Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Reciprocal regulation of the neural and innate immune systems

Abstract

Innate immune responses are regulated by microorganisms and cell death, as well as by a third class of stress signal from the nervous and endocrine systems. The innate immune system also feeds back, through the production of cytokines, to regulate the function of the central nervous system (CNS), and this has effects on behaviour. These signals provide an extrinsic regulatory circuit that links physiological, social and environmental conditions, as perceived by the CNS, with transcriptional 'decision-making' in leukocytes. CNS-mediated regulation of innate immune responses optimizes total organism fitness and provides new opportunities for therapeutic control of chronic infectious, inflammatory and neuropsychiatric diseases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CNS regulation of innate immune response gene programmes.
Figure 2: Multi-circuit control of the innate immune transcriptome.

References

  1. Matzinger, P. Friendly and dangerous signals: is the tissue in control? Nature Immunol. 8, 11–13 (2007).

    Article  CAS  Google Scholar 

  2. Glaser, R. & Kiecolt-Glaser, J. K. Stress-induced immune dysfunction: implications for health. Nature Rev. Immunol. 5, 243–251 (2005).

    Article  CAS  Google Scholar 

  3. Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Rev. Neurosci. 9, 46–56 (2008).

    Article  CAS  Google Scholar 

  4. McEwen, B. S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904 (2007).

    PubMed  Google Scholar 

  5. Powell, N. D., Mays, J. W., Bailey, M. T., Hanke, M. L. & Sheridan, J. F. Immunogenic dendritic cells primed by social defeat enhance adaptive immunity to influenza A virus. Brain Behav. Immun. 25, 46–52 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Cole, S. W., Hawkley, L. C., Arevalo, J. M. & Cacioppo, J. T. Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes. Proc. Natl Acad. Sci. USA 108, 3080–3085 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cohen, S., Janicki-Deverts, D. & Miller, G. E. Psychological stress and disease. JAMA 298, 1685–1687 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Amit, I. et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326, 257–263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Decker, T., Muller, M. & Stockinger, S. The yin and yang of type I interferon activity in bacterial infection. Nature Rev. Immunol. 5, 675–687 (2005).

    Article  CAS  Google Scholar 

  10. Finch, C. E. Evolution in health and medicine Sackler colloquium. Evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc. Natl Acad. Sci. USA 1, 1718–1724 (2010).

    Article  Google Scholar 

  11. Sapolsky, R., Rivier, C., Yamamoto, G., Plotsky, P. & Vale, W. Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 238, 522–524 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Berkenbosch, F., VanOers, J., DelRey, A., Tilders, F. & Besedovsky, H. Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 238, 524–526 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Besedovsky, H., del Rey, A., Sorkin, E. & Dinarello, C. A. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233, 652–654 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Rhen, T. & Cidlowski, J. A. Antiinflammatory action of glucocorticoids — new mechanisms for old drugs. N. Engl. J. Med. 353, 1711–1723 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Pace, T. W., Hu, F. & Miller, A. H. Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav. Immun. 21, 9–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Cole, S. et al. Computational identification of gene–social environment interaction at the human IL6 locus. Proc. Natl Acad. Sci. USA 107, 5681–5686 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Collado-Hidalgo, A., Sung, C. & Cole, S. Adrenergic inhibition of innate anti-viral response: PKA blockade of type I interferon gene transcription mediates catecholamine support for HIV-1 replication. Brain Behav. Immun. 20, 552–563 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Nance, D. M. & Sanders, V. M. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav. Immun. 21, 736–745 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, H. J. et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J. Exp. Med. 192, 105–115 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Panina-Bordignon, P. et al. β2-agonists prevent Th1 development by selective inhibition of interleukin 12. J. Clin. Invest. 100, 1513–1519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cole, S. W., Korin, Y. D., Fahey, J. L. & Zack, J. A. Norepinephrine accelerates HIV replication via protein kinase A-dependent effect on cytokine production. J. Immunol. 161, 610–616 (1998).

    CAS  PubMed  Google Scholar 

  22. Grebe, K. M. et al. Cutting edge: sympathetic nervous system increases proinflammatory cytokines and exacerbates influenza A virus pathogenesis. J. Immunol. 184, 540–544 (2009).

    Article  PubMed  Google Scholar 

  23. Cole, S. W. et al. Social regulation of gene expression in human leukocytes. Genome Biol. 8, 1–13 (2007).

    Article  Google Scholar 

  24. Sloan, E. K. et al. Social stress enhances sympathetic innervation of primate lymph nodes: mechanisms and implications for viral pathogenesis. J. Neurosci. 27, 8857–8865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kiecolt-Glaser, J. K. et al. Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc. Natl Acad. Sci. USA 100, 9090–9095 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miller, G. E. et al. A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-κB signaling. Biol. Psychiatry 64, 266–272 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pace, T. W. et al. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am. J. Psychiatry 163, 1630–1633 (2006).

    Article  PubMed  Google Scholar 

  28. Bierhaus, A. et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc. Natl Acad. Sci. USA 100, 1920–1925 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goebel, M. U., Mills, P. J., Irwin, M. R. & Ziegler, M. G. Interleukin-6 and tumor necrosis factor-α production after acute psychological stress, exercise, and infused isoproterenol: differential effects and pathways. Psychosom. Med. 62, 591–598 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Bower, J. E. et al. Inflammatory responses to psychological stress in fatigued breast cancer survivors: relationship to glucocorticoids. Brain Behav. Immun. 21, 251–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Richlin, V. A., Arevalo, J. M., Zack, J. A. & Cole, S. W. Stress-induced enhancement of NF-κB DNA-binding in the peripheral blood leukocyte pool: effects of lymphocyte redistribution. Brain Behav. Immun. 18, 231–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Miller, G. E. et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc. Natl Acad. Sci. USA 106, 14716–14721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Engler, H., Bailey, M. T., Engler, A. & Sheridan, J. F. Effects of repeated social stress on leukocyte distribution in bone marrow, peripheral blood and spleen. J. Neuroimmunol. 148, 106–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Wohleb, E. S. et al. β-adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J. Neurosci. 31, 6277–6288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, E. et al. Genome-wide transcriptional profiling linked to social class in asthma. Thorax 64, 38–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Irwin, M. R., Wang, M., Campomayor, C. O., Collado-Hidalgo, A. & Cole, S. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch. Intern. Med. 166, 1756–1762 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Irwin, M. R. et al. Sleep loss activates cellular inflammatory signaling. Biol. Psychiatry 64, 538–540 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Motivala, S. & Irwin, M. R. Sleep and immunity: cytokine pathways linking sleep and health outcomes. Curr. Dir. Psychol. Sci. 16, 21–25 (2007).

    Article  Google Scholar 

  39. Meier-Ewert, H. K. et al. Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. J. Am. Coll. Cardiol. 43, 678–683 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Irwin, M. R., Carrillo, C. & Olmstead, R. Sleep loss activates cellular markers of inflammation: sex differences. Brain Behav. Immun. 24, 54–57 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. O'Connor, M. F., Motivala, S. J., Valladares, E. M., Olmstead, R. & Irwin, M. R. Sex differences in monocyte expression of IL-6: role of autonomic mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R145–R151 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Watkins, L. R. & Maier, S. F. Implications of immune-to-brain communication for sickness and pain. Proc. Natl Acad. Sci. USA 96, 7710–7713 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miller, A. H., Maletic, V. & Raison, C. L. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol. Psychiatry 65, 732–741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hart, B. L. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Harrison, N. A. et al. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol. Psychiatry 66, 407–414 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Eisenberger, N. I., Inagaki, T. K., Rameson, L. T., Mashal, N. M. & Irwin, M. R. An fMRI study of cytokine-induced depressed mood and social pain: the role of sex differences. Neuroimage 47, 881–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Eisenberger, N. I. et al. Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol. Psychiatry 68, 748–754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gimeno, D. et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychol. Med. 39, 413–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Miller, A. H., Ancoli-Israel, S., Bower, J. E., Capuron, L. & Irwin, M. R. Neuroendocrine–immune mechanisms of behavioral comorbidities in patients with cancer. J. Clin. Oncol. 26, 971–982 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Capuron, L. et al. Neurobehavioral effects of interferon-α in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology 26, 643–652 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Capuron, L., Ravaud, A. & Dantzer, R. Early depressive symptoms in cancer patients receiving interleukin 2 and/or interferon α-2b therapy. J. Clin. Oncol. 18, 2143–2151 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Tyring, S. et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet 367, 29–35 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Wong, M. L., Dong, C., Maestre-Mesa, J. & Licinio, J. Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol. Psychiatry 13, 800–812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Benedetti, F., Lucca, A., Brambilla, F., Colombo, C. & Smeraldi, E. Interleukin-6 serum levels correlate with response to antidepressant sleep deprivation and sleep phase advance. Prog. Neuropsychopharmacol. Biol. Psychiatry 26, 1167–1170 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Raison, C. L., Lowry, C. A. & Rook, G. A. Inflammation, sanitation, and consternation: loss of contact with coevolved, tolerogenic microorganisms and the pathophysiology and treatment of major depression. Arch. Gen. Psychiatry 67, 1211–1224 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Imeri, L. & Opp, M. R. How (and why) the immune system makes us sleep. Nature Rev. Neurosci. 10, 199–210 (2009).

    Article  CAS  Google Scholar 

  57. Mullington, J. et al. Dose-dependent effects of endotoxin on human sleep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R947–R955 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Raison, C. L. et al. Chronic interferon-α administration disrupts sleep continuity and depth in patients with hepatitis C: association with fatigue, motor slowing, and increased evening cortisol. Biol. Psychiatry 68, 942–949 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vgontzas, A. N. et al. Marked decrease in sleepiness in patients with sleep apnea by etanercept, a tumor necrosis factor-α antagonist. J. Clin. Endocrinol. Metab. 89, 4409–4413 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Monk, J. P. et al. Assessment of tumor necrosis factor α blockade as an intervention to improve tolerability of dose-intensive chemotherapy in cancer patients. J. Clin. Oncol. 24, 1852–1859 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Irwin, M. R., Olmstead, R., Valladares, E. M., Breen, E. C. & Ehlers, C. L. Tumor necrosis factor antagonism normalizes rapid eye movement sleep in alcohol dependence. Biol. Psychiatry 66, 191–195 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dew, M. A. et al. Healthy older adults' sleep predicts all-cause mortality at 4 to 19 years of follow-up. Psychosom. Med. 65, 63–73 (2003).

    Article  PubMed  Google Scholar 

  63. Thomas, K. S., Motivala, S., Olmstead, R. & Irwin, M. R. Sleep depth and fatigue: role of cellular inflammatory activation. Brain Behav. Immun. 25, 53–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Cho, H. J., Seeman, T. E., Bower, J. E., Kiefe, C. I. & Irwin, M. R. Prospective association between C-reactive protein and fatigue in the coronary artery risk development in young adults study. Biol. Psychiatry 66, 871–878 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Heesen, C. et al. Fatigue in multiple sclerosis: an example of cytokine mediated sickness behaviour? J. Neurol. Neurosurg. Psychiatry 77, 34–39 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Harboe, E. et al. Fatigue in primary Sjogren's syndrome — a link to sickness behaviour in animals? Brain Behav. Immun. 23, 1104–1108 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Davis, M. C. et al. Chronic stress and regulation of cellular markers of inflammation in rheumatoid arthritis: implications for fatigue. Brain Behav. Immun. 22, 24–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Schubert, C., Hong, S., Natarajan, L., Mills, P. J. & Dimsdale, J. E. The association between fatigue and inflammatory marker levels in cancer patients: a quantitative review. Brain Behav. Immun. 21, 413–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Bower, J. E. et al. Inflammatory biomarkers and fatigue during radiation therapy for breast and prostate cancer. Clin. Cancer Res. 15, 5534–5540 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Collado-Hidalgo, A., Bower, J. E., Ganz, P. A., Cole, S. W. & Irwin, M. R. Inflammatory biomarkers for persistent fatigue in breast cancer survivors. Clin. Cancer Res. 12, 2759–2766 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Bower, J. E., Ganz, P. A., Irwin, M. R., Arevalo, J. M. & Cole, S. W. Fatigue and gene expression in human leukocytes: increased NF-κB and decreased glucocorticoid signaling in breast cancer survivors with persistent fatigue. Brain Behav. Immun. 25, 147–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Collado-Hidalgo, A., Bower, J. E., Ganz, P. A., Irwin, M. R. & Cole, S. W. Cytokine gene polymorphisms and fatigue in breast cancer survivors: early findings. Brain Behav. Immun. 22, 1197–1200 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zautra, A. J. et al. Comparison of cognitive behavioral and mindfulness meditation interventions on adaptation to rheumatoid arthritis for patients with and without history of recurrent depression. J. Consult. Clin. Psychol. 76, 408–421 (2008).

    Article  PubMed  Google Scholar 

  74. Nicklas, B. J. et al. Exercise training and plasma C-reactive protein and interleukin-6 in elderly people. J. Am. Geriatr. Soc. 56, 2045–2052 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pace, T. W. et al. Effect of compassion meditation on neuroendocrine, innate immune and behavioral responses to psychosocial stress. Psychoneuroendocrinology 34, 87–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Irwin, M. R. & Olmstead, R. Mitigating cellular inflammation in older adults. Am. J. Geriatr. Psychiatry (in the press).

  77. Lavretsky, H. et al. Complementary use of Tai Chi Chih augments escitalopram treatment of geriatric depression: a randomized controlled trial. Am. J. Geriatr. Psychiatry 6 Mar 2011 (doi:10.1097/JGP.0b013e31820ee9ef).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sloan, E. K. et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 70, 7042–7052 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Idaghdour, Y. et al. Geographical genomics of human leukocyte gene expression variation in southern Morocco. Nature Genet. 42, 62–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Ericsson, A., Kovacs, K. J. & Sawchenko, P. E. A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J. Neurosci. 14, 897–913 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cole, S. W. in Complex Systems Science in Biomedicine (eds Deisboeck, T. S. & Kresh, J. Y.) 605–629 (Springer, New York, 2006).

    Book  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants R01-AG034588, R01-AG026364, R01-CA119159, R01-HL079955, P30-AG028748 and R01-MH091352 (to M.R.I.); grants R01-CA116778, R01-AG033590, R21-CA138687 and P30-AG028748 (to S.W.C.); and the Cousins Center for Psychoneuroimmunology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Irwin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Michael R. Irwin and Steven W. Cole's homepage

Glossary

Conspecific

Belonging to the same species.

Glucocorticoids

A class of steroid hormones that are involved in carbohydrate, protein and fat metabolism. These hormones are anti-inflammatory and immunosuppressive.

Hypothalamic–pituitary–adrenal

(HPA). This term refers to a complex set of direct influences and feedback interactions between the hypothalamus, the pituitary gland (a pea-shaped structure located below the hypothalamus) and the adrenal glands (small, conical organs on top of the kidneys).

Non-rapid eye movement sleep

(NREM sleep). The sleep stages 1–3 (previously known as stages 1–4) are collectively referred to as NREM sleep. Rapid eye movement (REM) sleep is not included. There are distinct electroencephalographic and other characteristics seen in each stage, and there is usually little or no eye movement during NREM sleep. Dreaming is rare during NREM sleep, and muscles are not paralyzed as in REM sleep.

Social ecology

A broad range of complex physical and symbolic features of the environment that are created by the presence of conspecifics (including social structures such as cultural systems or socio-economic status), as well as physical processes, such as transmission of communicable diseases, provision of medical care or physical aggression.

Sympathetic nervous system

(SNS). One of three parts of the autonomic nervous system (along with the enteric and parasympathetic systems). The SNS serves to mobilize the body's resources during flight-or-flight stress responses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irwin, M., Cole, S. Reciprocal regulation of the neural and innate immune systems. Nat Rev Immunol 11, 625–632 (2011). https://doi.org/10.1038/nri3042

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing