Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Type 2 diabetes as an inflammatory disease

Key Points

  • Type 2 diabetes is associated with obesity, ageing and inactivity. It is due to a progressive failure of pancreatic islet β-cells to compensate for insulin resistance.

  • The proposed mechanisms to explain impaired insulin secretion and sensitivity in type 2 diabetes include oxidative stress, endoplasmic reticulum stress, amyloid deposition in the pancreas, ectopic lipid deposition in muscle, liver and pancreas, and lipotoxicity and glucotoxicity. All these cellular stresses may induce an inflammatory response or are exacerbated by or associated with inflammation.

  • Factors that are associated with innate immune responses are present in the circulation, insulin-sensitive tissues and pancreatic islets in type 2 diabetes, and this evidence supports the involvement of inflammation in the pathogenesis of this disease.

  • Mechanisms thought to be responsible for the inflammatory state in type 2 diabetes include hypoxia and cell death of expanding adipose tissue, activation of the nuclear factor-κB (NF-κB) and JUN N-terminal kinase (JNK) pathways, activation of interleukin-1β (IL-1β), and recruitment and activation of immune cells.

  • Clinical trials using IL-1 antagonists or salsalate to directly target pro-inflammatory factors in patients with type 2 diabetes show promising preliminary results and support the role of inflammation in this condition.

  • Existing data suggest a potential role for inflammation in the pathogenesis of type 2 diabetes. The relative importance of this mechanism and the precise therapeutic consequences remain to be elucidated.

Abstract

Components of the immune system are altered in obesity and type 2 diabetes (T2D), with the most apparent changes occurring in adipose tissue, the liver, pancreatic islets, the vasculature and circulating leukocytes. These immunological changes include altered levels of specific cytokines and chemokines, changes in the number and activation state of various leukocyte populations and increased apoptosis and tissue fibrosis. Together, these changes suggest that inflammation participates in the pathogenesis of T2D. Preliminary results from clinical trials with salicylates and interleukin-1 antagonists support this notion and have opened the door for immunomodulatory strategies for the treatment of T2D that simultaneously lower blood glucose levels and potentially reduce the severity and prevalence of the associated complications of this disease.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Development of inflammation in type 2 diabetes.
Figure 2: Interleukin-1β-induced inflammation in islets of patients with type 2 diabetes.

References

  1. 1

    Shoelson, S. E., Lee, J. & Goldfine, A. B. Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Donath, M. Y., Boni-Schnetzler, M., Ellingsgaard, H. & Ehses, J. A. Islet inflammation impairs the pancreatic β-cell in type 2 diabetes. Physiology 24, 325–331 (2009).

    CAS  Google Scholar 

  3. 3

    Bonner-Weir, S. Islet growth and development in the adult. J. Mol. Endocrinol. 24, 297–302 (2000).

    CAS  Google Scholar 

  4. 4

    Kahn, B. B. Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance. Cell 92, 593–596 (1998).

    CAS  Google Scholar 

  5. 5

    Rhodes, C. J. Type 2 diabetes-a matter of β-cell life and death? Science 307, 380–384 (2005).

    CAS  Google Scholar 

  6. 6

    Robertson, R. P., Harmon, J., Tran, P. O. & Poitout, V. β-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53, S119–S124 (2004).

    CAS  Google Scholar 

  7. 7

    Weir, G. C. & Bonner-Weir, S. Five stages of evolving β-cell dysfunction during progression to diabetes. Diabetes 53, S16–S21 (2004).

    CAS  Google Scholar 

  8. 8

    Prentki, M. & Nolan, C. J. Islet β cell failure in type 2 diabetes. J. Clin. Invest. 116, 1802–1812 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Hull, R. L., Westermark, G. T., Westermark, P. & Kahn, S. E. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab. 89, 3629–3643 (2004).

    CAS  Google Scholar 

  10. 10

    Harding, H. P. & Ron, D. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51, S455–S461 (2002).

    CAS  Google Scholar 

  11. 11

    Hotamisligil, G. S. & Erbay, E. Nutrient sensing and inflammation in metabolic diseases. Nature Rev. Immunol. 8, 923–934 (2008).

    CAS  Google Scholar 

  12. 12

    Donath, M. Y., Storling, J., Maedler, K. & Mandrup-Poulsen, T. Inflammatory mediators and islet β-cell failure: a link between type 1 and type 2 diabetes. J. Mol. Med. 81, 455–470 (2003).

    CAS  Google Scholar 

  13. 13

    Ehses, J. A., Ellingsgaard, H., Boni-Schnetzler, M. & Donath, M. Y. Pancreatic islet inflammation in type 2 diabetes: from α and β cell compensation to dysfunction. Arch. Physiol. Biochem. 115, 240–247 (2009).

    CAS  Google Scholar 

  14. 14

    Donath, M. Y. et al. Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care 31, S161–S164 (2008).

    CAS  Google Scholar 

  15. 15

    Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nature Immunol. 11, 897–904 (2010).

    CAS  Google Scholar 

  16. 16

    Pickup, J. C., Mattock, M. B., Chusney, G. D. & Burt, D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 40, 1286–1292 (1997).

    CAS  PubMed  Google Scholar 

  17. 17

    Spranger, J. et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European prospective investigation into cancer and nutrition (EPIC)-potsdam study. Diabetes 52, 812–817 (2003).

    CAS  Google Scholar 

  18. 18

    Herder, C. et al. Inflammation and type 2 diabetes: results from KORA Augsburg. Gesundheitswesen 67, S115–S121 (2005).

    Google Scholar 

  19. 19

    Herder, C. et al. Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: the Whitehall II study. Diabetes Care 32, 421–423 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Pradhan, A. D., Manson, J. E., Rifai, N., Buring, J. E. & Ridker, P. M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286, 327–334 (2001).

    CAS  Google Scholar 

  21. 21

    Meier, C. A. et al. IL-1 receptor antagonist serum levels are increased in human obesity: a possible link to the resistance to leptin? J. Clin. Endocrinol. Metab. 87, 1184–1188 (2002).

    CAS  Google Scholar 

  22. 22

    Carstensen, M. et al. Accelerated increase in serum interleukin-1 receptor antagonist starts 6 years before diagnosis of type 2 diabetes: Whitehall II prospective cohort study. Diabetes 59, 1222–1227 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Marculescu, R. et al. Interleukin-1 receptor antagonist genotype is associated with coronary atherosclerosis in patients with type 2 diabetes. Diabetes 51, 3582–3585 (2002).

    CAS  Google Scholar 

  24. 24

    Dinarello, C. A. The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. N. Engl. J. Med. 343, 732–734 (2000).

    CAS  Google Scholar 

  25. 25

    Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007). A proof-of-concept clinical study demonstrating the potential of immunomodulation with an IL-1 antagonist in T2D.

    CAS  Google Scholar 

  26. 26

    Ehses, J. A. et al. IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc. Natl Acad. Sci. USA 106, 13998–14003 (2009).

    CAS  Google Scholar 

  27. 27

    Donath, M. Y. et al. XOMA 052, an anti-IL-1β antibody, in a double-blind, placebo-controlled, dose escalation study of the safety and pharmacokinetics in patients with type 2 diabetes mellitus – a new approach to therapy. Diabetologia 51, S7 (2008).

    Google Scholar 

  28. 28

    Goldfine, A. B. et al. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 152, 346–357 (2010). This clinical trial showed that salsalate improves circulating glucose and lipid levels in patients with T2D.

    PubMed  PubMed Central  Google Scholar 

  29. 29

    Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993). This early study suggested that TNF could cause insulin resistance.

    CAS  Google Scholar 

  30. 30

    Schreyer, S. A., Chua, S. C. Jr & LeBoeuf, R. C. Obesity and diabetes in TNF-α receptor- deficient mice. J. Clin. Invest. 102, 402–411 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Bernstein, L. E., Berry, J., Kim, S., Canavan, B. & Grinspoon, S. K. Effects of etanercept in patients with the metabolic syndrome. Arch. Intern. Med. 166, 902–908 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Dominguez, H. et al. Metabolic and vascular effects of tumor necrosis factor-α blockade with etanercept in obese patients with type 2 diabetes. J. Vasc. Res. 42, 517–525 (2005).

    CAS  Google Scholar 

  33. 33

    Lo, J. et al. Effects of TNF-α neutralization on adipocytokines and skeletal muscle adiposity in the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 293, E102–E109 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Ofei, F., Hurel, S., Newkirk, J., Sopwith, M. & Taylor, R. Effects of an engineered human anti-TNF-α antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 45, 881–885 (1996).

    Google Scholar 

  35. 35

    Paquot, N., Castillo, M. J., Lefebvre, P. J. & Scheen, A. J. No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J. Clin. Endocrinol. Metab. 85, 1316–1319 (2000).

    CAS  Google Scholar 

  36. 36

    Rosenvinge, A., Krogh-Madsen, R., Baslund, B. & Pedersen, B. K. Insulin resistance in patients with rheumatoid arthritis: effect of anti-TNFα therapy. Scand. J. Rheumatol. 36, 91–96 (2007).

    CAS  Google Scholar 

  37. 37

    Kiortsis, D. N., Mavridis, A. K., Vasakos, S., Nikas, S. N. & Drosos, A. A. Effects of infliximab treatment on insulin resistance in patients with rheumatoid arthritis and ankylosing spondylitis. Ann. Rheum. Dis. 64, 765–766 (2005).

    CAS  Google Scholar 

  38. 38

    Stanley, T. L. et al. TNF-α antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J. Clin. Endocrinol. Metab. 3 Nov 2010 (doi:10.1210/jc.2010-1170).

    CAS  Google Scholar 

  39. 39

    Yazdani-Biuki, B. et al. Relapse of diabetes after interruption of chronic administration of anti-tumor necrosis factor-α antibody infliximab: a case observation. Diabetes Care 29, 1712–1713 (2006).

    Google Scholar 

  40. 40

    Yazdani-Biuki, B. et al. Improvement of insulin sensitivity in insulin resistant subjects during prolonged treatment with the anti-TNF-α antibody infliximab. Eur. J. Clin. Invest. 34, 641–642 (2004).

    CAS  Google Scholar 

  41. 41

    Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003). References 41 and 42 identified macrophages in adipose tissue and showed that their numbers increased with obesity.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Lumeng, C. N., Deyoung, S. M., Bodzin, J. L. & Saltiel, A. R. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56, 16–23 (2007).

    CAS  Google Scholar 

  44. 44

    Shaul, M. E., Bennett, G., Strissel, K. J., Greenberg, A. S. & Obin, M. S. Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet–induced obesity in mice. Diabetes 59, 1171–1181 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Kosteli, A. et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120, 3466–3479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Herrero, L., Shapiro, H., Nayer, A., Lee, J. & Shoelson, S. E. Inflammation and adipose tissue macrophages in lipodystrophic mice. Proc. Natl Acad. Sci. USA 107, 240–245 (2010).

    CAS  Google Scholar 

  47. 47

    Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Liu, J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nature Med. 15, 940–945 (2009).

    CAS  Google Scholar 

  49. 49

    Wu, H. et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115, 1029–1038 (2007).

    CAS  PubMed  Google Scholar 

  50. 50

    Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Med. 15, 930–939 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Ilan, Y. et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc. Natl Acad. Sci. USA 107, 9765–9770 (2010).

    CAS  Google Scholar 

  52. 52

    Baecher-Allan, C. & Hafler, D. A. Human regulatory T cells and their role in autoimmune disease. Immunol. Rev. 212, 203–216 (2006).

    CAS  Google Scholar 

  53. 53

    Roncarolo, M. G. & Battaglia, M. Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nature Rev. Immunol. 7, 585–598 (2007).

    CAS  Google Scholar 

  54. 54

    Maedler, K. et al. Leptin modulates β cell expression of IL-1 receptor antagonist and release of IL-1β in human islets. Proc. Natl Acad. Sci. USA 101, 8138–8143 (2004).

    CAS  Google Scholar 

  55. 55

    Maedler, K. et al. Glucose-induced β-cell production of interleukin-1β contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110, 851–860 (2002). The first description of the role of IL-1β in T2D.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Ehses, J. A. et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56, 2356–2370 (2007). The original description of macrophage infiltration in islets of patients with T2D.

    CAS  PubMed  Google Scholar 

  57. 57

    Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    CAS  Google Scholar 

  58. 58

    Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007).

    CAS  Google Scholar 

  59. 59

    Yin, J. et al. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 296, E333–E342 (2009).

    CAS  Google Scholar 

  60. 60

    Pasarica, M. et al. Reduced oxygenation in human obese adipose tissue is associated with impaired insulin suppression of lipolysis. J. Clin. Endocrinol. Metab. 95, 4052–4055 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Pasarica, M. et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58, 718–725 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Murdoch, C., Muthana, M. & Lewis, C. E. Hypoxia regulates macrophage functions in inflammation. J. Immunol. 175, 6257–6263 (2005).

    CAS  Google Scholar 

  63. 63

    Burke, B. et al. Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Am. J. Pathol. 163, 1233–1243 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    CAS  Google Scholar 

  65. 65

    Strissel, K. J. et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56, 2910–2918 (2007).

    CAS  Google Scholar 

  66. 66

    Arkan, M. C. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nature Med. 11, 191–198 (2005).

    CAS  Google Scholar 

  67. 67

    Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nature Med. 11, 183–190 (2005).

    CAS  Google Scholar 

  68. 68

    Solinas, G. & Karin, M. JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction. FASEB J. 24, 2596–2611 (2010).

    CAS  Google Scholar 

  69. 69

    Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Sabio, G. et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539–1543 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Solinas, G. et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell. Metab. 6, 386–397 (2007).

    CAS  Google Scholar 

  72. 72

    Tuncman, G. et al. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc. Natl Acad. Sci. USA 103, 10741–10746 (2006).

    CAS  Google Scholar 

  73. 73

    Cai, D. et al. IKKβ/NF-κB activation causes severe muscle wasting in mice. Cell 119, 285–298 (2004).

    CAS  Google Scholar 

  74. 74

    Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Eldor, R. et al. Conditional and specific NF-κB blockade protects pancreatic β cells from diabetogenic agents. Proc. Natl Acad. Sci. USA 103, 5072–5077 (2006).

    CAS  Google Scholar 

  76. 76

    Mooney, R. A. Counterpoint: interleukin-6 does not have a beneficial role in insulin sensitivity and glucose homeostasis. J. Appl. Physiol. 102, 816–818 (2007).

    CAS  Google Scholar 

  77. 77

    Pedersen, B. K. & Febbraio, M. A. Point: interleukin-6 does have a beneficial role in insulin sensitivity and glucose homeostasis. J. Appl. Physiol. 102, 814–816 (2007).

    CAS  Google Scholar 

  78. 78

    Fried, S. K., Bunkin, D. A. & Greenberg, A. S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 83, 847–850 (1998).

    CAS  Google Scholar 

  79. 79

    Wunderlich, F. T. et al. Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell. Metab. 12, 237–249 (2010).

    CAS  Google Scholar 

  80. 80

    Matthews, V. B. et al. Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 53, 2431–2441 (2010).

    CAS  Google Scholar 

  81. 81

    Donath, M. Y., Gross, D. J., Cerasi, E. & Kaiser, N. Hyperglycemia-induced β-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes 48, 738–744 (1999).

    CAS  Google Scholar 

  82. 82

    Maedler, K. et al. Glucose induces β-cell apoptosis via upregulation of the Fas-receptor in human islets. Diabetes 50, 1683–1690 (2001).

    CAS  Google Scholar 

  83. 83

    Schumann, D. M. et al. The Fas pathway is involved in pancreatic β cell secretory function. Proc. Natl Acad. Sci. USA 104, 2861–2866 (2007).

    CAS  Google Scholar 

  84. 84

    Boni-Schnetzler, M. et al. Increased interleukin (IL)-1β messenger ribonucleic acid expression in β-cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J. Clin. Endocrinol. Metab. 93, 4065–4074 (2008).

    PubMed  PubMed Central  Google Scholar 

  85. 85

    Boni-Schnetzler, M. et al. Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology 150, 5218–5229 (2009).

    CAS  Google Scholar 

  86. 86

    Ehses, J. A. et al. Toll-like receptor 2-deficient mice are protected from insulin resistance and β cell dysfunction induced by a high-fat diet. Diabetologia 53, 1795–1806 (2010).

    CAS  Google Scholar 

  87. 87

    Haversen, L., Danielsson, K. N., Fogelstrand, L. & Wiklund, O. Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages. Atherosclerosis 202, 382–393 (2009).

    CAS  Google Scholar 

  88. 88

    Lee, J. Y., Sohn, K. H., Rhee, S. H. & Hwang, D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem. 276, 16683–16689 (2001).

    CAS  Google Scholar 

  89. 89

    Lee, J. Y. et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J. Biol. Chem. 279, 16971–16979 (2004).

    CAS  Google Scholar 

  90. 90

    Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunol. 11, 136–140 (2010). A study that describes the mechanism of glucose-induced IL-1β production in pancreatic islets.

    CAS  Google Scholar 

  91. 91

    van de Veerdonk, F. L. et al. Reactive oxygen species-independent activation of the IL-1β inflammasome in cells from patients with chronic granulomatous disease. Proc. Natl Acad. Sci. USA 107, 3030–3033 (2010).

    CAS  Google Scholar 

  92. 92

    Meissner, F. et al. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116, 1570–1573 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Schroder, K., Zhou, R. & Tschopp, J. The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296–300 (2010).

    CAS  Google Scholar 

  94. 94

    Dinarello, C. A. Biologic basis for interleukin-1 in disease. Blood 87, 2095–2147 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Ehses, J. A. et al. IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc. Natl Acad. Sci. USA 106, 13998–14003 (2009).

    CAS  Google Scholar 

  96. 96

    Bruun, J. M., Lihn, A. S., Pedersen, S. B. & Richelsen, B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J. Clin. Endocrinol. Metab. 90, 2282–2289 (2005).

    CAS  Google Scholar 

  97. 97

    Harman-Boehm, I. et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J. Clin. Endocrinol. Metab. 92, 2240–2247 (2007).

    CAS  Google Scholar 

  98. 98

    Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Sartipy, P. & Loskutoff, D. J. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Natl Acad. Sci. USA 100, 7265–7270 (2003).

    CAS  Google Scholar 

  100. 100

    Kamei, N. et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J. Biol. Chem. 281, 26602–26614 (2006).

    CAS  Google Scholar 

  101. 101

    Jiao, P. et al. Obesity-related upregulation of monocyte chemotactic factors in adipocytes: involvement of nuclear factor-κB and c-Jun NH2-terminal kinase pathways. Diabetes 58, 104–115 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Ehses, J. A. et al. IL-1β-MyD88 signaling is central to islet chemokine secretion in response to metabolic stress: evidence from a spontaneous model of type 2 diabetes, the GK rat. Diabetologia 50 S177 (2007).

    Google Scholar 

  103. 103

    Marselli, L. et al. Evidence of inflammatory markers in β cells of type 2 diabetic subjects. Diabetologia 50, S178–S179 (2007).

    Google Scholar 

  104. 104

    Wolf, A. M., Wolf, D., Rumpold, H., Enrich, B. & Tilg, H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 323, 630–635 (2004).

    CAS  Google Scholar 

  105. 105

    Greenstein, A. S. et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation 119, 1661–1670 (2009).

    CAS  Google Scholar 

  106. 106

    Rutkowski, J. M., Davis, K. E. & Scherer, P. E. Mechanisms of obesity and related pathologies: the macro- and microcirculation of adipose tissue. FEBS J. 276, 5738–5746 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Fleischman, A., Shoelson, S. E., Bernier, R. & Goldfine, A. B. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care 31, 289–294 (2008).

    CAS  Google Scholar 

  108. 108

    Larsen, C. M. et al. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32, 1663–1668 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Gonzalez-Gay, M. A. et al. Anti-tumor necrosis factor-α blockade improves insulin resistance in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 24, 83–86 (2006).

    CAS  Google Scholar 

  110. 110

    Gonzalez-Gay, M. A. et al. Insulin resistance in rheumatoid arthritis: the impact of the anti-TNF-α therapy. Ann. NY Acad. Sci. 1193, 153–159 (2010).

    CAS  Google Scholar 

  111. 111

    Huvers, F. C., Popa, C., Netea, M. G., van den Hoogen, F. H. & Tack, C. J. Improved insulin sensitivity by anti-TNFα antibody treatment in patients with rheumatic diseases. Ann. Rheum. Dis. 66, 558–559 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of IKKβ. Science 293, 1673–1677 (2001). This study initially identified a potential role for NF-κB in T2D and showed that salicylates improved blood glucose levels in rodent models.

    CAS  PubMed  Google Scholar 

  113. 113

    Frantz, B. & O'Neill, E. A. The effect of sodium salicylate and aspirin on NF-κB. Science 270, 2017–2019 (1995).

    CAS  Google Scholar 

  114. 114

    Jurivich, D. A., Sistonen, L., Kroes, R. A. & Morimoto, R. I. Effect of sodium salicylate on the human heat shock response. Science 255, 1243–1245 (1992).

    CAS  Google Scholar 

  115. 115

    Hundal, R. S. et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest. 109, 1321–1326 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Bonner-Weir, S., Trent, D. F. & Weir, G. C. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J. Clin. Invest. 71, 1544–1553 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Leahy, J. L., Cooper, H. E., Deal, D. A. & Weir, G. C. Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion. A study in normal rats using chronic in vivo glucose infusions. J. Clin. Invest. 77, 908–915 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Yki-Jarvinen, H., Helve, E. & Koivisto, V. A. Hyperglycemia decreases glucose uptake in type I diabetes. Diabetes 36, 892–896 (1987).

    CAS  Google Scholar 

  119. 119

    Rossetti, L., Smith, D., Shulman, G. I., Papachristou, D. & DeFronzo, R. A. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J. Clin. Invest. 79, 1510–1515 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Reaven, G. M., Hollenbeck, C., Jeng, C. Y., Wu, M. S. & Chen, Y. D. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 37, 1020–1024 (1988).

    CAS  Google Scholar 

  121. 121

    Walker, K. Z. et al. Body fat distribution and non-insulin-dependent diabetes: comparison of a fiber-rich, high-carbohydrate, low-fat (23%) diet and a 35% fat diet high in monounsaturated fat. Am. J. Clin. Nutr. 63, 254–260 (1996).

    CAS  Google Scholar 

  122. 122

    Maedler, K., Oberholzer, J., Bucher, P., Spinas, G. A. & Donath, M. Y. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic β-cell turnover and function. Diabetes 52, 726–733 (2003).

    CAS  Google Scholar 

  123. 123

    Maedler, K. et al. Distinct effects of saturated and monounsaturated fatty acids on β-cell turnover and function. Diabetes 50, 69–76 (2001).

    CAS  Google Scholar 

  124. 124

    Unger, R. H. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 44, 863–870 (1995).

    CAS  Google Scholar 

  125. 125

    Prentki, M. & Corkey, B. E. Are the β-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 45, 273–283 (1996).

    CAS  Google Scholar 

  126. 126

    Unger, R. H., Clark, G. O., Scherer, P. E. & Orci, L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim. Biophys. Acta 1801, 209–214 (2010).

    CAS  Google Scholar 

  127. 127

    Poitout, V. & Robertson, R. P. Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr. Rev. 29, 351–366 (2008).

    CAS  Google Scholar 

  128. 128

    Evans, J. L., Goldfine, I. D., Maddux, B. A. & Grodsky, G. M. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr. Rev. 23, 599–622 (2002).

    CAS  Google Scholar 

  129. 129

    Evans, J. L., Goldfine, I. D., Maddux, B. A. & Grodsky, G. M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes 52, 1–8 (2003).

    CAS  Google Scholar 

  130. 130

    Araki, E., Oyadomari, S. & Mori, M. Endoplasmic reticulum stress and diabetes mellitus. Intern. Med. 42, 7–14 (2003).

    Google Scholar 

  131. 131

    Izumi, T. et al. Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes 52, 409–416 (2003).

    CAS  Google Scholar 

  132. 132

    Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Zraika, S. et al. Toxic oligomers and islet β cell death: guilty by association or convicted by circumstantial evidence? Diabetologia 53, 1046–1056 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 33, S62–S69 (2010).

  135. 135

    Kibirige, M., Metcalf, B., Renuka, R. & Wilkin, T. J. Testing the accelerator hypothesis: the relationship between body mass and age at diagnosis of type 1 diabetes. Diabetes Care 26, 2865–2870 (2003).

    CAS  Google Scholar 

  136. 136

    Wilkin, T. J. The accelerator hypothesis: weight gain as the missing link between type I and type II diabetes. Diabetologia 44, 914–922 (2001).

    CAS  Google Scholar 

  137. 137

    Donath, M. Y. & Halban, P. A. Decreased β-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47, 581–589 (2004).

    CAS  Google Scholar 

  138. 138

    Hypponen, E., Virtanen, S. M., Kenward, M. G., Knip, M. & Akerblom, H. K. Obesity, increased linear growth, and risk of type 1 diabetes in children. Diabetes Care 23, 1755–1760 (2000).

    CAS  Google Scholar 

  139. 139

    Libman, I. M., Pietropaolo, M., Arslanian, S. A., LaPorte, R. E. & Becker, D. J. Changing prevalence of overweight children and adolescents at onset of insulin-treated diabetes. Diabetes Care 26, 2871–2875 (2003).

    Google Scholar 

  140. 140

    Fourlanos, S., Narendran, P., Byrnes, G. B., Colman, P. G. & Harrison, L. C. Insulin resistance is a risk factor for progression to type 1 diabetes. Diabetologia 47, 1661–1667 (2004).

    CAS  Google Scholar 

  141. 141

    Nathan, D. M. et al. Medical management of hyperglycaemia in type 2 diabetes mellitus: a consensus algorithm for the initiation and adjustment of therapy. Diabetes Care 32, 193–203 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Donath, M. Y. & Ehses, J. A. Type 1, type 1.5, and type 2 diabetes: NOD the diabetes we thought it was. Proc. Natl Acad. Sci. USA 103, 12217–12218 (2006).

    CAS  Google Scholar 

  143. 143

    Goldfine, A. B. et al. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin. Transl. Sci. 1, 36–43 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Koska, J. et al. The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study. Diabetologia 52, 385–393 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank their scientific collaborators who have contributed so much to these studies, in particular A. Goldfine, J. Lee, D. Mathis, K. Maedler, P. Halban, T. Mandrup-Poulsen, J. Ehses and M. Boni-Schnetzler.

Author information

Affiliations

Authors

Ethics declarations

Competing interests

Marc Y. Donath is listed as the inventor of a patent filed in 2003 for the use of an interleukin-1 receptor antagonist for the treatment of or prophylaxis against type 2 diabetes. He is a consultant for Novartis, XOMA, Eli Lilly and Company, Cytos, Merck and AstraZeneca. Steven E. Shoelson holds patents on the use of salicylates in diabetes, prediabetes and cardiovascular disease. He has consulted for Catabasis, Amylin, AstraZeneca, Merck, Genentech, XOMA and Kowa.

Related links

Related links

FURTHER INFORMATION

ClinicalTrials.gov

Glossary

Insulin resistance

A pathological condition in which insulin becomes less effective at lowering blood glucose levels.

Endoplasmic reticulum stress

(ER stress). A response by the ER that results in the disruption of protein folding and the accumulation of unfolded proteins in the ER.

Lipotoxicity

The toxic effects of elevated levels of free fatty acids. These detrimental effects may be functional and reversible, or may lead to cell death.

Glucotoxicity

The toxic effects of hyperglycaemia. These detrimental effects may be functional and reversible, or may lead to cell death.

Autoinflammatory disease

A disease resulting from an attack by the innate immune system on the body's own tissues. By contrast, autoimmune diseases are caused by the pathological activation of adaptive immune responses. Autoimmune and autoinflammatory diseases have some characteristics in common, including shared effector mechanisms.

M1-type macrophage

A macrophage that is activated by Toll-like receptor ligands (such as lipopolysaccharide) and interferon-γ, and that expresses inducible nitric oxide synthase, which generates nitric oxide.

M2-type macrophage

A macrophage that is stimulated by interleukin-4 (IL-4) or IL-13 and that expresses arginase 1, the mannose receptor CD206 and the IL-4 receptor α-chain.

KitW–sh/W–sh mice

The KitW–sh (or sash) mutation abolishes KIT expression in mast cells, and the mutant mice are deficient in mast cells.

Insulitis

Inflammation of the pancreatic islets during the progression of diabetes. Insulitis in type 1 diabetes is caused by autoimmunity and in type 2 diabetes by metabolic stressors such as hyperglycaemia and elevated levels of free fatty acids.

Ischaemia

A condition in which the flow of blood to a tissue or organs is less than normal, and which results in injury to that tissue or organ.

Cachexia

Severe weight loss, muscle wasting and debility caused by prolonged disease. It is thought to be mediated through neuroimmunoendocrine interactions.

Leptin

A protein hormone that regulates energy intake and expenditure. It is one of the most important adipose-derived hormones and its production correlates with the mass of adipose tissue.

Inflammasome

A molecular complex of several proteins that, when activated, results in the production of active caspase 1, which cleaves pro-interleukin-1β (pro-IL-1β) and pro-IL-18 to produce the active cytokines.

Salsalate

A prodrug form of salicylic acid that has fewer side effects than sodium salicylate. Salsalate is approved for use in humans as a source of salicylic acid.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Donath, M., Shoelson, S. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11, 98–107 (2011). https://doi.org/10.1038/nri2925

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing