The impact of probiotics and prebiotics on the immune system

Abstract

Probiotics and prebiotics are increasingly being added to foodstuffs with claims of health benefits. Probiotics are live microorganisms that are thought to have beneficial effects on the host, whereas prebiotics are ingredients that stimulate the growth and/or function of beneficial intestinal microorganisms. But can these products directly modulate immune function and influence inflammatory diseases? Here, Nature Reviews Immunology asks four experts to discuss these issues and provide their thoughts on the future application of probiotics as a disease therapy.

References

  1. 1

    Garrett, W. S., Gordon, J. I. & Glimcher, L. H. Homeostasis and inflammation in the intestine. Cell 140, 859–870 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Zoetendal, E. G. et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 6, 1415–1426 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Reid, G. et al. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nature Rev. Microbiol. 9, 27–38 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Bron, P. A., van Baarlen, P. & Kleerebezem, M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nature Rev. Microbiol. 10, 66–78 (2011).

    Article  Google Scholar 

  5. 5

    van Baarlen, P. et al. Differential NF-κB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc. Natl Acad. Sci. USA 106, 2371–2376 (2009).

    CAS  Article  Google Scholar 

  6. 6

    van Baarlen, P. et al. Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4562–4569 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Foligne, B. et al. Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J. Gastroenterol. 13, 236–243 (2007).

    Article  Google Scholar 

  8. 8

    Tsilingiri, K. et al. Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model. Gut 61, 1007–1015 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Fanning, S. et al. Bifidobacterial surface-exopolysaccharide facilitates commensal–host interaction through immune modulation and pathogen protection. Proc. Natl Acad. Sci. USA 109, 2108–2113 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Yan, F. et al. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. J. Clin. Invest. 121, 2242–2253 (2011).

    CAS  Article  Google Scholar 

  11. 11

    von Schillde, M. A. et al. Lactocepin secreted by lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe 11, 387–396 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Segawa, S. et al. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin–p38 MAPK pathway. PLoS ONE 6, e23278 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Link-Amster, H., Rochat, F., Saudan, K. Y., Mignot, O. & Aeschlimann, J. M. Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol. Med. Microbiol. 10, 55–63 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Christensen, H. R., Frøkiaer, H. & Pestka, J. J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 168, 171–178 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Konstantinov, S. R. et al. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc. Natl Acad. Sci. USA 105, 19474–19479 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Grangette, C. et al. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc. Natl Acad. Sci. USA 102, 10321–10326 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Mohamadzadeh, M. et al. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4623–4630 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Macho Fernandez, E. et al. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60, 1050–1059 (2011).

    Article  Google Scholar 

  20. 20

    Lebeer, S., Claes, I. J., Verhoeven, T. L., Vanderleyden, J. & De Keersmaecker, S. C. Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb. Biotechnol. 4, 368–374 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Lebeer, S. et al. The major secreted protein Msp1/p75 is O glycosylated in Lactobacillus rhamnosus GG. Microb. Cell Fact. 11, 15 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Lebeer, S. et al. Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl. Environ. Microbiol. 78, 185–193 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Lebeer, S., Claes, I. J. & Vanderleyden, J. Anti-inflammatory potential of probiotics: lipoteichoic acid makes a difference. Trends Microbiol. 20, 5–10 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. J. Host interactions of probiotic bacterial surface molecules: comparisons with commensals and pathogens. Nature Rev. Microbiol. 8, 171–184 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Mazmanian, S. K. & Kasper, D. L. The love–hate relationship between bacterial polysaccharides and the host immune system. Nature Rev. Immunol. 6, 849–858 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Campeotto, F. et al. A fermented formula in pre-term infants: clinical tolerance, gut microbiota, down-regulation of faecal calprotectin and up-regulation of faecal secretory IgA. Br. J. Nutr. 22, 1–10 (2011).

    Google Scholar 

  27. 27

    Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011).

    CAS  Google Scholar 

  28. 28

    Kopp, M. V. et al. Lactobacillus GG has in vitro effects on enhanced IL-10 and IFN-γ release of mononuclear cells but no in vivo effects in supplemented mothers and their neonates. Clin. Exp. Allergy 38, 602–610 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Kopp, M. V. et al. A randomized, double-blind, placebo-controlled trial of probiotics for primary prevention: no clinical or immunological effects of Lactobacillus GG supplementation. Pediatrics 121, e850–e856 (2008).

    Article  Google Scholar 

  30. 30

    Konieczna, P. et al. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut 61, 354–366 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Mileti, E., Matteoli, G., Iliev, I. D., Rescigno, M. Comparison of the immunomodulatory properties of three probiotic strains of lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS ONE 4, e7056 (2009).

    Article  Google Scholar 

  34. 34

    Kuitunen, M. et al. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J. Allergy Clin. Immunol. 123, 335–341 (2009).

    Article  Google Scholar 

  35. 35

    La Thangue, N. B. & Kerr, D. J. Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nature Rev. Clin. Oncol. 8, 587–596 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Naidoo, K., Gordon, M., Fagbemi, A. O., Thomas, A. G. & Akobeng, A. K. Probiotics for maintenance of remission in ulcerative colitis. Cochrane Database Syst. Rev. 2011, CD007443 (2011).

  37. 37

    Butterworth, A. D., Thomas, A. G. & Akobeng, A. K. Probiotics for induction of remission in Crohn's disease. Cochrane Database Syst. Rev. 2008, CD006634 (2008).

  38. 38

    Mihatsch, W. A. et al. Critical systematic review of the level of evidence for routine use of probiotics for reduction of mortality and prevention of necrotizing enterocolitis and sepsis in preterm infants. Clin. Nutr. 31, 6–15 (2012).

    Article  Google Scholar 

  39. 39

    Kalliomaki, M. et al. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357, 1076–1079 (2001).

    CAS  Article  Google Scholar 

  40. 40

    Taylor, A. L., Dunstan, J. A. & Prescott, S. L. Probiotic supplementation for the first 6 months of life fails to reduce the risk of atopic dermatitis and increases the risk of allergen sensitization in high-risk children: a randomized controlled trial. J. Allergy Clin. Immunol. 119, 184–191 (2007).

    Article  Google Scholar 

  41. 41

    Abrahamsson, T. R. et al. Probiotics in prevention of IgE-associated eczema: a double-blind, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 119, 1174–1180 (2007).

    CAS  Article  Google Scholar 

  42. 42

    Wickens, K. et al. A differential effect of 2 probiotics in the prevention of eczema and atopy: a double-blind, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 122, 788–794 (2008).

    Article  Google Scholar 

  43. 43

    Hurree, A. et al. Impact of maternal atopy and probiotic supplementation during pregnancy on infant sensitizations: a double-blind, placebo controlled study. Clin. Exp. Allergy 38, 1342–1348 (2008).

    Article  Google Scholar 

  44. 44

    Dotterud, C. K., Storro, O., Johnsen, R. & Oien, T. Probiotics in pregnant women to prevent allergic disease: a randomized, double-blind trial. Br. J. Dermatol. 163, 616–623 (2010).

    CAS  Article  Google Scholar 

  45. 45

    Boyle, R. J. et al. Lactobacillus GG treatment during pregnancy for the prevention of eczema: a randomized controlled trial. Allergy 66, 509–516 (2011).

    CAS  Article  Google Scholar 

  46. 46

    Niers, L. et al. The effects of selected probiotic strains on the development of eczema (the PandA study). Allergy 64, 1349–1358 (2009).

    CAS  Article  Google Scholar 

  47. 47

    Soh, S. E. et al. Probiotic supplementation in the first 6 months of life in at risk Asian infants – effects on eczema and atopic sensitization at the age of 1 year. Clin. Exp. Allergy 39, 571–578 (2009).

    CAS  Article  Google Scholar 

  48. 48

    West, C. E., Hammarstrom, M. L. & Hernell, O. Probiotics during weaning reduce the incidence of eczema. Pediatr. Allergy Immunol. 20, 430–437 (2009).

    Article  Google Scholar 

  49. 49

    Kim, J. Y. et al. Effect of probiotic mix (Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus acidophilus) in the primary prevention of eczema: a double-blind, randomized, placebo-controlled trial. Pediatr. Allergy Immunol. 21, e386–e393 (2009).

    Article  Google Scholar 

  50. 50

    Gruber, C. et al. Reduced occurrence of early atopic dermatitis because of immunoactive prebiotics among low atopy risk infants. J. Allergy Clin. Immunol. 126, 791–797 (2010).

    Article  Google Scholar 

  51. 51

    Moro, G. et al. A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch. Dis. Child. 91, 814–819 (2006).

    CAS  Article  Google Scholar 

  52. 52

    Gounaris, E. et al. T regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res. 69, 5490–5497 (2009).

    CAS  Article  Google Scholar 

  53. 53

    Blatner, N. R. et al. In colorectal cancer mast cells contribute to systemic regulatory T cell dysfunction. Proc. Natl Acad. Sci. USA 107, 6430–6435 (2010).

    CAS  Article  Google Scholar 

  54. 54

    Khazaie, K. et al. The significant role of mast cells in cancer. Cancer Metastasis Rev. 30, 45–60 (2011).

    CAS  Article  Google Scholar 

  55. 55

    Claes, I. J. J., De Keersmaecker, S. C. J., Vanderleyden, J. & Lebeer, S. Lessons from probiotic–host interaction studies in murine models of experimental colitis. Mol. Nutr. Food Res. 55, 1441–1453 (2011).

    CAS  Article  Google Scholar 

  56. 56

    Sartor, R. B. Efficacy of probiotics for the management of inflammatory bowel disease. Gastroenterol. Hepatol. 7, 606–608 (2011).

    Google Scholar 

  57. 57

    Claes, I. J. et al. Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clin. Exp. Immunol. 162, 306–314 (2010).

    CAS  Article  Google Scholar 

  58. 58

    Khazaie, K. et al. Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc. Natl Acad. Sci. USA 109, 10462–10467 (2012).

    CAS  Article  Google Scholar 

  59. 59

    Ritchie, M. L. & Romanuk, T. N. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS ONE 7, e34938 (2012).

    CAS  Article  Google Scholar 

  60. 60

    Ligaarden, S. C., Axelsson, L., Naterstad, K., Lydersen, S. & Farup, P. G. A candidate probiotic with unfavourable effects in subjects with irritable bowel syndrome: a randomised controlled trial. BMC Gastroenterol. 10, 16 (2010).

    Article  Google Scholar 

  61. 61

    Pelucchi, C. et al. Probiotics supplementation during pregnancy or infancy for the prevention of atopic dermatitis: a meta-analysis. Epidemiology 23, 402–414 (2012).

    Article  Google Scholar 

  62. 62

    Arroyo, R. et al. Treatment of infectious mastitis during lactation: antibiotics versus oral administration of lactobacilli isolated from breast milk. Clin. Infect. Dis. 50, 1551–1558 (2010).

    CAS  Article  Google Scholar 

  63. 63

    Pineda Mde, L. et al. A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis. Med. Sci. Monit. 17, CR347–CR354 (2011).

    PubMed  Google Scholar 

  64. 64

    Lewis, S., Burmeister, S. & Brazier, J. Effect of the prebiotic oligofructose on relapse of Clostridium difficile-associated diarrhea: a randomized, controlled study. Clin. Gastroenterol. Hepatol. 3, 442–448 (2005).

    CAS  Article  Google Scholar 

  65. 65

    Depeint, F., Tzortzis, G., Vulevic, J., I'anson, K. & Gibson, G. R. Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. Am. J. Clin. Nutr. 87, 785–791 (2008).

    CAS  Article  Google Scholar 

  66. 66

    Silk, D. B., Davis, A., Vulevic, J., Tzortzis, G. & Gibson, G. R. Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment. Pharmacol. Ther. 29, 508–518 (2009).

    CAS  Article  Google Scholar 

  67. 67

    Besselink, M. G. et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet 371, 651–659 (2008).

    Article  Google Scholar 

  68. 68

    DuPont, A. W. & DuPont, H. L. The intestinal microbiota and chronic disorders of the gut. Nature Rev. Gastroenterol. Hepatol. 8, 523–531 (2011).

    Article  Google Scholar 

  69. 69

    Gareau, M. G., Sherman, P. M. & Walker, W. A. Probiotics and the gut microbiota in intestinal health and disease. Nature Rev. Gastroenterol. Hepatol. 7, 503–514 (2010).

    Article  Google Scholar 

  70. 70

    Guigoz, Y., Doré, J. & Schiffrin, E. J. The inflammatory status of old age can be nurtured from the intestinal environment. Curr. Opin. Clin. Nutr. Metab. Care 11, 13–20 (2008).

    Article  Google Scholar 

  71. 71

    Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    CAS  Article  Google Scholar 

  72. 72

    Kleerebezem, M. et al. The extracellular biology of the lactobacilli. FEMS Microbiol. Rev. 34, 199–230 (2010).

    CAS  Article  Google Scholar 

  73. 73

    Khazaie, K. et al. Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc. Natl Acad. Sci. USA 109, 10462–10467 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

M.R. is supported by the European Research Council, the European Commission (FP7: IBDase, MetaHIT), the Italian Ministry of Health, the Association for International Cancer Research and the Italian Association for Cancer Research.

Author information

Affiliations

Authors

Ethics declarations

Competing interests

T.R.K. has received grants from Danisco USA & DuPont Nutrition & Health, and Dairy Research, Inc., for research on the functional genomics of probiotic lactobacilli.

M.K. declares no competing financial interests.

M.V.K. has received research funds for clinical trials from Infectopharm (Heppenheim, Germany) and Novartis Pharma (Nuernberg, Germany). M.V.K. has consultant arrangements with Infectopharm (Heppenheim, Germany), Novartis Pharma (Nuernberg, Germany), Nutricia (Erlangen, Germany) and Bencard (Muenchen, Germany).

M.R. declares no competing financial interests.

Related links

Glossary

Epidermal growth factor receptor

(EGFR). A cell-surface receptor that binds a family of growth factors that includes EGF and transforming growth factor-β (TGFβ).

Inflammatory bowel disease

(IBD). A group of conditions, of unknown aetiology, in which the intestinal mucosa is chronically inflamed. Includes Crohn's disease and ulcerative colitis.

Lipoteichoic acid

A major constituent of the cell wall of Gram-positive bacteria. The structure of lipoteichoic acid varies between the different species of Gram-positive bacteria and may contain long chains of ribitol or glycerol phosphate. It is anchored to the cell membrane via a glyceride and can stimulate specific immune responses.

Necrotizing enterocolitis

(NEC). A gastrointestinal disease predominantly affecting premature infants with low birth-weight. NEC involves infection and inflammation that causes destruction of the intestine. Although the pathophysiology of NEC is not yet completely defined, increasing evidence indicates that immaturity of intestinal innate immune function in the premature gut is a major factor.

Prebiotics

Non-digestible food ingredients that stimulate the growth and/or activity of bacteria in the digestive system.

Probiotics

Live microorganisms that when administered in adequate amounts confer a health benefit on the host.

The molecular bandwidth of health

The differences in the 'stable' baseline molecular makeup of mucosal tissue in the intestine of healthy human individuals.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Klaenhammer, T., Kleerebezem, M., Kopp, M. et al. The impact of probiotics and prebiotics on the immune system. Nat Rev Immunol 12, 728–734 (2012). https://doi.org/10.1038/nri3312

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing