et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449–463 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131, 682–693 (2007).

    CAS  PubMed  Google Scholar 

  19. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 131, 669–681 (2007).

    CAS  PubMed  Google Scholar 

  20. Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    CAS  PubMed  Google Scholar 

  21. Varfolomeev, E. et al. Cellular inhibitors of apoptosis are global regulators of NF-κB and MAPK activation by members of the TNF family of receptors. Sci. Signal. 5, ra22 (2012).

    PubMed  Google Scholar 

  22. Varfolomeev, E. et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. J. Biol. Chem. 283, 24295–24299 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahoney, D. J. et al. Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation. Proc. Natl Acad. Sci. USA 105, 11778–11783 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Moulin, M. et al. IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO J. 31, 1679–1691 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bertrand, M. J. et al. Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 30, 789–801 (2009). This study provides the first evidence for non-redundant ubiquitylation-dependent functions of cIAP1 and cIAP2 in NOD1 and NOD2 signalling by functioning as K63 ubiquitin ligases for RIPK2.

    CAS  PubMed  Google Scholar 

  26. Damgaard, R. B. et al. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol. Cell 46, 746–758 (2012). This paper shows that XIAP positively regulates NOD2-mediated immunity by promoting RIPK2 ubiquitylation and by inducing recruitment of LUBAC to the receptor-signalling complex.

    CAS  PubMed  Google Scholar 

  27. Krieg, A. et al. XIAP mediates NOD signaling via interaction with RIP2. Proc. Natl Acad. Sci. USA 106, 14524–14529 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tseng, P. H. et al. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nature Immunol. 11, 70–75 (2010). This study demonstrates that cIAP1 and cIAP2-induced proteosomal degradation of TRAF3 is required for TLR4-mediated pro-inflammatory cytokine induction by facilitating translocation of the MYD88 complex to the cytosol where it activates MAPK signalling pathways.

    CAS  Google Scholar 

  29. Mao, A. P. et al. Virus-triggered ubiquitination of TRAF3/6 by cIAP1/2 is essential for induction of interferon-β (IFN-β) and cellular antiviral response. J. Biol. Chem. 285, 9470–9476 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Labbé, K., McIntire, C. R., Doiron, K., Leblanc, P. M. & Saleh, M. Cellular inhibitors of apoptosis proteins cIAP1 and cIAP2 are required for efficient caspase-1 activation by the inflammasome. Immunity 35, 897–907 (2011).

    PubMed  Google Scholar 

  31. Vince, J. E. et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36, 215–227 (2012). References 30 and 31 provide contrasting evidence for a role of XIAP, cIAP1 and cIAP2 in inflammasome activation and pro-IL-1 β processing.

    CAS  PubMed  Google Scholar 

  32. Silke, J. The regulation of TNF signalling: what a tangled web we weave. Curr. Opin. Immunol. 23, 620–626 (2011).

    CAS  PubMed  Google Scholar 

  33. Vucic, D., Dixit, V. M. & Wertz, I. E. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nature Rev. Mol. Cell Biol. 12, 439–452 (2011).

    CAS  Google Scholar 

  34. Crook, N. E., Clem, R. J. & Miller, L. K. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 67, 2168–2174 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Eckelman, B. P. & Salvesen, G. S. The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J. Biol. Chem. 281, 3254–3260 (2006).

    CAS  PubMed  Google Scholar 

  36. Eckelman, B. P., Salvesen, G. S. & Scott, F. L. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 7, 988–994 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi, Y. E. et al. The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and -7 via unique mechanisms at distinct steps in their processing. J. Biol. Chem. 284, 12772–12782 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Blankenship, J. W. et al. Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2. Biochem. J. 417, 149–160 (2009).

    CAS  PubMed  Google Scholar 

  39. Gyrd-Hansen, M. et al. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-κB as well as cell survival and oncogenesis. Nature Cell Biol. 10, 1309–1317 (2008).

    CAS  PubMed  Google Scholar 

  40. Lopez, J. et al. CARD-mediated autoinhibition of cIAP1's E3 ligase activity suppresses cell proliferation and migration. Mol. Cell 42, 569–583 (2011).

    CAS  PubMed  Google Scholar 

  41. Lemaitre, B. & Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743 (2007).

    CAS  PubMed  Google Scholar 

  42. Ferrandon, D., Imler, J. L., Hetru, C. & Hoffmann, J. A. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nature Rev. Immunol. 7, 862–874 (2007).

    CAS  Google Scholar 

  43. Valanne, S., Kleino, A., Myllymaki, H., Vuoristo, J. & Ramet, M. Iap2 is required for a sustained response in the Drosophila Imd pathway. Dev. Comp. Immunol. 31, 991–1001 (2007).

    CAS  PubMed  Google Scholar 

  44. Huh, J. R. et al. The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers. J. Biol. Chem. 282, 2056–2068 (2007).

    CAS  PubMed  Google Scholar 

  45. Leulier, F., Lhocine, N., Lemaitre, B. & Meier, P. The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection. Mol. Cell. Biol. 26, 7821–7831 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kleino, A. et al. Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO J. 24, 3423–3434 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gesellchen, V., Kuttenkeuler, D., Steckel, M., Pelte, N. & Boutros, M. An RNA interference screen identifies Inhibitor of Apoptosis Protein 2 as a regulator of innate immune signalling in Drosophila. EMBO Rep. 6, 979–984 (2005). References 45–47 provide the first in vitro and in vivo evidence for a role of an IAP (DIAP2) in the regulation of innate immune PRR (PGRP-LC) signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Paquette, N. et al. Caspase-mediated cleavage, IAP binding, and ubiquitination: linking three mechanisms crucial for Drosophila NF-κB signaling. Mol. Cell 37, 172–182 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Meinander, A. et al. Ubiquitylation of the initiator caspase DREDD is required for innate immune signalling. EMBO J. 31, 2770–2783 (2012). References 48 and 49 provided the molecular mechanism accounting for the role of DIAP2 in the IMD pathway, which involves K63-linked ubiquitylation of IMD (reference 48) and DREDD (reference 49). IMD and DREDD are both required for PGRP-LC-induced innate immune responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Choe, K. M., Lee, H. & Anderson, K. V. Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc. Natl Acad. Sci. USA 102, 1122–1126 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell 1, 503–514 (2001).

    CAS  PubMed  Google Scholar 

  52. Naitza, S. et al. The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Immunity 17, 575–581 (2002).

    CAS  PubMed  Google Scholar 

  53. Leulier, F., Vidal, S., Saigo, K., Ueda, R. & Lemaitre, B. Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Curr. Biol. 12, 996–1000 (2002).

    CAS  PubMed  Google Scholar 

  54. Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep. 1, 353–358 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu, G. et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008–1012 (2000).

    CAS  PubMed  Google Scholar 

  56. Zhou, R. et al. The role of ubiquitination in Drosophila innate immunity. J. Biol. Chem. 280, 34048–34055 (2005).

    CAS  PubMed  Google Scholar 

  57. Zhuang, Z. H. et al. Drosophila TAB2 is required for the immune activation of JNK and NF-κB. Cell Signal 18, 964–970 (2006).

    CAS  PubMed  Google Scholar 

  58. Silverman, N. et al. Immune activation of NF-κB and JNK requires Drosophila TAK1. J. Biol. Chem. 278, 48928–48934 (2003).

    CAS  PubMed  Google Scholar 

  59. Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev. 15, 1900–1912 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Silverman, N. et al. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev. 14, 2461–2471 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rutschmann, S. et al. Role of Drosophila IKKγ in a toll-independent antibacterial immune response. Nature Immunol. 1, 342–347 (2000).

    CAS  Google Scholar 

  62. Lu, Y., Wu, L. P. & Anderson, K. V. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev. 15, 104–110 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu, C. J., Conze, D. B., Li, T. Srinivasula, S. M. & Ashwell, J. D. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation [corrected]. Nature Cell Biol. 8, 398–406 (2006).

    CAS  PubMed  Google Scholar 

  64. Kanayama, A. et al. Tab2 And Tab3 Activate The Nf-κB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535–548 (2004).

    CAS  PubMed  Google Scholar 

  65. Geuking, P., Narasimamurthy, R., Lemaitre, B., Basler, K. & Leulier, F. A non-redundant role for Drosophila Mkk4 and hemipterous/Mkk7 in TAK1-mediated activation of JNK. PLoS ONE 4, e7709 (2009).

    PubMed  PubMed Central  Google Scholar 

  66. Erturk-Hasdemir, D. et al. Two roles for the Drosophila IKK complex in the activation of Relish and the induction of antimicrobial peptide genes. Proc. Natl Acad. Sci. USA 106, 9779–9784 (2009).

    PubMed  PubMed Central  Google Scholar 

  67. Stoven, S., Ando, I., Kadalayil, L., Engstrom, Y. & Hultmark, D. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 1, 347–352 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stoven, S. et al. Caspase-mediated processing of the Drosophila NF-κB factor Relish. Proc. Natl Acad. Sci. USA 100, 5991–5996 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Thevenon, D. et al. The Drosophila ubiquitin-specific protease dUSP36/Scny targets IMD to prevent constitutive immune signaling. Cell Host Microbe 6, 309–320 (2009).

    CAS  PubMed  Google Scholar 

  70. Tsichritzis, T. et al. A Drosophila ortholog of the human cylindromatosis tumor suppressor gene regulates triglyceride content and antibacterial defense. Development 134, 2605–2614 (2007).

    CAS  PubMed  Google Scholar 

  71. Bauler, L. D., Duckett, C. S. & O'Riordan, M. X. XIAP regulates cytosol-specific innate immunity to Listeria infection. PLoS Pathog. 4, e1000142 (2008).

    PubMed  PubMed Central  Google Scholar 

  72. Conze, D. B. et al. Posttranscriptional downregulation of c-IAP2 by the ubiquitin protein ligase c-IAP1 in vivo. Mol. Cell. Biol. 25, 3348–3356 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Conte, D. et al. Inhibitor of apoptosis protein cIAP2 is essential for lipopolysaccharide-induced macrophage survival. Mol. Cell. Biol. 26, 699–708 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Harlin, H., Reffey, S. B., Duckett, C. S., Lindsten, T. & Thompson, C. B. Characterization of XIAP-deficient mice. Mol. Cell. Biol. 21, 3604–3608 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kobayashi, K. et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416, 194–199 (2002).

    CAS  PubMed  Google Scholar 

  76. Chin, A. I. et al. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature 416, 190–194 (2002).

    CAS  PubMed  Google Scholar 

  77. Inohara, N. et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-κB. J. Biol. Chem. 274, 14560–14567 (1999).

    CAS  PubMed  Google Scholar 

  78. Hasegawa, M. et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-κB activation. EMBO J. 27, 373–383 (2008).

    CAS  PubMed  Google Scholar 

  79. Hitotsumatsu, O. et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28, 381–390 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang, Y. et al. NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2. J. Biol. Chem. 282, 36223–36229 (2007).

    CAS  PubMed  Google Scholar 

  81. Bertrand, M. J. et al. cIAP1/2 are direct E3 ligases conjugating diverse types of ubiquitin chains to receptor interacting proteins kinases 1 to 4 (RIP1-4). PLoS ONE 6, e22356 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim, J. Y., Omori, E., Matsumoto, K., Nunez, G. & Ninomiya-Tsuji, J. TAK1 is a central mediator of NOD2 signaling in epidermal cells. J. Biol. Chem. 283, 137–144 (2008).

    CAS  PubMed  Google Scholar 

  83. Hsu, Y. M. et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nature Immunol. 8, 198–205 (2007).

    CAS  Google Scholar 

  84. Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877–4887 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    CAS  PubMed  Google Scholar 

  86. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biol. 11, 123–132 (2009).

    CAS  PubMed  Google Scholar 

  87. Schmukle, A. C. & Walczak, H. No one can whistle a symphony alone — how different ubiquitin linkages cooperate to orchestrate NF-κB activity. J. Cell Sci. 125, 549–559 (2012).

    CAS  PubMed  Google Scholar 

  88. Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009).

    CAS  PubMed  Google Scholar 

  89. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    CAS  PubMed  Google Scholar 

  90. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunol. 11, 373–384 (2010).

    CAS  Google Scholar 

  91. Kenneth, N. S. et al. An inactivating caspase 11 passenger mutation originating from the 129 murine strain in mice targeted for c-IAP1. Biochem. J. 443, 355–359 (2012).

    CAS  PubMed  Google Scholar 

  92. Matsuzawa, A. et al. Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex. Science 321, 663–668 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Weber, A. et al. Proapoptotic signalling through Toll-like receptor-3 involves TRIF-dependent activation of caspase-8 and is under the control of inhibitor of apoptosis proteins in melanoma cells. Cell Death Differ. 17, 942–951 (2010).

    CAS  PubMed  Google Scholar 

  94. Estornes, Y. et al. dsRNA induces apoptosis through an atypical death complex associating TLR3 to caspase-8. Cell Death Differ. 19, 1482–1494 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).

    PubMed  Google Scholar 

  96. Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006).

    CAS  PubMed  Google Scholar 

  97. Saha, S. K. et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J. 25, 3257–3263 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Fitzgerald, K. A. et al. IKKɛ and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunol. 4, 491–496 (2003).

    CAS  Google Scholar 

  99. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    CAS  PubMed  Google Scholar 

  100. Yoshida, R. et al. TRAF6 and MEKK1 play a pivotal role in the RIG-I-like helicase antiviral pathway. J. Biol. Chem. 283, 36211–36220 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rajput, A. et al. RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein. Immunity 34, 340–351 (2011).

    CAS  PubMed  Google Scholar 

  102. Gardam, S. et al. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 117, 4041–4051 (2011).

    CAS  PubMed  Google Scholar 

  103. Maelfait, J. et al. Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by caspase-8. J. Exp. Med. 205, 1967–1973 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gringhuis, S. I. et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nature Immunol. 13, 246–254 (2012).

    CAS  Google Scholar 

  105. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    CAS  PubMed  Google Scholar 

  106. Jin, Z. et al. Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137, 721–735 (2009).

    CAS  PubMed  Google Scholar 

  107. Wang, S. et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509 (1998).

    CAS  PubMed  Google Scholar 

  108. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    CAS  PubMed  Google Scholar 

  109. Petersen, S. L. et al. Autocrine TNFα signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12, 445–456 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.J.M.B. has a tenure track position in the Multidisciplinary Research Program of Ghent University (GROUP-ID). Research in his group is supported by grants from The Research Foundation – Flanders (FWO G.0172.12N), the Interuniversity Attraction Poles programme (IAP 7), the Methusalem programme of the Flemish government (BOF09/01M00709) and the Flanders Institute for Biotechnology (VIB). P.V. is full professor at Ghent University and senior principal investigator at the VIB. Research in the Vandenabeele group is supported by European grants (Euregional PACT II), Belgian grants (IAP 7), Flemish grants (FWO G.0875.11, FWO G.0973.11 and FWO G.0A45.12N), a Ghent University grant (GROUP-ID) and grants from the VIB. P.V. also holds a Methusalem grant (BOF09/01M00709).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Vandenabeele or Mathieu J. M. Bertrand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Authors' homepage 1

Authors' homepage 2

Glossary

OMI

(Also known as HTRA2). An endogenous inhibitor of apoptosis protein (IAP) antagonist released from the intermembrane space of the mitochondria during apoptosis. It binds to X-linked IAP (XIAP), cellular IAP1 (cIAP1) and cIAP2 via an N-terminal tetrapeptide IAP-binding motif (IBM) and induces the proteolytic inactivation of IAPs, as well as of receptor interacting protein kinase 1 (RIPK1), leading to increased caspase activation.

SMAC

(Second mitochondria-derived activator of caspase; also known as DIABLO). An endogenous inhibitor of apoptosis protein (IAP) antagonist released from the intermembrane mitochondrial space following a wide range of death stimuli. Its cleavage releases an N-terminal tetrapeptide IAP-binding motif (IBM), allowing it to bind and inhibit X-linked IAP (XIAP), cellular IAP1 (cIAP1) and cIAP2, causing an increase in the activation of caspases.

Receptor interacting protein kinase 1

(RIPK1). A serine/threonine protein kinase from the RIPK family that is involved in a variety of cellular pathways downstream of tumour necrosis factor receptor family members and pattern-recognition receptors. RIPK1 has kinase-independent functions in the nuclear factor-κB and mitogen-activated protein kinase pathways, but has kinase-dependent functions in apoptotic and necroptotic cell death pathways.

SMAC mimetic

(Second mitochondria-derived activator of caspase mimetic). A synthetic inhibitor of apoptosis protein (IAP) antagonist that mimics the structural characteristics of the tetrapeptide IAP-binding motif (IBM) of SMAC, which is revealed following proteolytic cleavage of SMAC. These compounds inhibit X-linked IAP (XIAP) function but also induce proteasomal degradation of cellular IAP1 (cIAP1) and cIAP2.

TRAF proteins

A family of conserved proteins that link receptors of the tumour necrosis factor, interleukin-1 and Toll-like receptor families to downstream signalling pathways, such as activation of the transcription factors nuclear factor-κB (via IκB kinases) and activator protein 1 (via mitogen-activated protein kinases).

Linear ubiquitylation

The conjugation of a linear ubiquitin chain — generated by attachment of the C-terminal glycine residue of one ubiquitin to the N-terminal methionine residue of another ubiquitin — to a lysine residue of a specific substrate. Linear ubiquitin chain assembly complex (LUBAC) is an E3 complex that specifically generates linear ubiquitin chains.

Necroptosis

A regulated form of necrosis that depends on receptor interacting protein kinase 1 (RIPK1) and RIPK3 kinase activity. It is characterized by rounding of the cells (oncosis), plasma membrane rupture and cytoplasmic leakage, and by the absence of apoptotic markers such as caspase activation, membrane blebbing, nuclear shrinkage and chromatin condensation (pyknosis), nuclear fragmentation (karyorrhexis) and internucleosomal DNA cleavage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenabeele, P., Bertrand, M. The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling. Nat Rev Immunol 12, 833–844 (2012). https://doi.org/10.1038/nri3325

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing