Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcriptional programming of the dendritic cell network

An Erratum to this article was published on 25 January 2013

Key Points

  • Dendritic cells (DCs) can be divided into multiple specialized subsets that are pivotal in bridging between the innate and adaptive immune responses.

  • Specification of DC subsets is initiated in the bone marrow and generates precursors committed to either the plasmacytoid DC (pDC) or conventional DC lineages.

  • Terminal differentiation occurs in both peripheral lymphoid organs and tissues in response to local environmental cues such as cytokines and inflammatory stimuli.

  • Transcription factors programme the specification and commitment of precursors to different DC subsets.

  • Shared transcription factor usage by DC subsets provides a common differentiation pathway for precursor cells, whereas terminal differentiation is often dictated by a single master regulator of that lineage (for example, E2-2 for pDCs and BATF3 for CD103+ DCs).

Abstract

Specialized subsets of dendritic cells (DCs) provide a crucial link between the innate and adaptive immune responses. The genetic programme that coordinates these distinct DC subsets is controlled by both cytokines and transcription factors. The initial steps in DC specification occur in the bone marrow and result in the generation of precursors committed to either the plasmacytoid or conventional DC pathways. DCs undergo further differentiation and lineage diversification in peripheral organs in response to local environmental cues. In this Review, we discuss new evidence regarding the coordination of the specification and commitment of precursor cells to different DC subsets and highlight the ensemble of transcription factors that control these processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differentiation and trafficking of DC subsets.
Figure 2: Growth factors and transcription factors that regulate DC differentiation.
Figure 3: Differential expression of transcription factors regulating DC differentiation.

Similar content being viewed by others

References

  1. Bigley, V. et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J. Exp. Med. 208, 227–234 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Dickinson, R. E. et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 118, 2656–2658 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Hambleton, S. et al. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365, 127–138 (2011). This study provides genetic evidence of the function of IRF8 in human DC development and allows for comparison with mouse gene-knockout approaches.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Liu, K. & Nussenzweig, M. C. Origin and development of dendritic cells. Immunol. Rev. 234, 45–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Jakubzick, C. et al. Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. J. Exp. Med. 205, 2839–2850 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Belz, G. T. et al. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc. Natl Acad. Sci. USA 101, 8670–8675 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bedoui, S. et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nature Immunol. 10, 488–495 (2009).

    Article  CAS  Google Scholar 

  8. Vremec, D., Pooley, J., Hochrein, H., Wu, L. & Shortman, K. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164, 2978–2986 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Vremec, D. et al. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J. Exp. Med. 176, 47–58 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. den Haan, J. M., Lehar, S. M. & Bevan, M. J. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1696 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Allan, R. S. et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301, 1925–1928 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Belz, G. T. et al. Cutting edge: conventional CD8α+ dendritic cells are generally involved in priming CTL immunity to viruses. J. Immunol. 172, 1996–2000 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Edelson, B. T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207, 823–836 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  14. GeurtsvanKessel, C. H. et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b but not plasmacytoid dendritic cells. J. Exp. Med. 205, 1621–1634 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kim, T. S. & Braciale, T. J. Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. PLoS ONE 4, e4204 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Smith, C. M. et al. Cutting edge: conventional CD8α+ dendritic cells are preferentially involved in CTL priming after footpad infection with herpes simplex virus-1. J. Immunol. 170, 4437–4440 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Lukens, M. V., Kruijsen, D., Coenjaerts, F. E., Kimpen, J. L. & van Bleek, G. M. Respiratory syncytial virus-induced activation and migration of respiratory dendritic cells and subsequent antigen presentation in the lung-draining lymph node. J. Virol. 83, 7235–7243 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Allenspach, E. J., Lemos, M. P., Porrett, P. M., Turka, L. A. & Laufer, T. M. Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells. Immunity 29, 795–806 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mount, A. M. et al. Multiple dendritic cell populations activate CD4+ T cells after viral stimulation. PLoS ONE 3, e1691 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Pooley, J. L., Heath, W. R. & Shortman, K. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8 dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J. Immunol. 166, 5327–5330 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Naik, S. H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nature Immunol. 7, 663–671 (2006).

    Article  CAS  Google Scholar 

  22. Lundie, R. J. et al. Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8α+ dendritic cells. Proc. Natl Acad. Sci. USA 105, 14509–14514 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sponaas, A. M. et al. Malaria infection changes the ability of splenic dendritic cell populations to stimulate antigen-specific T cells. J. Exp. Med. 203, 1427–1433 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chorro, L. et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 206, 3089–3100 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Perussia, B., Fanning, V. & Trinchieri, G. A leukocyte subset bearing HLA-DR antigens is responsible for in vitro α interferon production in response to viruses. Nat. Immun. Cell Growth Regul. 4, 120–137 (1985).

    CAS  PubMed  Google Scholar 

  26. Trinchieri, G., Santoli, D., Dee, R. R. & Knowles, B. B. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Identification of the anti-viral activity as interferon and characterization of the human effector lymphocyte subpopulation. J. Exp. Med. 147, 1299–1313 (1978).

    Article  CAS  PubMed  Google Scholar 

  27. Reizis, B., Bunin, A., Ghosh, H. S., Lewis, K. L. & Sisirak, V. Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. 29, 163–183 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Reizis, B., Colonna, M., Trinchieri, G., Barrat, F. & Gilliet, M. Plasmacytoid dendritic cells: one-trick ponies or workhorses of the immune system? Nature Rev. Immunol. 11, 558–565 (2011).

    Article  CAS  Google Scholar 

  29. Hohl, T. M. et al. Aspergillus fumigatus triggers inflammatory responses by stage-specific β-glucan display. PLoS Pathog. 1, e30 (2005).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Cheong, C. et al. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas. Cell 143, 416–429 (2010). This study identified the conditions under which monocyte-derived DCs develop and highlighted their acquisition of highly efficient cross-presenting capacity during inflammation.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. den Haan, J. M. & Bevan, M. J. Constitutive versus activation-dependent cross-presentation of immune complexes by CD8+ and CD8 dendritic cells in vivo. J. Exp. Med. 196, 817–827 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. McDonnell, A. M., Prosser, A. C., van Bruggen, I., Robinson, B. W. & Currie, A. J. CD8α+ DC are not the sole subset cross-presenting cell-associated tumor antigens from a solid tumor. Eur. J. Immunol. 40, 1617–1627 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Naik, S. H. et al. Cutting edge: generation of splenic CD8+ and CD8 dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J. Immunol. 174, 6592–6597 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Brasel, K., De Smedt, T., Smith, J. L. & Maliszewski, C. R. Generation of murine dendritic cells from Flt3-ligand-supplemented bone marrow cultures. Blood 96, 3029–3039 (2000).

    CAS  PubMed  Google Scholar 

  38. D'Amico, A. & Wu, L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med. 198, 293–303 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Karsunky, H., Merad, M., Cozzio, A., Weissman, I. L. & Manz, M. G. Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. J. Exp. Med. 198, 305–313 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nature Immunol. 8, 1207–1216 (2007).

    Article  CAS  Google Scholar 

  41. Onai, N., Obata-Onai, A., Tussiwand, R., Lanzavecchia, A. & Manz, M. G. Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon-producing and dendritic cell development. J. Exp. Med. 203, 227–238 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Holmes, M. L., Carotta, S., Corcoran, L. M. & Nutt, S. L. Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment. Genes Dev. 20, 933–938 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Waskow, C. et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nature Immunol. 9, 676–683 (2008).

    Article  CAS  Google Scholar 

  44. Kingston, D. et al. The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis. Blood 114, 835–843 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. McKenna, H. J. et al. Mice lacking Flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489–3497 (2000).

    CAS  PubMed  Google Scholar 

  46. Laouar, Y., Welte, T., Fu, X. Y. & Flavell, R. A. STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity 19, 903–912 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206, 3115–3130 (2009). This study provides an extensive analysis of the transcription factor and cytokine requirements of DCs in non-lymphoid tissues.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Vremec, D. et al. The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. Eur. J. Immunol. 27, 40–44 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Esashi, E. et al. The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8. Immunity 28, 509–520 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Varol, C. et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204, 171–180 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. MacDonald, K. P. et al. The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion. J. Immunol. 175, 1399–1405 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Sasmono, R. T. et al. A macrophage colony-stimulating factor receptor–green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101, 1155–1163 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Ginhoux, F. et al. Langerhans cells arise from monocytes in vivo. Nature Immunol. 7, 265–273 (2006).

    Article  CAS  Google Scholar 

  57. Lin, H. et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320, 807–811 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Fancke, B., Suter, M., Hochrein, H. & O'Keeffe, M. M-CSF: a novel plasmacytoid and conventional dendritic cell poietin. Blood 111, 150–159 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Manz, M. G., Traver, D., Miyamoto, T., Weissman, I. L. & Akashi, K. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97, 3333–3341 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Wu, L. et al. Development of thymic and splenic dendritic cell populations from different hemopoietic precursors. Blood 98, 3376–3382 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Naik, S. H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nature Immunol. 8, 1217–1226 (2007).

    Article  CAS  Google Scholar 

  62. Schmid, M. A., Kingston, D., Boddupalli, S. & Manz, M. G. Instructive cytokine signals in dendritic cell lineage commitment. Immunol. Rev. 234, 32–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Fogg, D. K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006). This study prospectively identified the common progenitor of the monocyte and macrophage lineage and the DC lineage.

    Article  CAS  PubMed  Google Scholar 

  65. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009). References 21, 40, 61 and 65 together map the developmental steps of DCs from their earliest precursors in the bone marrow to mature cells in the peripheral tissues.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Carotta, S. et al. The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 32, 628–641 (2010). This study identified PU.1 as a master regulator of all DC lineages and a key regulator of FLT3 expression.

    Article  CAS  PubMed  Google Scholar 

  67. Back, J., Allman, D., Chan, S. & Kastner, P. Visualizing PU.1 activity during hematopoiesis. Exp. Hematol. 33, 395–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Nutt, S. L., Metcalf, D., D'Amico, A., Polli, M. & Wu, L. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J. Exp. Med. 201, 221–231 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Anderson, K. L. et al. Transcription factor PU.1 is necessary for development of thymic and myeloid progenitor-derived dendritic cells. J. Immunol. 164, 1855–1861 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Guerriero, A., Langmuir, P. B., Spain, L. M. & Scott, E. W. PU.1 is required for myeloid-derived but not lymphoid-derived dendritic cells. Blood 95, 879–885 (2000).

    CAS  PubMed  Google Scholar 

  71. Bakri, Y. et al. Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate. Blood 105, 2707–2716 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. DeKoter, R. P. & Singh, H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288, 1439–1441 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Nerlov, C. & Graf, T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 12, 2403–2412 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. John, L. B. & Ward, A. C. The Ikaros gene family: transcriptional regulators of hematopoiesis and immunity. Mol. Immunol. 48, 1272–1278 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Wu, L., Nichogiannopoulou, A., Shortman, K. & Georgopoulos, K. Cell-autonomous defects in dendritic cell populations of Ikaros mutant mice point to a developmental relationship with the lymphoid lineage. Immunity 7, 483–492 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Ng, S. Y., Yoshida, T., Zhang, J. & Georgopoulos, K. Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity 30, 493–507 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Allman, D. et al. Ikaros is required for plasmacytoid dendritic cell differentiation. Blood 108, 4025–4034 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. van der Meer, L. T., Jansen, J. H. & van der Reijden, B. A. Gfi1 and Gfi1b: key regulators of hematopoiesis. Leukemia 24, 1834–1843 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Rathinam, C. et al. The transcriptional repressor Gfi1 controls STAT3-dependent dendritic cell development and function. Immunity 22, 717–728 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Cisse, B. et al. Transcription factor E2–2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135, 37–48 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Spits, H., Couwenberg, F., Bakker, A. Q., Weijer, K. & Uittenbogaart, C. H. Id2 and Id3 inhibit development of CD34+ stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2. J. Exp. Med. 192, 1775–1784 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Kanno, Y., Levi, B. Z., Tamura, T. & Ozato, K. Immune cell-specific amplification of interferon signaling by the IRF-4/8–PU.1 complex. J. Interferon Cytokine Res. 25, 770–779 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Reizis, B. Regulation of plasmacytoid dendritic cell development. Curr. Opin. Immunol. 22, 206–211 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Ghosh, H. S., Cisse, B., Bunin, A., Lewis, K. L. & Reizis, B. Continuous expression of the transcription factor E2–2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity 33, 905–916 (2010). Together with reference 80, this study highlights the role of E2-2 in pDC development and in maintaining pDC identity.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Monticelli, L. A. et al. Transcriptional regulator Id2 controls survival of hepatic NKT cells. Proc. Natl Acad. Sci. USA 106, 19461–19466 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 25, 702–706 (1999).

    Article  Google Scholar 

  87. Hacker, C. et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nature Immunol. 4, 380–386 (2003).

    Article  CAS  Google Scholar 

  88. Carotta, S., Pang, S. H., Nutt, S. L. & Belz, G. T. Identification of the earliest NK-cell precursor in the mouse BM. Blood 117, 5449–5452 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Jackson, J. T. et al. Id2 expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages. EMBO J. 30, 2690–2704 (2011). This study describes an ID2 reporter mouse strain and maps the function of ID2 relative to other transcription factors, such as BATF3 and IRF8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Schiavoni, G. et al. ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8α+ dendritic cells. J. Exp. Med. 196, 1415–1425 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Schotte, R., Nagasawa, M., Weijer, K., Spits, H. & Blom, B. The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J. Exp. Med. 200, 1503–1509 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Tsujimura, H., Tamura, T. & Ozato, K. Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. J. Immunol. 170, 1131–1135 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Tailor, P., Tamura, T., Morse, H. C. & Ozato, K. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 111, 1942–1945 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Smith, M. A. et al. Positive regulatory domain I (PRDM1) and IRF8/PU.1 counter-regulate MHC class II transactivator (CIITA) expression during dendritic cell maturation. J. Biol. Chem. 286, 7893–7904 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Schroder, K. et al. PU.1 and ICSBP control constitutive and IFN-γ-regulated Tlr9 gene expression in mouse macrophages. J. Leukoc. Biol. 81, 1577–1590 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Tailor, P. et al. The feedback phase of type I interferon induction in dendritic cells requires interferon regulatory factor 8. Immunity 27, 228–239 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32, 317–328 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Marquis, J. F. et al. Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis. PLoS Genet. 7, e1002097 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Schotte, R. et al. The transcription factor Spi-B is expressed in plasmacytoid DC precursors and inhibits T-, B-, and NK-cell development. Blood 101, 1015–1023 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Dzionek, A. et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 165, 6037–6046 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Jongbloed, S. L. et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207, 1247–1260 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Poulin, L. F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med. 207, 1261–1271 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Schiavoni, G. et al. ICSBP is critically involved in the normal development and trafficking of Langerhans cells and dermal dendritic cells. Blood 103, 2221–2228 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87, 307–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Gascoyne, D. M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nature Immunol. 10, 1118–1124 (2009).

    Article  CAS  Google Scholar 

  107. Kamizono, S. et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J. Exp. Med. 206, 2977–2986 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Kashiwada, M., Pham, N. L., Pewe, L. L., Harty, J. T. & Rothman, P. B. NFIL3/E4BP4 is a key transcription factor for CD8α+ dendritic cell development. Blood 117, 6193–6197 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Echlin, D. R., Tae, H. J., Mitin, N. & Taparowsky, E. J. B-ATF functions as a negative regulator of AP-1 mediated transcription and blocks cellular transformation by Ras and Fos. Oncogene 19, 1752–1763 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Dorsey, M. J. et al. B-ATF: a novel human bZIP protein that associates with members of the AP-1 transcription factor family. Oncogene 11, 2255–2265 (1995).

    CAS  PubMed  Google Scholar 

  111. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008). This study identified BATF3 as an essential regulator of CD8α+ DC differentiation and cross-presentation.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Bar-On, L. et al. CX3CR1+ CD8α+ dendritic cells are a steady-state population related to plasmacytoid dendritic cells. Proc. Natl Acad. Sci. USA 107, 14745–14750 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Edelson, B. T. et al. Batf3-dependent CD11blow/− peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLoS ONE 6,e25660 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Mashayekhi, M. et al. CD8α+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35, 249–259 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Desch, A. N. et al. CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J. Exp. Med. 208, 1789–1797 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Edelson, B. T. et al. CD8α+ dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 35, 236–248 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Dakic, A., Wu, L. & Nutt, S. L. Is PU.1 a dosage-sensitive regulator of haemopoietic lineage commitment and leukaemogenesis? Trends Immunol. 28, 108–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Lin, Y. C. et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nature Immunol. 11, 635–643 (2010).

    Article  CAS  Google Scholar 

  119. Wilson, N. K. et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7, 532–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Hida, S. et al. CD8+ T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-α/β signaling. Immunity 13, 643–655 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Honda, K., Mizutani, T. & Taniguchi, T. Negative regulation of IFN-α/β signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells. Proc. Natl Acad. Sci. USA 101, 2416–2421 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ichikawa, E. et al. Defective development of splenic and epidermal CD4+ dendritic cells in mice deficient for IFN regulatory factor-2. Proc. Natl Acad. Sci. USA 101, 3909–3914 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Arakura, F. et al. Genetic control directed toward spontaneous IFN-α/IFN-β responses and downstream IFN-γ expression influences the pathogenesis of a murine psoriasis-like skin disease. J. Immunol. 179, 3249–3257 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, I. M. et al. An IFN-γ-inducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12 p40 expression in macrophages. J. Immunol. 165, 271–279 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Shaffer, A. L., Emre, N. C., Romesser, P. B. & Staudt, L. M. IRF4: Immunity. Malignancy! Therapy? Clin. Cancer Res. 15, 2954–2961 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Tamura, T. et al. IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J. Immunol. 174, 2573–2581 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Suzuki, S. et al. Critical roles of interferon regulatory factor 4 in CD11bhighCD8α dendritic cell development. Proc. Natl Acad. Sci. USA 101, 8981–8986 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gilliet, M. et al. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 195, 953–958 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Wu, L. et al. RelB is essential for the development of myeloid-related CD8α dendritic cells but not of lymphoid-related CD8α+ dendritic cells. Immunity 9, 839–847 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Burkly, L. et al. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373, 531–536 (1995).

    Article  CAS  PubMed  Google Scholar 

  131. Martin, E., O'Sullivan, B., Low, P. & Thomas, R. Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity 18, 155–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Le Bon, A. et al. A role for the transcription factor RelB in IFN-α production and in IFN-α-stimulated cross-priming. Eur. J. Immunol. 36, 2085–2093 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Castiglioni, P. et al. Cross-priming is under control of the relB gene. Scand. J. Immunol. 56, 219–223 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Kobayashi, T. et al. TRAF6 is a critical factor for dendritic cell maturation and development. Immunity 19, 353–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Cucak, H., Yrlid, U., Reizis, B., Kalinke, U. & Johansson-Lindbom, B. Type I interferon signaling in dendritic cells stimulates the development of lymph-node-resident T follicular helper cells. Immunity 31, 491–501 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Deenick, E. K. et al. Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling. Immunity 33, 241–253 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Deenick, E. K., Ma, C. S., Brink, R. & Tangye, S. G. Regulation of T follicular helper cell formation and function by antigen presenting cells. Curr. Opin. Immunol. 23, 111–118 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. del Rio, M. L., Bernhardt, G., Rodriguez-Barbosa, J. I. & Forster, R. Development and functional specialization of CD103+ dendritic cells. Immunol. Rev. 234, 268–281 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Dolan, B. P., Gibbs, K. D. Jr & Ostrand-Rosenberg, S. Dendritic cells cross-dressed with peptide MHC class I complexes prime CD8+ T cells. J. Immunol. 177, 6018–6024 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Qu, C., Nguyen, V. A., Merad, M. & Randolph, G. J. MHC class I/peptide transfer between dendritic cells overcomes poor cross-presentation by monocyte-derived APCs that engulf dying cells. J. Immunol. 182, 3650–3659 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Huang, J. F. et al. TCR-mediated internalization of peptide–MHC complexes acquired by T cells. Science 286, 952–954 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Allan, A. Kallies, M. Chopin and M. Pellegrini for helpful discussions and critical reading of the manuscript. This work is supported by the National Health and Medical Research Council (NHMRC) of Australia and the Wellcome Trust. G.T.B. is supported by a Sylvia and Charles Viertel Foundation Fellowship and S.L.N. is supported by an Australian Research Council Future Fellowship. This work was made possible by Victorian State Government Operational Infrastructure Support and the Australian Government NHMRC Independent Research Institute Infrastructure Support Scheme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabrielle T. Belz or Stephen L. Nutt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Gabrielle T. Belz's homepage

Stephen L. Nutt's homepage

Dendritic Cell Research Knowledge Portal

Immunological Genome Project

International Society for Dendritic Cell and Vaccine Science

Glossary

E protein

The E proteins (including E12, E47, HEB and E2-2) have emerged as key regulators of the immune system. They are a family of basic helix-loop-helix factors that work together with their antagonists, the ID proteins (ID1–ID4), to regulate lymphocyte development.

Lymphoid tissue-inducer cells

(LTi cells). A cell type that is present in developing lymph nodes, Peyer's patches and nasopharynx-associated lymphoid tissue (NALT). LTi cells are required for the development of these lymphoid organs. The inductive capacity of these cells for the generation of Peyer's patches and NALT has been shown by adoptive transfer, and it is generally assumed that they have a similar function in the formation of lymph nodes.

Nucleosome remodelling

Changes in the nucleosome structure are mediated by dedicated nuclear enzymes (for example, ATP-dependent nucleosome-remodelling enzymes) that change the accessibility of DNA and the expression of genes.

Histone modifications

Histones are essential to maintain DNA organization and may be modified by methylation and acetylation — changes that are thought to keep genes active or silent, respectively — thereby altering the genetic code read by transcriptional regulators.

NFAT

(Nuclear factor of activated T cells). A family of transcription factors that are regulated by calcium signalling and expressed by a variety of immune cells.

AP1

(Activator protein 1). A heterodimeric transcription factor that is composed of proteins belonging to the FOS, JUN and JUN-dimerization protein families. AP1 controls various cellular processes, including differentiation, proliferation and apoptosis.

Cross-priming

A mechanism by which immunogenic CD8+ T cells are activated by the presentation of an antigen that was not synthesized by the antigen-presenting cell itself.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belz, G., Nutt, S. Transcriptional programming of the dendritic cell network. Nat Rev Immunol 12, 101–113 (2012). https://doi.org/10.1038/nri3149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing