Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules

Key Points

  • Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are armed to kill virus-infected or transformed cells through the polarized secretion of cytotoxic granules that contain perforin and granzymes. Perforin is crucial for the access of granzymes to their pro-apoptotic substrates in the target cells.

  • Inherited deficiencies of the granule-dependent cytotoxic pathway in humans result in a severe immunopathological condition known as haemophagocytic lymphohistiocytosis (HLH). HLH is generally triggered by an infection and is associated with an overactive T cell-mediated immune response, probably resulting from the failure of activated CTLs and NK cells to clear antigen-presenting cells and thus to terminate the immune response.

  • Characterization of the molecular causes leading to HLH in humans and mutant mice has substantially contributed to our understanding of the key steps required for the maturation and exocytosis of cytotoxic granules during target cell killing. In addition to defects in perforin, which account for the prototypical form of HLH, defects in lysosomal trafficking regulator (LYST) or adaptor protein 3 (AP3) provide evidence for the role of these proteins in cytotoxic granule biogenesis.

  • The coordinated delivery of cytotoxic granule contents to the immunological synapse depends on additional effector proteins, which cause HLH when defective. They are involved in the docking (RAB27a), priming (MUNC13-4) and fusion (syntaxin 11 and MUNC18-2) of the cytotoxic granules that polarize at the CTL–target cell interface.

  • The structure of the immunological synapse is strikingly similar to that of the neurological synapse. In both cases, the delivery of mediators to the intercellular cleft must be tightly regulated in a spatial and temporal manner. Several of the effector proteins that mediate vesicle exocytosis at both synapses belong to the same families of proteins.

  • A comparison of the proteins and mechanisms involved may provide clues to uncover additional effectors that regulate the cytotoxic function of lymphocytes.

Abstract

Cytotoxic T cells and natural killer cells are crucial for immune surveillance against virus-infected cells and tumour cells. Molecular studies of individuals with inherited defects that impair lymphocyte cytotoxic function have also highlighted the importance of cytotoxicity in the regulation and termination of immune responses. As discussed in this Review, characterization of these defects has contributed to our understanding of the key steps that are required for the maturation of cytotoxic granules and the secretion of their contents at the immunological synapse during target cell killing. This has revealed a marked similarity between cytotoxic granule exocytosis at the immunological synapse and synaptic vesicle exocytosis at the neurological synapse. We explore the possibility that comparison of these two kinetically and spatially regulated secretory pathways will provide clues to uncover additional effectors that regulate the cytotoxic function of lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An antigen-specific CD8+ T cell response to viral infection in a normal individual and in a patient with haemophagocytic lymphohistiocytosis.
Figure 2: Sequence of events during cytotoxic T lymphocyte killing of a cognate target cell.
Figure 3: A model depicting the biogenesis and exocytosis of cytotoxic granules.
Figure 4: An additional maturation step of cytotoxic granules before exocytosis.
Figure 5: A model of synaptic vesicle trafficking and release at the neurological synapse.

References

  1. Heath, W. R. & Carbone, F. R. Cross-presentation in viral immunity and self-tolerance. Nature Rev. Immunol. 1, 126–134 (2001).

    CAS  Google Scholar 

  2. Orange, J. S. Formation and function of the lytic NK-cell immunological synapse. Nature Rev. Immunol. 8, 713–725 (2008).

    CAS  Google Scholar 

  3. Siegel, R. M., Chan, F. K., Chun, H. J. & Lenardo, M. J. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nature Immunol. 1, 469–474 (2000).

    CAS  Google Scholar 

  4. Rieux-Laucat, F., Fischer, A. & Deist, F. L. Cell-death signaling and human disease. Curr. Opin. Immunol. 15, 325–331 (2003).

    CAS  PubMed  Google Scholar 

  5. de Saint Basile, G. & Fischer, A. The role of cytotoxicity in lymphocyte homeostasis. Curr. Opin. Immunol. 13, 549–554 (2001).

    CAS  PubMed  Google Scholar 

  6. Menasche, G., Feldmann, J., Fischer, A. & de Saint Basile, G. Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis. Immunol. Rev. 203, 165–179 (2005).

    CAS  PubMed  Google Scholar 

  7. Bolitho, P. et al. Perforin-mediated suppression of B-cell lymphoma. Proc. Natl Acad. Sci. USA 106, 2723–2728 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chia, J. et al. Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proc. Natl Acad. Sci. USA 106, 9809–9814 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    CAS  PubMed  Google Scholar 

  10. Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001). This study reports the first description of the immunological synapse in CTLs, which is similar to the synapse first described in CD4+ T cells but differs by the presence of a secretory domain adjacent to the signalling domain.

    CAS  PubMed  Google Scholar 

  11. Beal, A. M. et al. Protein kinase Cθ regulates stability of the peripheral adhesion ring junction and contributes to the sensitivity of target cell lysis by CTL. J. Immunol. 181, 4815–4824 (2008).

    CAS  PubMed  Google Scholar 

  12. Faroudi, M. et al. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc. Natl Acad. Sci. USA 100, 14145–14150 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Purbhoo, M. A., Irvine, D. J., Huppa, J. B. & Davis, M. M. T cell killing does not require the formation of a stable mature immunological synapse. Nature Immunol. 5, 524–530 (2004). References 12 and 13 report that the engagement of a few TCRs is sufficient to trigger cytotoxic activity of CTLs, in a context where a mature synapse is not entirely constituted.

    CAS  Google Scholar 

  14. Voskoboinik, I., Smyth, M. J. & Trapani, J. A. Perforin-mediated target-cell death and immune homeostasis. Nature Rev. Immunol. 6, 940–952 (2006).

    CAS  Google Scholar 

  15. Blott, E. J. & Griffiths, G. M. Secretory lysosomes. Nature Rev. Mol. Cell Biol. 3, 122–131 (2002).

    CAS  Google Scholar 

  16. Burkhardt, J. K., Hester, S., Lapham, C. K. & Argon, Y. The lytic granules of natural killer cells are dual-function organelles combining secretory and pre-lysosomal compartments. J. Cell Biol. 111, 2327–2340 (1990).

    CAS  PubMed  Google Scholar 

  17. Peters, P. J. et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med. 173, 1099–1109 (1991).

    CAS  PubMed  Google Scholar 

  18. Raposo, G., Marks, M. S. & Cutler, D. F. Lysosome-related organelles: driving post-Golgi compartments into specialisation. Curr. Opin. Cell Biol. 19, 394–401 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gruenberg, J. The endocytic pathway: a mosaic of domains. Nature Rev. Mol. Cell Biol. 2, 721–730 (2001).

    CAS  Google Scholar 

  20. Williams, R. L. & Urbe, S. The emerging shape of the ESCRT machinery. Nature Rev. Mol. Cell Biol. 8, 355–368 (2007).

    CAS  Google Scholar 

  21. Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hurley, J. H. ESCRT complexes and the biogenesis of multivesicular bodies. Curr. Opin. Cell Biol. 20, 4–11 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stinchcombe, J. C., Page, L. J. & Griffiths, G. M. Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak Higashi syndrome patients. Traffic 1, 435–444 (2000).

    CAS  PubMed  Google Scholar 

  24. Kaiserman, D. et al. The major human and mouse granzymes are structurally and functionally divergent. J. Cell Biol. 175, 619–630 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Martinvalet, D., Dykxhoorn, D. M., Ferrini, R. & Lieberman, J. Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death. Cell 133, 681–692 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pardo, J. et al. The biology of cytotoxic cell granule exocytosis pathway: granzymes have evolved to induce cell death and inflammation. Microbes Infect. 11, 452–459 (2009).

    CAS  PubMed  Google Scholar 

  27. Griffiths, G. M. & Isaaz, S. Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J. Cell Biol. 120, 885–896 (1993).

    CAS  PubMed  Google Scholar 

  28. Voskoboinik, I. et al. Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain: A critical role for aspartate residues 429, 435, 483, and 485 but not 491. J. Biol. Chem. 280, 8426–8434 (2005).

    CAS  PubMed  Google Scholar 

  29. Feng, L. et al. The β3A subunit gene (Ap3b1) of the AP-3 adaptor complex is altered in the mouse hypopigmentation mutant pearl, a model for Hermansky–Pudlak syndrome and night blindness. Hum. Mol. Genet. 8, 323–330 (1999).

    CAS  PubMed  Google Scholar 

  30. Clark, R. H. et al. Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nature Immunol. 4, 1111–1120 (2003).

    CAS  Google Scholar 

  31. Ward, D. M., Griffiths, G. M., Stinchcombe, J. C. & Kaplan, J. Analysis of the lysosomal storage disease Chediak–Higashi syndrome. Traffic 1, 816–822 (2000).

    CAS  PubMed  Google Scholar 

  32. Huizing, M., Anikster, Y. & Gahl, W. A. Hermansky–Pudlak syndrome and related disorders of organelle formation. Traffic 1, 823–835 (2000).

    CAS  PubMed  Google Scholar 

  33. Spritz, R. A. Molecular genetics of the Hermansky–Pudlak and Chediak–Higashi syndromes. Platelets 9, 21–29 (2006).

    Google Scholar 

  34. Huizing, M., Boissy, R. E. & Gahl, W. A. Hermansky–Pudlak syndrome: vesicle formation from yeast to man. Pigment Cell Res. 15, 405–419 (2002).

    CAS  PubMed  Google Scholar 

  35. Nagle, D. L. et al. Identification and mutation analysis of the complete gene for Chediak–Higashi syndrome. Nature Genet. 14, 307–311 (1996).

    CAS  PubMed  Google Scholar 

  36. Barbosa, M. D. et al. Identification of the homologous beige and Chediak–Higashi syndrome genes. Nature 382, 262–265 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Martens, S. & McMahon, H. T. Mechanisms of membrane fusion: disparate players and common principles. Nature Rev. Mol. Cell Biol. 9, 543–556 (2008).

    CAS  Google Scholar 

  38. Su, Y. et al. Neurobeachin is essential for neuromuscular synaptic transmission. J. Neurosci. 24, 3627–3636 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tchernev, V. T. et al. The Chediak–Higashi protein interacts with SNARE complex and signal transduction proteins. Mol. Med. 8, 56–64 (2002). This study reports two hybrid screens and biochemical approaches, allowing the identification of various proteins that interact with LYST, the defect of which causes CHS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shim, S., Merrill, S. A. & Hanson, P. I. Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly. Mol. Biol. Cell 19, 2661–2672 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Faigle, W. et al. Deficient peptide loading and MHC class II endosomal sorting in a human genetic immunodeficiency disease: the Chediak–Higashi syndrome. J. Cell Biol. 141, 1121–1134 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwong, J. et al. Hrs interacts with SNAP-25 and regulates Ca2+-dependent exocytosis. J. Cell Sci. 113, 2273–2284 (2000).

    CAS  PubMed  Google Scholar 

  43. Burgess, A., Mornon, J. P., de Saint-Basile, G. & Callebaut, I. A concanavalin A-like lectin domain in the CHS1/LYST protein, shared by members of the BEACH family. Bioinformatics 25, 1219–1222 (2009).

    CAS  PubMed  Google Scholar 

  44. Tardieu, M. et al. Progressive neurologic dysfunctions 20 years after allogeneic bone marrow transplantation for Chediak–Higashi syndrome. Blood 106, 40–42 (2005).

    CAS  PubMed  Google Scholar 

  45. Enders, A. et al. Lethal hemophagocytic lymphohistiocytosis in Hermansky–Pudlak syndrome type II. Blood 108, 81–87 (2006).

    CAS  PubMed  Google Scholar 

  46. Dell'Angelica, E. C. et al. AP-3: an adaptor-like protein complex with ubiquitous expression. EMBO J. 16, 917–928 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ruder, C. et al. EBAG9 adds a new layer of control on large dense-core vesicle exocytosis via interaction with Snapin. Mol. Biol. Cell 16, 1245–1257 (2005).

    PubMed  PubMed Central  Google Scholar 

  48. Libri, V. et al. Jakmip1 is expressed upon T cell differentiation and has an inhibitory function in cytotoxic T lymphocytes. J. Immunol. 181, 5847–5856 (2008).

    CAS  PubMed  Google Scholar 

  49. Stepp, S. et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286, 1957–1959 (1999).

    CAS  PubMed  Google Scholar 

  50. Rosado, C. J. et al. A common fold mediates vertebrate defense and bacterial attack. Science 317, 1548–1551 (2007).

    CAS  PubMed  Google Scholar 

  51. Baran, K. et al. The molecular basis for perforin oligomerization and transmembrane pore assembly. Immunity 30, 684–695 (2009). This study provides more insights into the mechanism of action of perforin by establishing the molecular basis for perforin oligomerization and pore assembly.

    CAS  PubMed  Google Scholar 

  52. Uellner, R. et al. Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J. 16, 7287–7296 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bolitho, P., Voskoboinik, I., Trapani, J. A. & Smyth, M. J. Apoptosis induced by the lymphocyte effector molecule perforin. Curr. Opin. Immunol. 19, 339–347 (2006).

    Google Scholar 

  54. Cullen, S. P. & Martin, S. J. Mechanisms of granule-dependent killing. Cell Death Differ. 15, 251–262 (2008).

    CAS  PubMed  Google Scholar 

  55. Beresford, P. J., Xia, Z., Greenberg, A. H. & Lieberman, J. Granzyme A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation. Immunity 10, 585–594 (1999).

    CAS  PubMed  Google Scholar 

  56. Metkar, S. S. et al. Human and mouse granzyme A induce a proinflammatory cytokine response. Immunity 29, 720–733 (2008).

    CAS  PubMed  Google Scholar 

  57. Heusel, J. W., Wesselschmidt, R. L., Shresta, S., Russell, J. H. & Ley, T. J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76, 977–987 (1994).

    CAS  PubMed  Google Scholar 

  58. Ebnet, K. et al. Granzyme A-deficient mice retain potent cell-mediated cytotoxicity. EMBO J. 14, 4230–4239 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Simon, M. M. et al. In vitro- and ex vivo-derived cytolytic leukocytes from granzyme A x B double knockout mice are defective in granule-mediated apoptosis but not lysis of target cells. J. Exp. Med. 186, 1781–1786 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mullbacher, A. et al. Granzymes are the essential downstream effector molecules for the control of primary virus infections by cytolytic leukocytes. Proc. Natl Acad. Sci. USA 96, 13950–13955 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Grujic, M. et al. Serglycin-deficient cytotoxic T lymphocytes display defective secretory granule maturation and granzyme B storage. J. Biol. Chem. 280, 33411–33418 (2005).

    CAS  PubMed  Google Scholar 

  62. Stinchcombe, J. C., Majorovits, E., Bossi, G., Fuller, S. & Griffiths, G. M. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443, 462–465 (2006). This study reports that in CTLs, cytotoxic granules that cluster around the polarized MTOC are delivered directly by the centrosome to the secretory domain of the immunological synapse.

    CAS  PubMed  Google Scholar 

  63. Beal, A. M. et al. Kinetics of early T cell receptor signaling regulate the pathway of lytic granule delivery to the secretory domain. Immunity 31, 632–642 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jenkins, M. R., Tsun, A., Stinchcombe, J. C. & Griffiths, G. M. The strength of T cell receptor signal controls the polarization of cytotoxic machinery to the immunological synapse. Immunity 31, 621–631 (2009). References 63 and 64 analyse how the strength of TCR signalling can influence the polarization of cytotoxic granules and the killing ability of CTLs.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, K. H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    CAS  PubMed  Google Scholar 

  66. Robertson, L. K., Mireau, L. R. & Ostergaard, H. L. A role for phosphatidylinositol 3-kinase in TCR-stimulated ERK activation leading to paxillin phosphorylation and CTL degranulation. J. Immunol. 175, 8138–8145 (2005).

    CAS  PubMed  Google Scholar 

  67. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M. L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Quann, E. J., Merino, E., Furuta, T. & Huse, M. Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nature Immunol. 10, 627–635 (2009). This study shows that diacylglycerol has a pivotal role in polarization of the microtubule cytoskeleton.

    CAS  Google Scholar 

  69. Sancho, D. et al. The tyrosine kinase PYK-2/RAFTK regulates natural killer (NK) cell cytotoxic response, and is translocated and activated upon specific target cell recognition and killing. J. Cell Biol. 149, 1249–1262 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–885 (2002).

    CAS  PubMed  Google Scholar 

  71. Banerjee, P. P. et al. Cdc42-interacting protein-4 functionally links actin and microtubule networks at the cytolytic NK cell immunological synapse. J. Exp. Med. 204, 2305–2320 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Butler, B. & Cooper, J. A. Distinct roles for the actin nucleators Arp2/3 and hDia1 during NK-mediated cytotoxicity. Curr. Biol. 19, 1886–1896 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bahadoran, P. et al. Rab27a. A key to melanosome transport in human melanocytes. J. Cell Biol. 152, 843–850 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ménasché, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with hemophagocytic syndrome. Nature Genet. 25, 173–176 (2000).

    PubMed  Google Scholar 

  75. Wilson, S. M. et al. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc. Natl Acad. Sci. USA 97, 7933–7938 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pereira-Leal, J. B. & Seabra, M. C. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313, 889–901 (2001).

    CAS  PubMed  Google Scholar 

  77. Stinchcombe, J. C. et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J. Cell Biol. 152, 825–834 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Haddad, E. K., Wu, X., Hammer, J. A. & Henkart, P. A. Defective granule exocytosis in RAB27a-deficient lymphocytes from ashen mice. J. Cell Biol. 152, 835–842 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Menasche, G. et al. A newly identified isoform of Slp2a associates with Rab27a in cytotoxic T cells and participates to cytotoxic granule secretion. Blood 112, 5052–5062 (2008).

    CAS  PubMed  Google Scholar 

  80. Holt, O. et al. Slp1 and Slp2-a localize to the plasma membrane of CTL and contribute to secretion from the immunological synapse. Traffic 9, 446–457 (2008). References 79 and 80 report that SLP1 and SLP2 are two effectors of RAB27a expressed by CTLs that participate in the exocytosis of cytotoxic granules.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Menasche, G. et al. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J. Clin. Invest. 112, 450–456 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu, X. S. et al. Identification of an organelle receptor for myosin-Va. Nature Cell Biol. 4, 271–278 (2002).

    CAS  PubMed  Google Scholar 

  83. Feldmann, J. et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115, 461–473 (2003).

    CAS  PubMed  Google Scholar 

  84. Crozat, K. et al. Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis. J. Exp. Med. 204, 853–863 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Menager, M. M. et al. Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4 Nature Immunol. 8, 257–267 (2007).

    CAS  Google Scholar 

  86. Wood, S. M. et al. Different NK cell activating receptors preferentially recruit Rab27a or Munc13-4 to perforin-containing granules for cytotoxicity. Blood 114, 4117–4127 (2009). References 83, 84 and 86 describe two roles for MUNC13-4 in the formation of exocytic vesicles and in the priming of cytotoxic granules at the immunological synapse.

    CAS  PubMed  Google Scholar 

  87. Hanson, P. I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J. E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    CAS  PubMed  Google Scholar 

  88. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    CAS  PubMed  Google Scholar 

  89. Jahn, R. & Scheller, R. H. SNAREs — engines for membrane fusion. Nature Rev. Mol. Cell Biol. 7, 631–643 (2006).

    CAS  Google Scholar 

  90. zur Stadt, U. et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum. Mol. Genet. 14, 827–834 (2005).

    CAS  PubMed  Google Scholar 

  91. Bryceson, Y. T. et al. Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. Blood 110, 1906–1915 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hata, Y., Slaughter, C. A. & Sudhof, T. C. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366, 347–351 (1993).

    CAS  PubMed  Google Scholar 

  93. Hata, Y. & Sudhof, T. C. A novel ubiquitous form of Munc-18 interacts with multiple syntaxins. Use of the yeast two-hybrid system to study interactions between proteins involved in membrane traffic. J. Biol. Chem. 270, 13022–13028 (1995).

    CAS  PubMed  Google Scholar 

  94. Cote, M. et al. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J. Clin. Invest. 119, 3765–3773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. zur Stadt, U. et al. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am. J. Hum. Genet. 85, 482–492 (2009). References 94 and 95 show that MUNC18-2 interacts with syntaxin 11 in CTLs and regulates cytotoxic granule exocytosis, with clear implications for the pathogenesis of HLH.

    PubMed  PubMed Central  Google Scholar 

  96. Riento, K., Kauppi, M., Keranen, S. & Olkkonen, V. M. Munc18-2, a functional partner of syntaxin 3, controls apical membrane trafficking in epithelial cells. J. Biol. Chem. 275, 13476–13483 (2000).

    CAS  PubMed  Google Scholar 

  97. Rizo, J. & Sudhof, T. C. Snares and Munc18 in synaptic vesicle fusion. Nature Rev. Neurosci. 3, 641–653 (2002).

    CAS  Google Scholar 

  98. Toonen, R. F. & Verhage, M. Vesicle trafficking: pleasure and pain from SM genes. Trends Cell Biol. 13, 177–186 (2003).

    CAS  PubMed  Google Scholar 

  99. Toonen, R. F. & Verhage, M. Munc18-1 in secretion: lonely Munc joins SNARE team and takes control. Trends Neurosci. 30, 564–572 (2007).

    CAS  PubMed  Google Scholar 

  100. Herz, J. et al. Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes. Nature Immunol. 10, 761–768 (2009).

    CAS  Google Scholar 

  101. Liu, D. et al. Integrin-dependent organization and bidirectional vesicular traffic at cytotoxic immune synapses. Immunity 31, 99–109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gundelfinger, E. D., Kessels, M. M. & Qualmann, B. Temporal and spatial coordination of exocytosis and endocytosis. Nature Rev. Mol. Cell Biol. 4, 127–139 (2003).

    CAS  Google Scholar 

  103. Sudhof, T. C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    PubMed  Google Scholar 

  104. Schoch, S. & Gundelfinger, E. D. Molecular organization of the presynaptic active zone. Cell Tissue Res. 326, 379–391 (2006).

    CAS  PubMed  Google Scholar 

  105. Gulyas-Kovacs, A. et al. Munc18-1: sequential interactions with the fusion machinery stimulate vesicle docking and priming. J. Neurosci. 27, 8676–8686 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. de Wit, H. et al. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell 138, 935–946 (2009). This study identifies synaptotagmin 1, the Ca2+ sensor for exocytosis of synaptic vesicles, as the vesicular docking partner that together with SNAP25, MUNC18-1 and syntaxin 1 forms the minimal docking complex.

    CAS  PubMed  Google Scholar 

  107. Shen, J., Tareste, D. C., Paumet, F., Rothman, J. E. & Melia, T. J. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128, 183–195 (2007).

    CAS  PubMed  Google Scholar 

  108. Sudhof, T. C. & Rothman, J. E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009). A recent review on the complex molecular mechanisms that regulate synaptic vesicle exocytosis.

    PubMed  PubMed Central  Google Scholar 

  109. Hong, W. Cytotoxic T lymphocyte exocytosis: bring on the SNAREs! Trends Cell Biol. 15, 644–650 (2005).

    CAS  PubMed  Google Scholar 

  110. Loo, L. S. et al. A role for endobrevin/VAMP8 in CTL lytic granule exocytosis. Eur. J. Immunol. 39, 3520–3528 (2009).

    CAS  PubMed  Google Scholar 

  111. Valdez, A. C., Cabaniols, J. P., Brown, M. J. & Roche, P. A. Syntaxin 11 is associated with SNAP-23 on late endosomes and the trans-Golgi network. J. Cell Sci. 112, 845–854 (1999).

    CAS  PubMed  Google Scholar 

  112. Fowler, K. T., Andrews, N. W. & Huleatt, J. W. Expression and function of synaptotagmin VII in CTLs. J. Immunol. 178, 1498–1504 (2007).

    CAS  PubMed  Google Scholar 

  113. Lioudyno, M. I. et al. Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. Proc. Natl Acad. Sci. USA 105, 2011–2016 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Barr, V. A. et al. Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: puncta and distal caps. Mol. Biol. Cell 19, 2802–2817 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the the Institut National de la Recherche Scientifique (INSERM), the Agence Nationale Recherche (ANR) and the Fondation pour la Recherche Médicale (FRM). We also thank the many members of our research group at INSERM U768 and our collaborators for contributions over the years to many findings referred to in this Review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève de Saint Basile.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

CHS

FHL2

FHL3

FHL4

FHL5

GS2

HPS2

Glossary

Granzymes

A family of serine proteases that are mainly found in the cytoplasmic granules of cytotoxic T cells and natural killer cells. They enter target cells, possibly through perforin pores, and then some of them cleave and activate intracellular caspases and lead to target cell apoptosis.

Immunological synapse

A region that can form between two cells of the immune system in close contact. The immunological synapse originally referred to the interaction between a T cell and an antigen-presenting cell. It involves adhesion molecules, as well as antigen receptors and cytokine receptors.

Neurological synapse

A specialized junction through which neurons communicate with each other and with other cell types (for example, muscle cells) through the exchange of chemical messengers. According to the structural definition, the neurological synapse consists of a single presynaptic active zone and postsynaptic density, together with the specialized membranes and cleft in between.

Melanosomes

Organelles that contain melanin, a common light-absorbing pigment.

Endosomal sorting complex required for transport

(ESCRT). The multiprotein ESCRT machinery (ESCRT-I, ESCRT-II and ESCRT-III) promotes inward vesiculation at the limiting membrane of the sorting endosome and selects cargo proteins for delivery to the intraluminal vesicles of multivesicular bodies.

SNARE proteins

A family of membrane-tethered coiled-coil proteins that function in cognate pairs, with one set of the pair being localized to the vesicle membrane (v-SNARE) and the other to the target membrane (t-SNARE). The resultant SNARE pair has a role in the fusion of the bilayer. Assembly of the proper SNARE pair is also involved in establishing the specificity of fusion.

Niemann–Pick disease

A human inherited deficiency of acid sphingomyelinase activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Saint Basile, G., Ménasché, G. & Fischer, A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol 10, 568–579 (2010). https://doi.org/10.1038/nri2803

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing