## T CELLS

## The T<sub>FH</sub>-like transition of T<sub>H</sub>1 cells

The extent to which T helper ( $T_H$ ) cell subsets — including T follicular helper ( $T_{FH}$ ) cells — are distinct cell lineages has been the subject of much debate in recent years. Now, new evidence suggests that early during their development  $T_H$ 1 cells pass through a  $T_H$ 1– $T_{FH}$  cell stage, which involves a dynamic balance of signals mediated by the transcription factors signal transducer and activator of transcription 4 (STAT4), T-bet and B cell lymphoma 6 (BCL-6).

 $T_{FH}$  cells, which support germinal centre B cell responses, can be induced by interleukin-6 (IL-6) and IL-21 acting via STAT3, and these cells have been defined as a unique lineage based on the expression of BCL-6 and IL-21. By contrast,  $T_{H}$ 1 cells are induced by IL-12 and interferon- $\gamma$  (IFN $\gamma$ ) acting via STAT4 and STAT1, respectively, and they express T-bet and IFN $\gamma$ .

In this study, the authors cultured naive T cells under T<sub>H</sub>1 cell-polarizing conditions for 5 days. Approximately 25% of the cells in these cultures were shown to produce both IFNy and IL-21 and to have phenotypic characteristics of both  $T_{H}1$  and  $T_{EH}$ cells, including the expression of T-bet and BCL-6. IL-12-mediated activation of STAT4 was required for the expression by these cells of BCL-6 and IL-21, in addition to that of T-bet and IFNγ, and *Stat4*<sup>-/-</sup> mice had fewer T<sub>EH</sub> cells and germinal centre B cells than wild-type mice early after immunization with ovalbumin. However, this  $T_{H}1-T_{FH}$  cell-like phenotype was transient (lasting up until day 5), and it was followed by a loss of IL-21 and BCL-6 expression but retention of IFNy and T-bet expression.

So what is the molecular mechanism underlying this loss of the T<sub>EH</sub> cell phenotype? IFNy was shown to antagonize IL-21 expression at later time points, even though it was a positive regulator of IL-21 at early time points. IL-12-activated STAT4 induced the expression of Il21, Bcl6 and Tbx21 (which encodes T-bet), but T-bet repressed the expression of Bcl6. This suggests that, as differentiation progresses under T<sub>u</sub>1 cell-polarizing conditions, T-bet suppresses the T<sub>FH</sub> cell phenotype (possibly when a certain expression threshold is reached). Conversely, overexpression of BCL-6 suppressed both IFNy and T-bet expression in  $T_{H}1$  cells.

Finally,  $T_{FH}$ -like cells were rapidly generated in mice infected with *Toxoplasma gondii*, which induces a potent  $T_{H}1$  cell response. However, most of the IL-21<sup>+</sup>  $T_{FH}$ -like cells that were isolated early after infection also expressed IFN $\gamma$  and T-bet. Furthermore, loss of T-bet expression resulted in the generation of higher numbers of  $T_{FH}$  cells later during the infection, supporting the *in vitro* observations that T-bet is necessary to suppress the early  $T_{FH}$  cell-like characteristics of developing  $T_{\mu}1$  cells.

So, these data suggest the existence of phenotypic heterogeneity between  $\rm T_{H}1$  and  $\rm T_{FH}$  cells, whereby IL-12 signalling via STAT4 induces a transient  $\rm T_{H}1\text{-}T_{FH}$  cell stage. The expression of T-bet, together with IFN $\gamma$ , inhibits the  $\rm T_{FH}$  cell-like phenotype, allowing full  $\rm T_{H}1$  cell differentiation.

Olive Leavy

ORIGINAL RESEARCH PAPER Nakayamada, S. et al. Early Th1 cell differentiation is marked by a Tfh cell-like transition. *Immunity* **35**, 919–931 (2011)

