Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination

Key Points

  • To elicit protective adaptive immune responses, vaccines must efficiently trigger the innate immune system. It is becoming increasingly apparent that microbial and host nucleic acids serve as important activators of the innate immune system in both currently available and experimental vaccines.

  • Microbial and host nucleic acids may be recognized, respectively, as pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) by a complex machinery of innate immune receptors. The activation of these receptors either directly or indirectly has an impact on the activity of antigen-presenting cells and on subsequent adaptive immune responses.

  • The deconstruction of the mechanisms of action of many live attenuated vaccines is revealing that the sensing of microbial nucleic acids makes an important contribution to the immunogenicity of these vaccines.

  • Innate immune detection of host DNA and of the nucleic acid metabolite uric acid may have a role in the adjuvant properties of aluminium salts, the most widely used type of vaccine adjuvant.

  • Nucleic acid-sensing mechanisms may be directly harnessed by novel adjuvant molecules. Several vaccines containing such molecules are currently in the preclinical and early clinical stages of development.

Abstract

The demand is currently high for new vaccination strategies, particularly to help combat problematic intracellular pathogens, such as HIV and malarial parasites. In the past decade, the identification of host receptors that recognize pathogen-derived nucleic acids has revealed an essential role for nucleic acid sensing in the triggering of immunity to intracellular pathogens. This Review first addresses our current understanding of the nucleic acid-sensing immune machinery. We then explain how the study of nucleic acid-sensing mechanisms not only has revealed their central role in driving the responses mediated by many current vaccines, but is also revealing how they could be harnessed for the design of new vaccines.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of adaptive immune responses to vaccines through PRR-mediated dendritic cell activation.
Figure 2: Overview of the nucleic acid-sensing machinery.
Figure 3: Mechanisms of DNA vaccination.

Similar content being viewed by others

References

  1. Coffman, R. L., Sher, A. & Seder, R. A. Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Pulendran, B. & Ahmed, R. Immunological mechanisms of vaccination. Nature Immunol. 131, 509–517 (2011).

    Google Scholar 

  3. Plotkin, S. A. Vaccines: correlates of vaccine-induced immunity. Clin. Infect. Dis. 47, 401–409 (2008).

    PubMed  Google Scholar 

  4. Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Pichlmair, A. & Reis e Sousa, C. Innate recognition of viruses. Immunity 27, 370–383 (2007).

    CAS  PubMed  Google Scholar 

  6. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  7. Barbalat, R., Ewald, S. E., Mouchess, M. L. & Barton, G. M. Nucleic acid recognition by the innate immune system. Annu. Rev. Immunol. 29, 185–214 (2011).

    CAS  PubMed  Google Scholar 

  8. Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nature Rev. Immunol. 10, 826–837 (2010).

    CAS  Google Scholar 

  9. Blasius, A. L. & Beutler, B. Intracellular Toll-like receptors. Immunity 32, 305–315 (2010).

    CAS  PubMed  Google Scholar 

  10. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    CAS  PubMed  Google Scholar 

  11. Loo, Y. M. & Gale, M. Jr. Immune signaling by RIG-I-like receptors. Immunity 34, 680–692 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Kadowaki, N. et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol. 5, 987–995 (2004).

    CAS  Google Scholar 

  14. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunol. 11, 373–384 (2010).

    CAS  Google Scholar 

  15. Schlee, M. & Hartmann, G. The chase for the RIG-I ligand — recent advances. Mol. Ther. 18, 1254–1262 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nature Immunol. 10, 1065–1072 (2009).

    CAS  Google Scholar 

  17. Chiu, Y.-H., MacMillan, J. B. & Chen, Z. J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601–1610 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Malathi, K., Dong, B., Gale, M. & Silverman, R. H. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448, 816–819 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Venkataraman, T. et al. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J. Immunol. 178, 6444–6455 (2007).

    CAS  PubMed  Google Scholar 

  21. Satoh, T. et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc. Natl Acad. Sci. USA 107, 1512–1517 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Monroe, K. M., McWhirter, S. M. & Vance, R. E. Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS Pathog. 5, e1000665 (2009).

    PubMed Central  PubMed  Google Scholar 

  23. Li, X. D. et al. Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis. Proc. Natl Acad. Sci. USA 108, 17390–17395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Poeck, H. et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1β production. Nature Immunol. 11, 63–69 (2010).

    CAS  Google Scholar 

  25. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhong, B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538–550 (2008).

    CAS  PubMed  Google Scholar 

  27. Oshiumi, H., Sakai, K., Matsumoto, M. & Seya, T. DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-β-inducing potential. Eur. J. Immunol. 40, 940–948 (2010).

    CAS  PubMed  Google Scholar 

  28. Zhang, Z. et al. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity 34, 866–878 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Miyashita, M., Oshiumi, H., Matsumoto, M. & Seya, T. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol. Cell. Biol. 31, 3802–3819 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Kim, T. et al. Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc. Natl Acad. Sci. USA 107, 15181–15186 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature Immunol. 12, 959–965 (2011).

    CAS  Google Scholar 

  32. Zhang, Z., Yuan, B., Lu, N., Facchinetti, V. & Liu, Y. J. DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells. J. Immunol. 187, 4501–4508 (2011).

    CAS  PubMed  Google Scholar 

  33. Elinav, E., Strowig, T., Henao-Mejia, J. & Flavell, R. A. Regulation of the antimicrobial response by NLR proteins. Immunity 34, 665–679 (2011).

    CAS  PubMed  Google Scholar 

  34. Sabbah, A. et al. Activation of innate immune antiviral responses by Nod2. Nature Immunol. 10, 1073–1080 (2009).

    CAS  Google Scholar 

  35. Kanneganti, T. D. et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem. 281, 36560–36568 (2006).

    CAS  PubMed  Google Scholar 

  36. Allen, I. C. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556–565 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Keating, S. E., Baran, M. & Bowie, A. G. Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol. 32, 574–581 (2011).

    CAS  PubMed  Google Scholar 

  39. Burckstummer, T. et al. An orthogonal proteomic–genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nature Immunol. 10, 266–272 (2009).

    Google Scholar 

  40. Fernandes-Alnemri, T., Yu, J.-W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Roberts, T. L. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057–1060 (2009).

    CAS  PubMed  Google Scholar 

  43. Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nature Immunol. 11, 997–1004 (2010).

    CAS  Google Scholar 

  44. Kerur, N. et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection. Cell Host Microbe 9, 363–375 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    CAS  PubMed  Google Scholar 

  46. Kaiser, W. J., Upton, J. W. & Mocarski, E. S. Receptor-interacting protein homotypic interaction motif-dependent control of NF-κB activation via the DNA-dependent activator of IFN regulatory factors. J. Immunol. 181, 6427–6434 (2008).

    CAS  PubMed  Google Scholar 

  47. Ishii, K. J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451, 725–729 (2008).

    CAS  PubMed  Google Scholar 

  48. Yang, P. et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a β-catenin-dependent pathway. Nature Immunol. 11, 487–494 (2010).

    CAS  Google Scholar 

  49. Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Querec, T. et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med. 203, 413–424 (2006).

    PubMed Central  PubMed  Google Scholar 

  51. Gaucher, D. et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J. Exp. Med. 205, 3119–3131 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Querec, T. D. et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nature Immunol. 10, 116–125 (2009).

    CAS  Google Scholar 

  53. Caskey, M. et al. Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. J. Exp. Med. 208, 2357–2366 (2011). References 51–53 illustrate how systems biology may help to deconstruct the mechanisms of action of current vaccines in humans.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Samuelsson, C. et al. Survival of lethal poxvirus infection in mice depends on TLR9, and therapeutic vaccination provides protection. J. Clin. Invest. 118, 1776–1784 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Delaloye, J. et al. Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog. 5, e1000480 (2009).

    PubMed Central  PubMed  Google Scholar 

  56. Zhu, J., Martinez, J., Huang, X. & Yang, Y. Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-β. Blood 109, 619–625 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Quigley, M., Martinez, J., Huang, X. & Yang, Y. A critical role for direct TLR2–MyD88 signaling in CD8 T-cell clonal expansion and memory formation following vaccinia viral infection. Blood 113, 2256–2264 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Martinez, J., Huang, X. & Yang, Y. Toll-like receptor 8- mediated activation of murine plasmacytoid dendritic cells by vaccinia viral DNA. Proc. Natl Acad. Sci. USA 107, 6442–6447 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    CAS  PubMed  Google Scholar 

  60. Lund, J. M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl Acad. Sci. USA 101, 5598–5603 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunol. 5, 730–737 (2004).

    CAS  Google Scholar 

  62. Kato, H. et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19–28 (2005).

    CAS  PubMed  Google Scholar 

  63. Thomas, P. G. et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30, 566–575 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Koyama, S. et al. Plasmacytoid dendritic cells delineate immunogenicity of influenza vaccine subtypes. Sci. Transl. Med. 2, 25ra24 (2010).

    PubMed  Google Scholar 

  65. Aoshi, T., Koyama, S., Kobiyama, K., Akira, S. & Ishii, K. J. Innate and adaptive immune responses to viral infection and vaccination. Curr. Opin. Virol. 1, 226–232 (2011).

    CAS  PubMed  Google Scholar 

  66. Mancuso, G. et al. Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nature Immunol. 10, 587–594 (2009).

    CAS  Google Scholar 

  67. von Meyenn, F. et al. Toll-like receptor 9 contributes to recognition of Mycobacterium bovis Bacillus Calmette-Guerin by Flt3-ligand generated dendritic cells. Immunobiology 211, 557–565 (2006).

    CAS  PubMed  Google Scholar 

  68. Sander, L. E. et al. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474, 385–389 (2011). This study supports the idea that bacterial nucleic acids may be recognized as a signal of microbial viability and may contribute to an enhanced adaptive immune response against the pathogen.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Liu, M. A. Immunologic basis of vaccine vectors. Immunity 33, 504–515 (2010).

    CAS  PubMed  Google Scholar 

  70. Coban, C. et al. Novel strategies to improve DNA vaccine immunogenicity. Curr. Gene Ther. 11, 479–484 (2011).

    CAS  PubMed  Google Scholar 

  71. Spies, B. et al. Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J. Immunol. 171, 5908–5912 (2003).

    CAS  PubMed  Google Scholar 

  72. Babiuk, S. et al. TLR9−/− and TLR9+/+ mice display similar immune responses to a DNA vaccine. Immunology 113, 114–120 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Rottembourg, D. et al. Essential role for TLR9 in prime but not prime–boost plasmid DNA vaccination to activate dendritic cells and protect from lethal viral infection. J. Immunol. 184, 7100–7107 (2010).

    CAS  PubMed  Google Scholar 

  74. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009). This study identifies STING as an essential adapter protein in the signalling pathways of TBK1-activating cytosolic DNA sensors.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Mbow, M. L., De Gregorio, E., Valiante, N. M. & Rappuoli, R. New adjuvants for human vaccines. Curr. Opin. Immunol. 22, 411–416 (2010).

    CAS  PubMed  Google Scholar 

  76. McKee, A. S. et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol. 183, 4403–4414 (2009).

    CAS  PubMed  Google Scholar 

  77. Marrack, P., McKee, A. S. & Munks, M. W. Towards an understanding of the adjuvant action of aluminium. Nature Rev. Immunol. 9, 287–293 (2009).

    CAS  Google Scholar 

  78. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunol. 9, 847–856 (2008).

    CAS  Google Scholar 

  79. Eisenbarth, S. C., Colegio, O. R., O'Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Spreafico, R., Ricciardi-Castagnoli, P. & Mortellaro, A. The controversial relationship between NLRP3, alum, danger signals and the next-generation adjuvants. Eur. J. Immunol. 40, 638–642 (2010).

    CAS  PubMed  Google Scholar 

  81. Goto, N. et al. Local tissue irritating effects and adjuvant activities of calcium phosphate and aluminium hydroxide with different physical properties. Vaccine 15, 1364–1371 (1997).

    CAS  PubMed  Google Scholar 

  82. Munks, M. W. et al. Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo. Blood 116, 5191–5199 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Kool, M. et al. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 34, 527–540 (2011).

    CAS  PubMed  Google Scholar 

  85. Marichal, T. et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nature Med. 17, 996–1002 (2011).

    CAS  PubMed  Google Scholar 

  86. Lore, K. et al. Toll-like receptor ligands modulate dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell responses. J. Immunol. 171, 4320–4328 (2003).

    CAS  PubMed  Google Scholar 

  87. Schulz, O. et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433, 887–892 (2005).

    CAS  PubMed  Google Scholar 

  88. Jongbloed, S. L. et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207, 1247–1260 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Jelinek, I. et al. TLR3-specific double-stranded RNA oligonucleotide adjuvants induce dendritic cell cross-presentation, CTL responses, and antiviral protection. J. Immunol. 186, 2422–2429 (2011).

    CAS  PubMed  Google Scholar 

  90. Poulin, L. F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med. 207, 1261–1271 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Trumpfheller, C. et al. The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc. Natl Acad. Sci. USA 105, 2574–2579 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Longhi, M. P. et al. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J. Exp. Med. 206, 1589–1602 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Stahl-Hennig, C. et al. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS Pathog. 5, e1000373 (2009).

    PubMed Central  PubMed  Google Scholar 

  94. Kumar, H., Koyama, S., Ishii, K. J., Kawai, T. & Akira, S. Cutting edge: cooperation of IPS-1- and TRIF-dependent pathways in poly IC-enhanced antibody production and cytotoxic T cell responses. J. Immunol. 180, 683–687 (2008).

    CAS  PubMed  Google Scholar 

  95. Tewari, K. et al. Poly(I:C) is an effective adjuvant for antibody and multi-functional CD4+ T cell responses to Plasmodium falciparum circumsporozoite protein (CSP) and αDEC-CSP in non human primates. Vaccine 28, 7256–7266 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Wang, Y., Cella, M., Gilfillan, S. & Colonna, M. Cutting edge: polyinosinic:polycytidylic acid boosts the generation of memory CD8 T cells through melanoma differentiation-associated protein 5 expressed in stromal cells. J. Immunol. 184, 2751–2755 (2010).

    CAS  PubMed  Google Scholar 

  97. Russo, C. et al. Small molecule Toll-like receptor 7 agonists localize to the MHC class II loading compartment of human plasmacytoid dendritic cells. Blood 117, 5683–5691 (2011).

    CAS  PubMed  Google Scholar 

  98. Levy, O., Suter, E. E., Miller, R. L. & Wessels, M. R. Unique efficacy of Toll-like receptor 8 agonists in activating human neonatal antigen-presenting cells. Blood 108, 1284–1290 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Hamm, S. et al. Immunostimulatory RNA is a potent inducer of antigen-specific cytotoxic and humoral immune response in vivo. Int. Immunol. 19, 297–304 (2007).

    CAS  PubMed  Google Scholar 

  100. Zhang, W. W. & Matlashewski, G. Immunization with a Toll-like receptor 7 and/or 8 agonist vaccine adjuvant increases protective immunity against Leishmania major in BALB/c mice. Infect. Immun. 76, 3777–3783 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Rajagopal, D. et al. Plasmacytoid dendritic cell-derived type I interferon is crucial for the adjuvant activity of Toll-like receptor 7 agonists. Blood 115, 1949–1957 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Wille-Reece, U. et al. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc. Natl Acad. Sci. USA 102, 15190–15194 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kastenmuller, K. et al. Protective T cell immunity in mice following protein-TLR7/8 agonist-conjugate immunization requires aggregation, type I IFN, and multiple DC subsets. J. Clin. Invest. 121, 1782–1796 (2011). References 102 and 103 show how optimizing the formulation of agonists for nucleic acid sensors may affect quantitative and qualitative aspects of the response to subunit vaccines adjuvanted with such molecules.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Huang, X. & Yang, Y. Targeting the TLR9–MyD88 pathway in the regulation of adaptive immune responses. Expert Opin. Ther. Targets 14, 787–796 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Campbell, J. D. et al. CpG-containing immunostimulatory DNA sequences elicit TNF-α-dependent toxicity in rodents but not in humans. J. Clin. Invest. 119, 2564–2576 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Wagner, M. et al. IL-12p70-dependent Th1 induction by human B cells requires combined activation with CD40 ligand and CpG DNA. J. Immunol. 172, 954–963 (2004).

    CAS  PubMed  Google Scholar 

  107. Poeck, H. et al. Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood 103, 3058–3064 (2004).

    CAS  PubMed  Google Scholar 

  108. Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 (1995).

    CAS  PubMed  Google Scholar 

  109. Chen, W., Kuolee, R. & Yan, H. The potential of 3',5'-cyclic diguanylic acid (c-di-GMP) as an effective vaccine adjuvant. Vaccine 28, 3080–3085 (2010).

    CAS  PubMed  Google Scholar 

  110. Karaolis, D. K. et al. Bacterial c-di-GMP is an immunostimulatory molecule. J. Immunol. 178, 2171–2181 (2007).

    CAS  PubMed  Google Scholar 

  111. McWhirter, S. M. et al. A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J. Exp. Med. 206, 1899–1911 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Sauer, J. D. et al. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immun. 79, 688–694 (2011).

    CAS  PubMed  Google Scholar 

  113. Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nature Rev. Immunol. 7, 179–190 (2007).

    CAS  Google Scholar 

  114. Zhu, Q. et al. Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: implications for vaccines. Proc. Natl Acad. Sci. USA 105, 16260–16265 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhu, Q. et al. Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice. J. Clin. Invest. 120, 607–616 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Kasturi, S. P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011). References 115 and 116 illustrate how combining nucleic acid sensor agonists and optimizing their delivery strategies could allow fine-tuning of the responses to subunit vaccines.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Remijsen, Q. et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 18, 581–588 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Hashimoto, D., Miller, J. & Merad, M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 35, 323–335 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Palucka, K., Banchereau, J. & Mellman, I. Designing vaccines based on biology of human dendritic cell subsets. Immunity 33, 464–478 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Gilliet, M., Cao, W. & Liu, Y.-J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nature Rev. Immunol. 8, 594–606 (2008).

    CAS  Google Scholar 

  121. Takagi, H. et al. Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity 35, 958–971 (2011). This study suggests a direct role of pDCs in the priming of CD8+ T cell responses in vivo.

    CAS  PubMed  Google Scholar 

  122. Reizis, B., Colonna, M., Trinchieri, G., Barrat, F. & Gilliet, M. Plasmacytoid dendritic cells: one-trick ponies or workhorses of the immune system? Nature Rev. Immunol. 11, 558–565 (2011).

    CAS  Google Scholar 

  123. Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54 (Pt 1), 1–13 (1989).

    CAS  PubMed  Google Scholar 

  124. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    CAS  PubMed  Google Scholar 

  125. González-Navajas, J. M., Lee, J., David, M. & Raz, E. Immunomodulatory functions of type I interferons. Nature Rev. Immunol. 12, 125–135 (2012).

    Google Scholar 

  126. Sadler, A. J. & Williams, B. R. Interferon-inducible antiviral effectors. Nature Rev. Immunol. 8, 559–568 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank F. Bureau, C. Coban and T. Marichal for critical reading of the manuscript. C.J.D. is supported by the Fonds National de la Recherche Scientifique (FRS-FNRS, Belgium; Fonds pour la Recherche Scientifique Médicale grant). K.J.I. is supported by a Health and Labour Sciences Research Grant of the Japanese Ministry of Health, Labour and Welfare and by the Core Research Evolutionary Science and Technology (CREST) programme at the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Christophe J. Desmet's homepage

Ken J. Ishii's homepage

Glossary

Adjuvants

Substances that facilitate, enhance and/or modulate the host immune response to an antigen.

Conventional dendritic cells

(cDCs). Phagocytes that are resident in lymphoid and non-lymphoid tissues and are specialized in the presentation of antigens to T cells.

Plasmacytoid dendritic cells

(pDCs). A DC subtype specialized in producing large amounts of type I interferons in response to nucleic acids from pathogens.

RNase L

A ribonuclease that is induced in response to type I interferons and degrades all the RNA within the cell.

Inflammasome

A multiprotein signalling complex, the activation and assembly of which leads to the recruitment and activation of caspase 1, resulting in the cleavage of pro-IL-1β and pro-IL-18 into their biologically active forms.

PolyI:C

(Polyinosinic–polycytidylic acid). A substance that is used as a mimic of viral double-stranded RNA.

CpG-B and CpG-A oligodeoxynucleotides

Synthetic oligodeoxynucleotides that contain immunostimulatory unmethylated dinucleotide CpG motifs. CpG-A oligodeoxynucleotides are based on a mixed phosphodiester–phosphorothioate backbone, contain a single CpG motif within a palindromic sequence and have a 3′ polyG tail, whereas CpG-B oligodeoxynucleotides are based on a phosphorothioate backbone and contain multiple CpG motifs.

Cross-presentation

A process by which certain antigen-presenting cells may take up and process extracellular antigens and present them on MHC class I molecules to CD8+ T cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desmet, C., Ishii, K. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol 12, 479–491 (2012). https://doi.org/10.1038/nri3247

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3247

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing