Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses

Key Points

  • Cytotoxic T lymphocyte antigen 4 (CTLA4) and its homologue CD28 are crucial T cell proteins associated with immune regulation. They share the same ligands, CD80 and CD86, which are present on antigen-presenting cells (APCs).

  • CTLA4-deficient mice suffer from fatal lymphoproliferative disease and die by 3–4 weeks of age, indicating that CTLA4 is an essential negative regulator of T cell responses. By contrast, CD28-deficient mice are immunocompromised.

  • CTLA4 is a highly endocytic receptor that undergoes both recycling to the plasma membrane and degradation in lysosomes. The cytoplasmic domain, which is required for these functions, is highly conserved in mammals.

  • CTLA4 is expressed by regulatory T (TReg) cells and activated conventional T cells. Evidence suggests that CTLA4 is important for TReg cell suppressive function in many settings.

  • The molecular mechanism of CTLA4 function is still undecided and a number of cell-intrinsic and cell-extrinsic mechanisms have been proposed.

  • In vivo studies using bone marrow chimeric mice indicate that CTLA4-deficient T cells are not dysregulated in the presence of wild-type T cells. This suggests that the main non-redundant function of CTLA4 in vivo is a cell-extrinsic one.

  • Emerging evidence suggests that one cell-extrinsic function of CTLA4 may be to downregulate CD80 and CD86 expression on APCs, thereby limiting the ability of APCs to stimulate T cells via CD28.

Abstract

The T cell protein cytotoxic T lymphocyte antigen 4 (CTLA4) was identified as a crucial negative regulator of the immune system over 15 years ago, but its mechanisms of action are still under debate. It has long been suggested that CTLA4 transmits an inhibitory signal to the cells that express it. However, not all the available data fit with a cell-intrinsic function for CTLA4, and other studies have suggested that CTLA4 functions in a T cell-extrinsic manner. Here, we discuss the data for and against the T cell-intrinsic and -extrinsic functions of CTLA4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Receptor–ligand interactions.
Figure 2: Intracellular trafficking of CTLA4.
Figure 3: T cell-intrinsic models of CTLA4 function.
Figure 4: T cell-extrinsic models of CTLA4 function.

Similar content being viewed by others

References

  1. Walker, L. S. & Abbas, A. K. The enemy within: keeping self-reactive T cells at bay in the periphery. Nature Rev. Immunol. 2, 11–19 (2002).

    CAS  Google Scholar 

  2. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genet. 27, 68–73 (2001).

    CAS  PubMed  Google Scholar 

  3. Wahl, S. M., Orenstein, J. M. & Chen, W. TGF-β influences the life and death decisions of T lymphocytes. Cytokine Growth Factor Rev. 11, 71–79 (2000).

    CAS  PubMed  Google Scholar 

  4. Fehervari, Z., Yamaguchi, T. & Sakaguchi, S. The dichotomous role of IL-2: tolerance versus immunity. Trends Immunol. 27, 109–111 (2006).

    CAS  PubMed  Google Scholar 

  5. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    CAS  PubMed  Google Scholar 

  6. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995). References 5 and 6 were the first reports of the lethal lymphoproliferative syndrome that occurs in CTLA4-deficient mice, demonstrating the central role of this molecule in the regulation of T cell immune responses.

    CAS  PubMed  Google Scholar 

  7. Chambers, C. A., Sullivan, T. J. & Allison, J. P. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ cells. Immunity 7, 885–895 (1997). This report shows that depletion of CD4+ T cells prevents lymphocytic infiltration of peripheral tissues in CTLA4-deficient mice, illustrating the role of CTLA4 in CD4+ T cell function.

    CAS  PubMed  Google Scholar 

  8. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    CAS  PubMed  Google Scholar 

  9. Peggs, K. S., Quezada, S. A., Korman, A. J. & Allison, J. P. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr. Opin. Immunol. 18, 206–213 (2006).

    CAS  PubMed  Google Scholar 

  10. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

    CAS  PubMed  Google Scholar 

  11. Vijayakrishnan, L. et al. An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 20, 563–575 (2004).

    CAS  PubMed  Google Scholar 

  12. Gough, S. C., Walker, L. S. & Sansom, D. M. CTLA4 gene polymorphism and autoimmunity. Immunol. Rev. 204, 102–115 (2005).

    CAS  PubMed  Google Scholar 

  13. Sansom, D. M. CD28, CTLA-4 and their ligands: who does what and to whom? Immunology 101, 169–177 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sansom, D. M., Manzotti, C. N. & Zheng, Y. What's the difference between CD80 and CD86? Trends Immunol. 24, 313–318 (2003).

    Google Scholar 

  15. Sansom, D. M. & Walker, L. S. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol. Rev. 212, 131–148 (2006).

    CAS  PubMed  Google Scholar 

  16. Keir, M. E. & Sharpe, A. H. The B7/CD28 costimulatory family in autoimmunity. Immunol. Rev. 204, 128–143 (2005).

    CAS  PubMed  Google Scholar 

  17. Linsley, P. S. et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J. Exp. Med. 173, 721–730 (1991).

    CAS  PubMed  Google Scholar 

  18. Thompson, C. et al. CD28 activation pathway regulates the production of multiple T cell-derived lymphokines/cytokines. Proc. Natl Acad. Sci. USA 86, 1333–1337 (1993).

    Google Scholar 

  19. Boise, L. H. et al. CD28 costimulation can promote T cell survival by enhancing expression of Bcl-XL . Immunity 3, 87–98 (1995).

    CAS  PubMed  Google Scholar 

  20. McLeod, J. D. et al. Activation of human T cells with superantigen and CD28 confers resistance to apoptosis by CD95. J. Immunol. 160, 2072–2079 (1998).

    CAS  PubMed  Google Scholar 

  21. Ferguson, S. E., Han, S., Kelsoe, G. & Thompson, C. B. CD28 is required for germinal center formation. J. Immunol. 156, 4576–4581 (1996).

    CAS  PubMed  Google Scholar 

  22. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    CAS  PubMed  Google Scholar 

  23. Gett, A. V. & Hodgkin, P. D. A cellular calculus for signal integration by T cells. Nature Immunol. 1, 239–244 (2000).

    CAS  Google Scholar 

  24. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Walker, L. S., Gulbranson-Judge, A., Flynn, S., Brocker, T. & Lane, P. J. Co-stimulation and selection for T-cell help for germinal centres: the role of CD28 and OX40. Immunol. Today 21, 333–337 (2000).

    CAS  PubMed  Google Scholar 

  26. Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    CAS  PubMed  Google Scholar 

  27. Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

    CAS  PubMed  Google Scholar 

  28. Kearney, E. R. et al. Antigen-dependent clonal expansion of a trace population of antigen-specific CD4+ T cells in vivo is dependent on CD28 costimulation and inhibited by CTLA-4. J. Immunol. 155, 1032–1036 (1995).

    CAS  PubMed  Google Scholar 

  29. Hurwitz, A. A., Sullivan, T. J., Sobel, R. A. & Allison, J. P. Cytotoxic T lymphocyte antigen-4 (CTLA-4) limits the expansion of encephalitogenic T cells in experimental autoimmune encephalomyelitis (EAE)-resistant BALB/c mice. Proc. Natl Acad. Sci. USA 99, 3013–3017 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Collins, A. V. et al. The interaction properties of costimulatory molecules revisited. Immunity 17, 201–210 (2002).

    CAS  PubMed  Google Scholar 

  31. Lenschow, D. J. et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science 257, 789–792 (1992).

    CAS  PubMed  Google Scholar 

  32. Linsley, P. S. et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science 257, 792–795 (1992).

    CAS  PubMed  Google Scholar 

  33. Tivol, E. A. et al. CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA-4-deficient mice. J. Immunol. 158, 5091–5094 (1997).

    CAS  PubMed  Google Scholar 

  34. Mandelbrot, D. A., McAdam, A. J. & Sharpe, A. H. B7–1 or B7–2 is required to produce the lymphoproliferative phenotype in mice lacking cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). J. Exp. Med. 189, 435–440 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tai, X., Van Laethem, F., Sharpe, A. H. & Singer, A. Induction of autoimmune disease in CTLA-4−/− mice depends on a specific CD28 motif that is required for in vivo costimulation. Proc. Natl Acad. Sci. USA 104, 13756–13761 (2007). This study identified the C-terminal proline residues of CD28 that are required to cause the lymphoproliferative syndrome associated with CTLA4 deficiency. This emphasizes that the central role of CTLA4 is to inhibit the CD28 pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Linsley, P. S. et al. Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J. Exp. Med. 176, 1595–1604 (1992).

    CAS  PubMed  Google Scholar 

  37. Metzler, B., Burkhart, C. & Wraith, D. C. Phenotypic analysis of CTLA-4 and CD28 expression during transient peptide-induced T cell activation in vivo. Int. Immunol. 11, 667–675 (1999).

    CAS  PubMed  Google Scholar 

  38. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000). References 38 and 39 provided the first evidence for a role for CTLA4 in T Reg cell function.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mead, K. I. et al. Exocytosis of CTLA-4 is dependent on phospholipase D and ADP ribosylation factor-1 and stimulated during activation of regulatory T cells. J. Immunol. 174, 4803–4811 (2005).

    CAS  PubMed  Google Scholar 

  41. Manzotti, C. N. et al. Integration of CD28 and CTLA-4 function results in differential responses of T cells to CD80 and CD86. Eur. J. Immunol. 36, 1413–1422 (2006).

    CAS  PubMed  Google Scholar 

  42. Linsley, P. S. et al. Intracellular trafficking of CTLA-4 and focal localisation towards sites of TCR engagement. Immunity 4, 535–543 (1996). This study shows that CTLA4 is an intracellular protein that is stimulated to traffic to TCR contact sites.

    CAS  PubMed  Google Scholar 

  43. Shiratori, T. et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 6, 583–589 (1997). This work demonstrates the association of CTLA4 with the clathrin-associated adaptor complex AP2, which underpins its endocytic behaviour.

    CAS  PubMed  Google Scholar 

  44. Chuang, E. et al. Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. J. Immunol. 159, 144–151 (1997).

    CAS  PubMed  Google Scholar 

  45. Zhang, Y. & Allison, J. P. Interaction of CTLA-4 with AP-50, a clathrin-coated pit adaptor protein. Proc. Natl Acad. Sci. USA 94, 9273–9278 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schneider, H. et al. Cytolytic T lymphocyte-associated antigen-4 and the TCRζ/CD3 complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J. Immunol. 163, 1868–1879 (1999).

    CAS  PubMed  Google Scholar 

  47. Egen, J. G. & Allison, J. P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16, 23–35 (2002). This study shows that TCR stimulation causes accumulation of CTLA4 at the immune synapse.

    CAS  PubMed  Google Scholar 

  48. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Iida, T. et al. Regulation of cell surface expression of CTLA-4 by secretion of CTLA-4-containing lysosomes upon activation of CD4+ T cells. J. Immunol. 165, 5062–5068 (2000).

    CAS  PubMed  Google Scholar 

  50. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    CAS  PubMed  Google Scholar 

  51. Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    CAS  PubMed  Google Scholar 

  52. Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tang, Q. et al. Distinct roles of CTLA-4 and TGF-β in CD4+CD25+ regulatory T cell function. Eur. J. Immunol. 34, 2996–3005 (2004).

    CAS  PubMed  Google Scholar 

  54. Manzotti, C. N. et al. Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires CD25+ regulatory T cells. Eur. J. Immunol. 32, 2888–2896 (2002).

    CAS  PubMed  Google Scholar 

  55. Zheng, Y. et al. Acquisition of suppressive function by activated human CD4+ CD25 T cells is associated with the expression of CTLA-4 not FoxP3. J. Immunol. 181, 1683–1691 (2008).

    CAS  PubMed  Google Scholar 

  56. Kataoka, H. et al. CD25+CD4+ regulatory T cells exert in vitro suppressive activity independent of CTLA-4. Int. Immunol. 17, 421–427 (2005). This study demonstrates that suppression by wild-type T Reg cells is CTLA4 dependent, but that alternative mechanisms can allow CTLA4-deficient cells to suppress immune responses.

    CAS  PubMed  Google Scholar 

  57. Quezada, S. A., Peggs, K. S., Curran, M. A. & Allison, J. P. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J. Clin. Invest. 116, 1935–1945 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kavanagh, B. et al. CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependant fashion. Blood 112, 1175–1183 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schmidt, E. M. et al. CTLA-4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity. J. Immunol. 182, 274–282 (2009).

    CAS  PubMed  Google Scholar 

  60. Verhagen, J. et al. Enhanced selection of FoxP3+ T-regulatory cells protects CTLA-4-deficient mice from CNS autoimmune disease. Proc. Natl Acad. Sci. USA 106, 3306–3311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    CAS  PubMed  Google Scholar 

  62. Read, S. et al. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J. Immunol. 177, 4376–4383 (2006).

    CAS  PubMed  Google Scholar 

  63. Sojka, D. K., Hughson, A. & Fowell, D. J. CTLA-4 is required by CD4+CD25+ Treg to control CD4+ T-cell lymphopenia-induced proliferation. Eur. J. Immunol. 39, 1544–1551 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kolar, P. et al. CTLA-4 (CD152) controls homeostasis and suppressive capacity of regulatory T cells in mice. Arthritis Rheum. 60, 123–132 (2009).

    CAS  PubMed  Google Scholar 

  65. Ise, W. et al. CTLA-4 suppresses the pathogenicity of self antigen-specific T cells by cell-intrinsic and cell-extrinsic mechanisms. Nature Immunol. 11, 129–135 (2010).

    CAS  Google Scholar 

  66. Jain, N., Nguyen, H., Chambers, C. & Kang, J. Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proc. Natl Acad. Sci. USA 107, 1524–1528 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    CAS  PubMed  Google Scholar 

  68. Tang, Q. & Bluestone, J. A. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nature Immunol. 9, 239–244 (2008).

    CAS  Google Scholar 

  69. Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nature Rev. Immunol. 8, 523–532 (2008).

    CAS  Google Scholar 

  70. Krummel, M. F. & Allison, J. P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 183, 2533–2540 (1996).

    CAS  PubMed  Google Scholar 

  71. Walunas, T. L., Bakker, C. Y. & Bluestone, J. A. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med. 183, 2541–2550 (1996).

    CAS  PubMed  Google Scholar 

  72. Chuang, E. et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13, 313–322 (2000).

    CAS  PubMed  Google Scholar 

  73. Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Marengere, L. E. et al. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 272, 1170–1173 (1996).

    CAS  PubMed  Google Scholar 

  75. Lee, K. M. et al. Molecular basis of T cell inactivation by CTLA-4. Science 282, 2263–2266 (1998).

    CAS  PubMed  Google Scholar 

  76. Martin, M., Schneider, H., Azouz, A. & Rudd, C. E. Cytotoxic T lymphocyte antigen 4 and CD28 modulate cell surface raft expression in their regulation of T cell function. J. Exp. Med. 194, 1675–1681 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chikuma, S., Imboden, J. B. & Bluestone, J. A. Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 197, 129–135 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Darlington, P. J. et al. Surface cytotoxic T lymphocyte-associated antigen 4 partitions within lipid rafts and relocates to the immunological synapse under conditions of inhibition of T cell activation. J. Exp. Med. 195, 1337–1347 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chuang, E. et al. Regulation of cytotoxic T lymphocyte-associated molecule-4 by Src kinases. J. Immunol. 162, 1270–1277 (1999).

    CAS  PubMed  Google Scholar 

  80. Hu, H., Rudd, C. E. & Schneider, H. Src kinases Fyn and Lck facilitate the accumulation of phosphorylated CTLA-4 and its association with PI-3 kinase in intracellular compartments of T-cells. Biochem. Biophys. Res. Commun. 288, 573–578 (2001).

    CAS  PubMed  Google Scholar 

  81. Schneider, H., Schwartzberg, P. L. & Rudd, C. E. Resting lymphocyte kinase (Rlk/Txk) phosphorylates the YVKM motif and regulates PI 3-kinase binding to T-cell antigen CTLA-4. Biochem. Biophys. Res. Commun. 252, 14–19 (1998).

    CAS  PubMed  Google Scholar 

  82. Schneider, H., Valk, E., Leung, R. & Rudd, C. E. CTLA-4 activation of phosphatidylinositol 3-kinase (PI 3-K) and protein kinase B (PKB/AKT) sustains T-cell anergy without cell death. PLoS ONE 3, e3842 (2008).

    PubMed  PubMed Central  Google Scholar 

  83. Schneider, H. et al. Cutting edge: CTLA-4 (CD152) differentially regulates mitogen-activated protein kinases (extracellular signal-regulated kinase and c-Jun N-terminal kinase) in CD4+ T cells from receptor/ligand-deficient mice. J. Immunol. 169, 3475–3479 (2002).

    CAS  PubMed  Google Scholar 

  84. Schneider, H., Smith, X., Liu, H., Bismuth, G. & Rudd, C. E. CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur. J. Immunol. 38, 40–47 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Calvo, C. R., Amsen, D. & Kruisbeek, A. M. Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated kinase (ERK) and Jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor ζ and ZAP70. J. Exp. Med. 186, 1645–1653 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Stein, P. H., Fraser, J. D. & Weiss, A. The cytoplasmic domain of CD28 is both necessary and sufficient for costimulation of interleukin-2 secretion and association with phosphatidylinositol 3′-kinase. Mol. Cell. Biol. 14, 3392–3402 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Araki, M. et al. Genetic evidence that the differential expression of the ligand-independent isoform of CTLA-4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice. J. Immunol. 183, 5146–5157 (2009).

    CAS  PubMed  Google Scholar 

  88. Chikuma, S., Abbas, A. K. & Bluestone, J. A. B7-independent inhibition of T cells by CTLA-4. J. Immunol. 175, 177–181 (2005).

    CAS  PubMed  Google Scholar 

  89. Choi, J. M. et al. Transduction of the cytoplasmic domain of CTLA-4 inhibits TcR-specific activation signals and prevents collagen-induced arthritis. Proc. Natl Acad. Sci. USA 105, 19875–19880 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Choi, J. M. et al. Intranasal delivery of the cytoplasmic domain of CTLA-4 using a novel protein transduction domain prevents allergic inflammation. Nature Med. 12, 574–579 (2006).

    CAS  PubMed  Google Scholar 

  91. Jeffery, L. et al. 1,25-dihydroxyvitamin D3 and interleukin-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 183, 5458–5467 (2009).

    CAS  PubMed  Google Scholar 

  92. Bowlus, C. L. The role of iron in T cell development and autoimmunity. Autoimmun. Rev. 2, 73–78 (2003).

    CAS  PubMed  Google Scholar 

  93. Thompson, C. B. & Allison, J. P. The emerging role of CTLA-4 as an immune attenuator. Immunity 7, 445–450 (1997).

    CAS  PubMed  Google Scholar 

  94. Alegre, M.-L. et al. Regulation of surface and intracellular expression of CTLA-4 on mouse T cells. J. Immunol. 157, 4762–4770 (1996).

    CAS  PubMed  Google Scholar 

  95. Carreno, B. M. et al. CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. J. Immunol. 165, 1352–1356 (2000).

    CAS  PubMed  Google Scholar 

  96. Yokosuka, T. et al. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity 33, 326–339 (2010).

    CAS  PubMed  Google Scholar 

  97. Masteller, E. L., Chuang, E., Mullen, A. C., Reiner, S. L. & Thompson, C. B. Structural analysis of CTLA-4 function in vivo. J. Immunol. 164, 5319–5327 (2000).

    CAS  PubMed  Google Scholar 

  98. Schneider, H., Valk, E., da Rocha Dias, S., Wei, B. & Rudd, C. E. CTLA-4 up-regulation of lymphocyte function-associated antigen 1 adhesion and clustering as an alternate basis for coreceptor function. Proc. Natl Acad. Sci. USA 102, 12861–12866 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Onishi, Y., Fehervari, Z., Yamaguchi, T. & Sakaguchi, S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc. Natl Acad. Sci. USA 105, 10113–10118 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schneider, H. et al. Reversal of the TCR stop signal by CTLA-4. Science 313, 1972–1975 (2006).

    CAS  PubMed  Google Scholar 

  101. Downey, J., Smith, A., Schneider, H., Hogg, N. & Rudd, C. E. TCR/CD3 mediated stop-signal is decoupled in T-cells from Ctla4 deficient mice. Immunol. Lett. 115, 70–72 (2008).

    CAS  PubMed  Google Scholar 

  102. Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nature Immunol. 7, 83–92 (2006).

    CAS  Google Scholar 

  103. Fife, B. T. et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nature Immunol. 10, 1185–1192 (2009).

    CAS  Google Scholar 

  104. Bachmann, M. F., Kohler, G., Ecabert, B., Mak, T. W. & Kopf, M. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J. Immunol. 163, 1128–1131 (1999). This seminal paper showed for the first time that CTLA4-deficient cells are controlled by a cohort of CTLA4-sufficient cells in mixed bone marrow chimaeras. Despite its relative under-appreciation, this represents the most reproducible experimental approach in CTLA4 biology.

    CAS  PubMed  Google Scholar 

  105. Homann, D. et al. Lack of intrinsic CTLA-4 expression has minimal effect on regulation of antiviral T-cell immunity. J. Virol. 80, 270–280 (2006). A careful and comprehensive study of the responses of CTLA4-deficient and CTLA4-sufficient T cells in mixed bone marrow chimaeras. The study examined T cell proliferation, effector function, repertoire selection, functional avidity and memory.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chikuma, S. & Bluestone, J. A. Expression of CTLA-4 and FOXP3 in cis protects from lethal lymphoproliferative disease. Eur. J. Immunol. 37, 1285–1289 (2007).

    CAS  PubMed  Google Scholar 

  107. Friedline, R. H. et al. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J. Exp. Med. 206, 421–434 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tivol, E. A. & Gorski, J. Re-establishing peripheral tolerance in the absence of CTLA-4: complementation by wild-type T cells points to an indirect role for CTLA-4. J. Immunol. 169, 1852–1858 (2002).

    CAS  PubMed  Google Scholar 

  109. Bachmann, M. F. et al. Normal pathogen-specific immune responses mounted by CTLA-4-deficient T cells: a paradigm reconsidered. Eur. J. Immunol. 31, 450–458 (2001).

    CAS  PubMed  Google Scholar 

  110. Bachmann, M. F. et al. Normal responsiveness of CTLA-4-deficient anti-viral cytotoxic T cells. J. Immunol. 160, 95–100 (1998).

    CAS  PubMed  Google Scholar 

  111. Grohmann, U. et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunol. 3, 1097–1101 (2002).

    CAS  Google Scholar 

  112. Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nature Immunol. 4, 1206–1212 (2003).

    CAS  Google Scholar 

  113. Munn, D. H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Mellor, A. L. et al. Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int. Immunol. 16, 1391–1401 (2004).

    CAS  PubMed  Google Scholar 

  115. Orabona, C. et al. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nature Immunol. 5, 1134–1142 (2004).

    CAS  Google Scholar 

  116. Munn, D. H., Sharma, M. D. & Mellor, A. L. Ligation of B7–1/B7–2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 172, 4100–4110 (2004).

    CAS  PubMed  Google Scholar 

  117. Walker, L. S. et al. Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J. Exp. Med. 190, 1115–1122 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Manches, O. et al. HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J. Clin. Invest. 118, 3431–3439 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Davis, P. M., Nadler, S. G., Stetsko, D. K. & Suchard, S. J. Abatacept modulates human dendritic cell-stimulated T-cell proliferation and effector function independent of IDO induction. Clin. Immunol. 126, 38–47 (2008).

    CAS  PubMed  Google Scholar 

  120. Agaugue, S., Perrin-Cocon, L., Coutant, F., Andre, P. & Lotteau, V. 1-Methyl-tryptophan can interfere with TLR signaling in dendritic cells independently of IDO activity. J. Immunol. 177, 2061–2071 (2006).

    CAS  PubMed  Google Scholar 

  121. Chen, W., Jin, W. & Wahl, S. M. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor β (TGF-β) production by murine CD4+ T cells. J. Exp. Med. 188, 1849–1857 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Oida, T., Xu, L., Weiner, H. L., Kitani, A. & Strober, W. TGF-β-mediated suppression by CD4+CD25+ T cells is facilitated by CTLA-4 signaling. J. Immunol. 177, 2331–2339 (2006).

    CAS  PubMed  Google Scholar 

  123. Sullivan, T. J. et al. Lack of a role for transforming growth factor-β in cytotoxic T lymphocyte antigen-4-mediated inhibition of T cell activation. Proc. Natl Acad. Sci. USA 98, 2587–2592 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Green, E. A., Gorelik, L., McGregor, C. M., Tran, E. H. & Flavell, R. A. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-β–TGF-β receptor interactions in type 1 diabetes. Proc. Natl Acad. Sci. USA 100, 10878–10883 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Fahlen, L. et al. T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 737–746 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Magistrelli, G. et al. A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur. J. Immunol. 29, 3596–3602 (1999).

    CAS  PubMed  Google Scholar 

  128. Oaks, M. K. & Hallett, K. M. Cutting edge: a soluble form of CTLA-4 in patients with autoimmune thyroid disease. J. Immunol. 164, 5015–5018 (2000).

    CAS  PubMed  Google Scholar 

  129. Toussirot, E. et al. Increased production of soluble CTLA-4 in patients with spondylarthropathies correlates with disease activity. Arthritis Res. Ther. 11, R101 (2009).

    PubMed  PubMed Central  Google Scholar 

  130. Purohit, S. et al. Lack of correlation between the levels of soluble cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and the CT-60 genotypes. J. Autoimmune Dis. 2, 8 (2005).

    PubMed  PubMed Central  Google Scholar 

  131. Mayans, S. et al. CT60 genotype does not affect CTLA-4 isoform expression despite association to T1D and AITD in northern Sweden. BMC Med. Genet. 8, 3 (2007).

    PubMed  PubMed Central  Google Scholar 

  132. Berry, A., Tector, M. & Oaks, M. K. Lack of association between sCTLA-4 levels in human plasma and common CTLA-4 polymorphisms. J. Negat. Results Biomed. 7, 8 (2008).

    PubMed  PubMed Central  Google Scholar 

  133. Tector, M., Khatri, B. O., Kozinski, K., Dennert, K. & Oaks, M. K. Biochemical analysis of CTLA-4 immunoreactive material from human blood. BMC Immunol. 10, 51 (2009).

    PubMed  PubMed Central  Google Scholar 

  134. Tadokoro, C. E. et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med. 203, 505–511 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Misra, N., Bayry, J., Lacroix-Desmazes, S., Kazatchkine, M. D. & Kaveri, S. V. Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J. Immunol. 172, 4676–4680 (2004).

    CAS  PubMed  Google Scholar 

  136. Cederbom, L., Hall, H. & Ivars, F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur. J. Immunol. 30, 1538–1543 (2000).

    CAS  PubMed  Google Scholar 

  137. Kastenmuller, W. et al. Regulatory T cells selectively control CD8+ T cell effector pool size via IL-2 restriction. J. Immunol. 187, 3186–3197 (2011).

    CAS  PubMed  Google Scholar 

  138. Oderup, C., Cederbom, L., Makowska, A., Cilio, C. M. & Ivars, F. Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology 118, 240–249 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Schildknecht, A. et al. FoxP3+ regulatory T cells essentially contribute to peripheral CD8+ T-cell tolerance induced by steady-state dendritic cells. Proc. Natl Acad. Sci. USA 107, 199–203 (2010).

    CAS  PubMed  Google Scholar 

  140. Serra, P. et al. CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity 19, 877–889 (2003).

    CAS  PubMed  Google Scholar 

  141. Kusakari, S. et al. Trans-endocytosis of CD47 and SHPS-1 and its role in regulation of the CD47–SHPS-1 system. J. Cell Sci. 121, 1213–1223 (2008).

    CAS  PubMed  Google Scholar 

  142. Marston, D. J., Dickinson, S. & Nobes, C. D. Rac-dependent trans-endocytosis of ephrinBs regulates Eph–ephrin contact repulsion. Nature Cell Biol. 5, 879–888 (2003).

    CAS  PubMed  Google Scholar 

  143. Cagan, R. L., Kramer, H., Hart, A. C. & Zipursky, S. L. The bride of sevenless and sevenless interaction: internalization of a transmembrane ligand. Cell 69, 393–399 (1992).

    CAS  PubMed  Google Scholar 

  144. Davis, D. M. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nature Rev. Immunol. 7, 238–243 (2007).

    CAS  Google Scholar 

  145. Greenwald, R. J., Boussiotis, V. A., Lorsbach, R. B., Abbas, A. K. & Sharpe, A. H. CTLA-4 regulates induction of anergy in vivo. Immunity 14, 145–155 (2001).

    CAS  PubMed  Google Scholar 

  146. Eggena, M. P. et al. Cooperative roles of CTLA-4 and regulatory T cells in tolerance to an islet cell antigen. J. Exp. Med. 199, 1725–1730 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Walker, L. S., Ausubel, L. J., Chodos, A., Bekarian, N. & Abbas, A. K. CTLA-4 differentially regulates T cell responses to endogenous tissue protein versus exogenous immunogen. J. Immunol. 169, 6202–6209 (2002).

    CAS  PubMed  Google Scholar 

  148. Bernard, D. et al. Costimulatory receptors in a teleost fish: typical CD28, elusive CTLA4. J. Immunol. 176, 4191–4200 (2006).

    CAS  PubMed  Google Scholar 

  149. Hansen, J. D. et al. The B7 family of immunoregulatory receptors: a comparative and evolutionary perspective. Mol. Immunol. 46, 457–472 (2009).

    CAS  PubMed  Google Scholar 

  150. Chambers, C. A., Cado, D., Truong, T. & Allison, J. P. Thymocyte development is normal in CTLA-4-deficient mice. Proc. Natl Acad. Sci. USA 94, 9296–9301 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Tang, A. L. et al. CTLA4 expression is an indicator and regulator of steady-state CD4+ FoxP3+ T cell homeostasis. J. Immunol. 181, 1806–1813 (2008).

    CAS  PubMed  Google Scholar 

  152. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    CAS  PubMed  Google Scholar 

  153. Ikemizu, S. et al. Structure and dimerization of a soluble form of B7–1. Immunity 12, 51–60 (2000).

    CAS  PubMed  Google Scholar 

  154. Catalfamo, M., Tai, X., Karpova, T., McNally, J. & Henkart, P. A. TcR-induced regulated secretion leads to surface expression of CTLA-4 in CD4+CD25+ T cells. Immunology 125, 70–79 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Rudd, C. E. The reverse stop-signal model for CTLA4 function. Nature Rev. Immunol. 8, 153–160 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Sakaguchi and members of the Walker and Sansom groups for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lucy S. K. Walker or David M. Sansom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Lucy S. K. Walker's homepage

David M. Sansom's homepage

Glossary

Peripheral tolerance

The generation of tolerance to self for mature T cells that have left the thymus and are recirculating in the periphery.

Regulatory T cells

(TReg cells). Cells that can suppress the activity of other T cells, including autoreactive T cells. Depletion of TReg cells results in the loss of peripheral tolerance and the development of autoimmune disease.

Clathrin-coated pits

Membrane invaginations that contain transmembrane proteins and a layer of electron-dense clathrin, clathrin adaptors and other proteins on their cytoplasmic faces. These structures bud from the membrane to become clathrin-coated transport vesicles.

Lipid rafts

Structures that are proposed to arise from phase separation of different plasma membrane lipids as a result of the selective coalescence of certain lipids on the basis of their physical properties. This results in the formation of distinct and stable lipid domains in membranes that might provide a platform for membrane-associated protein organization.

Non-obese diabetic mice

(NOD mice). An inbred strain of mice that spontaneously develops T cell-mediated autoimmune diabetes. The Idd5 locus is one region that alters disease susceptibility in this mouse strain.

Central supramolecular activation cluster

(cSMAC). During T cell activation, T cell receptors accumulate into a central cluster (known as the cSMAC) at the interface between the T cell and the antigen-presenting cell. The cSMAC is surrounded by a ring of LFA1 (known as the pSMAC), and this characteristic receptor organization (the cSMAC surrounded by the pSMAC) constitutes the mature immunological synapse.

Tetramer staining

Biotinylated monomeric MHC molecules are folded in vitro together with a specific peptide that binds in the binding groove. These peptide–MHC complexes are then tetramerized using a fluorescently labelled streptavidin molecule. The tetramers bind T cells that express T cell receptors specific for the cognate peptide–MHC complex. They can therefore be used to track antigen-specific T cells by flow cytometry.

Trans-endocytosis

The process by which a tightly associated receptor–ligand complex induces invagination of the plasma membrane and internalization of the complex into the receptor-bearing cell to form a membrane-limited transport vesicle.

RAG

(Recombination activating gene). Rag1 and Rag2 are expressed in developing lymphocytes. Mice that are deficient for either of these genes fail to produce B and T cells owing to a developmental block in the gene rearrangement that is necessary for receptor expression.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, L., Sansom, D. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol 11, 852–863 (2011). https://doi.org/10.1038/nri3108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing