Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Experimental mouse tumour models: what can be learnt about human cancer immunology?

Abstract

The recent demonstration that cancer immunotherapy extends patient survival has reinvigorated interest in elucidating the role of immunity in tumour pathogenesis. Experimental mouse tumour models have provided key mechanistic insights into host antitumour immune responses, and these have guided the development of novel treatment strategies. To accelerate the translation of these findings into clinical benefits, investigators need to gain a better understanding of the strengths and limitations of mouse model systems as tools for deciphering human antitumour immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transplantable tumour models.
Figure 2: Genetically engineered mouse tumour models.
Figure 3: Humanized mouse tumour models.

Similar content being viewed by others

References

  1. Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Kantoff, P. W. et al. Overall survival analysis of a Phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 28, 1099–1105 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Brichard, V. G. & Lejeune, D. GSK's antigen-specific cancer immunotherapy programme: pilot results leading to Phase III clinical development. Vaccine 25 (Suppl. 2), B61–B71 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Dougan, M. & Dranoff, G. Immune therapy for cancer. Annu. Rev. Immunol. 27, 83–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Ostrand-Rosenberg, S. Animal models of tumor immunity, immunotherapy and cancer vaccines. Curr. Opin. Immunol. 16, 143–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Prehn, R. T. & Main, J. M. Immunity to methylcholanthrene-induced sarcomas. J. Natl Cancer Inst. 18, 769–778 (1957).

    CAS  PubMed  Google Scholar 

  7. Klein, G., Sjogren, H. O., Klein, E. & Hellstrom, K. E. Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochtonous host. Cancer Res. 20, 1561–1572 (1960).

    CAS  PubMed  Google Scholar 

  8. Old, L., Clarke, D. & Benacerraf, B. Effect of bacillus Calmette-Guerin (BCG) infection on transplanted tumors in the mouse. Nature 184, 291–292 (1959).

    Article  PubMed  Google Scholar 

  9. Van Pel, A. & Boon, T. Protection against a non-immunogenic mouse leukemia by an immunogenic variant obtained by mutagenesis. Proc. Natl Acad. Sci. USA 79, 4718–4722 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Basombrio, M. A. Search for common antigenicity among twenty-five sarcomas induced by methylcholanthrene. Cancer Res. 30, 2458–2462 (1970).

    CAS  PubMed  Google Scholar 

  11. Craft, N. et al. Bioluminescent imaging of melanoma in live mice. J. Invest. Dermatol. 125, 159–165 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Med. 13, 54–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA 90, 3539–3543 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gilboa, E. The makings of a tumor rejection antigen. Immunity 11, 263–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Hanson, H. L. et al. Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity 13, 265–276 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Overwijk, W. W. et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198, 569–580 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Xie, Y. et al. Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma. J. Exp. Med. 207, 651–667 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Cavallo, F., Offringa, R., van der Burg, S. H., Forni, G. & Melief, C. J. Vaccination for treatment and prevention of cancer in animal models. Adv. Immunol. 90, 175–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, B., Karrison, T., Rowley, D. A. & Schreiber, H. IFN-γ- and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J. Clin. Invest. 118, 1398–1404 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Klebanoff, C. A. et al. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin. Cancer Res. 17, 5343–5352 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Korman, A., Peggs, K. & Allison, J. P. Checkpoint blockade in cancer immunotherapy. Adv. Immunol. 90, 293–335 (2006).

    Google Scholar 

  23. Quezada, S. A., Peggs, K. S., Curran, M. A. & Allison, J. P. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J. Clin. Invest. 116, 1935–1945 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hodi, F. S. et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc. Natl Acad. Sci. USA 105, 3005–3010 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fu, T., He, Q. & Sharma, P. The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti-CTLA-4 therapy. Cancer Res. 71, 5445–5454 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Liakou, C. I. et al. CTLA-4 blockade increases IFNγ-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc. Natl Acad. Sci. USA 105, 14987–14992 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Elsas, A., Hurwitz, A. & Allison, J. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190, 355–366 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Berger, R. et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin. Cancer Res. 14, 3044–3051 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Li, B. et al. Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor-secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clin. Cancer Res. 15, 1623–1634 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Melero, I. et al. Palettes of vaccines and immunostimulatory monoclonal antibodies for combination. Clin. Cancer Res. 15, 1507–1509 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Vesely, M. D., Kershaw, M. H., Schreiber, R. D. & Smyth, M. J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Rev. Immunol. 7, 41–51 (2007).

    Article  CAS  Google Scholar 

  38. Marigo, I. et al. Tumor-induced tolerance and immune suppression depend on the C/EBPβ transcription factor. Immunity 32, 790–802 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Schioppa, T. et al. B regulatory cells and the tumor-promoting actions of TNF-α during squamous carcinogenesis. Proc. Natl Acad. Sci. USA 108, 10662–10667 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Rabinovich, G. A., Gabrilovich, D. & Sotomayor, E. M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 25, 267–296 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nature Rev. Immunol. 6, 295–307 (2006).

    Article  CAS  Google Scholar 

  42. DuPage, M. et al. Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell 19, 72–85 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Dougan, M. et al. A dual role for the immune response in a mouse model of inflammation-associated lung cancer. J. Clin. Invest. 121, 2436–2446 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hurwitz, A. A. et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res. 60, 2444–2448 (2000).

    CAS  PubMed  Google Scholar 

  45. Ercolini, A. M. et al. Recruitment of latent pools of high-avidity CD8+ T cells to the antitumor immune response. J. Exp. Med. 201, 1591–1602 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Rovero, S. et al. DNA vaccination against rat Her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J. Immunol. 165, 5133–5142 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Reilly, R. et al. The collaboration of both humoral and cellular HER-2/neu-targeted immune responses is required for the complete eradication of HER-2/neu-expressing tumors. Cancer Res. 61, 880–883 (2001).

    CAS  PubMed  Google Scholar 

  48. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Wahlin, B. E. et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1-positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin. Cancer Res. 16, 637–650 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Ruffell, B. et al. Leukocyte composition of human breast cancer. Proc. Natl Acad. Sci. USA 8 Aug 2011 (doi:10.1073/pnas.1104303108).

    Article  Google Scholar 

  52. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Ferrone, C. & Dranoff, G. Dual roles for immunity in gastrointestinal cancers. J. Clin. Oncol. 28, 4045–4051 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Legrand, N. et al. Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell Host Microbe 6, 5–9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pedroza-Gonzalez, A. et al. Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation. J. Exp. Med. 208, 479–490 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Higano, C. S. et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115, 3670–3679 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Glenn Dranoff is supported by grants from the US National Cancer Institute, the Leukemia and Lymphoma Society, the Melanoma Research Alliance, the Alliance for Cancer Gene Therapy and the Research Foundation for the Treatment of Ovarian Cancer.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Glenn Dranoff's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dranoff, G. Experimental mouse tumour models: what can be learnt about human cancer immunology?. Nat Rev Immunol 12, 61–66 (2012). https://doi.org/10.1038/nri3129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3129

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer