
L I N K  TO  O R I G I N A L  A RT I C L E
L I N K  TO  A U T H O R ’ S  R E P LY

Originally, the immune system was seen as 
a system that primarily combats infection. 
But, as discussed in the recent Review article 
by Grace Chen and Gabriel Nuñez (Sterile 
inflammation: sensing and reacting to 
damage. Nature Rev. Immunol. 10, 826–837 
(2010))1, most of us accept the idea that the 
immune system is key to tissue homeostasis 
and even to homeostatic interactions with 
the outside antigenic world, including the 
gut microbiota1,2. However, much remains 
unknown about the nature of the triggers 
of pro-inflammatory innate immune 
responses. In a broad sense, two main types 
of activators prevail: non-self antigens (known 
as pathogen-associated molecular patterns 
(PAMPs)), which are present in or released 
from infectious invaders; and damage-
associated molecular patterns (DAMPs), 
which are host molecules (such as high-
mobility group box 1 protein (HMGB1)) 
released from damaged cells under necrotic 
but not apoptotic conditions.

Heat shock proteins (HSPs) are frequently 
mentioned as prime examples of DAMPs (see, 
for example, REFS 1,3). There are, however, 
several qualities inherent to HSPs that 
disqualify them as DAMPs.

First, DAMPs are intracellular molecules 
normally hidden from recognition by the 
immune system, whereas HSPs are freely 
present in the extracellular fluids4,5 and are 
also frequently exposed at the outer surface 
of cells (both eukaryotic and prokaryotic 
cells)6,7. Second, Toll-like receptor 2 (TLR2) 
and TLR4 are seen as two of the main 
receptors involved in the recognition of 
HSP60 and HSP70. These HSPs are released 
from cells under necrotic conditions, but it 
has been shown that TLR2 and TLR4 are not 
required for the host response to DAMPs that 
are derived from necrotic cells8. Moreover, 
other receptors for HSPs, such as the HSP70 
scavenger receptor SRA1, have been shown to 
confer a suppressive rather than an activating 
signal to host cells9. Third, in vitro-cultured 
dendritic cells have been shown to adopt a 
tolerizing phenotype, rather than a mature 
or activated phenotype, in the presence of 
HSPs10,11. Fourth, in experimental models 
of autoimmunity and of tissue or tumour 
transplants, immunization with HSPs was 

shown to lead to the induction of regulatory 
T cells, which suppressed disease or transplant 
rejection12–19.

Taken together, these phenomena argue 
against the involvement of HSPs in the 
induction of the immune response to damage-
derived signals. On the contrary, HSPs seem to 
have a dampening effect on immune activation 
and have the capacity to promote immune 
homeostasis12,20.

A possible reason for the proposition 
that HSPs are DAMPs could be that some 
of the early studies used recombinant HSP 
preparations that were contaminated with 
lipopolysaccharide (LPS), although in 
most cases contamination levels were not 
determined10,21. More recent studies (reviewed 
in REF. 5) using HSP preparations from which 
the contaminants had been effectively removed 
did not provide evidence to support a pro-
inflammatory function for HSPs.

Based on the current experimental data, it 
seems that HSPs are key elements in the type 
of immune system responsiveness or reactivity 
that is induced by the following three typical 
conditions: one, sterile tissue damage, when 
tissue-derived HSPs in combination with 
DAMPs activate tissue repair and regulation; 
two, damage caused by infectious pathogens, 
when HSPs in the presence of DAMPs and 
pathogen-derived PAMPs lead to a full pro-
inflammatory response with elimination 
of infection and regulation; and three, 
homeostatic interactions with commensal 
symbionts of the gut microbiota, when a 
combination of PAMPs and HSPs leads to the 
regulation and maintenance of symbiosis22–24. 
Given the ubiquitous presence and stress-
inducible nature of HSPs in both tissue cells and 
microbial invaders or symbionts, therapeutic 
targeting of HSPs offers an attractive possibility 
for the fine-tuning of such immune responses 
and the dampening of inflammation through 
the induction or activation of regulatory T cells.
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