Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How are TH2-type immune responses initiated and amplified?

Key Points

  • GATA-binding protein 3 (GATA3) expression and signal transducer and activator of transcription 5 (STAT5) activation are two key events for TH2 cell differentiation in vitro and possibly in vivo.

  • Epithelial cells, dendritic cells and basophils are responsible for sensing allergens and helminth products and thus initiate TH2-type immune responses in vivo.

  • Epithelial cells produce the TH2-promoting cytokines thymic stromal lymphopoietin (TSLP), interleukin-25 (IL-25) and IL-33, and basophils produce IL-4, TSLP and IL-25 during the initiation stage of TH2 cell development. These cytokines may have important roles in inducing TH2-type responses, but the relative importance of each cytokine differs among individual models of TH2 cell-associated diseases.

  • Both dendritic cells and basophils can serve as TH2-inducing antigen-presenting cells. Although basophils are crucial for some TH2-type responses, they are dispensable in other models where dendritic cells or other potential antigen-presenting cells are involved.

  • IL-25 and IL-33 responsive non-B non-T cells produce TH2-associted cytokines, including IL-5 and IL-13, following IL-25 or IL-33 stimulation. These cells can be thought to be innate effector cells during TH2-type responses.

  • IL-4, TSLP, IL-25 and IL-33 are also involved in the amplification of the TH2-type responses by affecting several cell types.

Abstract

CD4+ T helper (TH) cells have crucial roles in orchestrating adaptive immune responses. TH2 cells control immunity to extracellular parasites and all forms of allergic inflammatory responses. Although we understand the initiation of the TH2-type response in tissue culture in great detail, much less is known about TH2 cell induction in vivo. Here we discuss the involvement of allergen- and parasite product-mediated activation of epithelial cells, basophils and dendritic cells and the functions of the cytokines interleukin-4 (IL-4), IL-25, IL-33 and thymic stromal lymphopoietin in the initiation and amplification of TH2-type immune responses in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TH2 cell differentiation requires both GATA3 expression and STAT5 activation.
Figure 2: Cytokines have crucial roles in the initiation and amplification of TH2-type immune responses.
Figure 3: Basophils and dendritic cells, functioning as antigen-presenting cells, are differentially involved in various TH2-type immune responses.

Similar content being viewed by others

References

  1. Zhu, J. & Paul, W. E. CD4 T cells: fates, functions, and faults. Blood 112, 1557–1569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pestka, S. et al. Interleukin-10 and related cytokines and receptors. Annu. Rev. Immunol. 22, 929–979 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Rochman, Y., Spolski, R. & Leonard, W. J. New insights into the regulation of T cells by γc family cytokines. Nature Rev. Immunol. 9, 480–490 (2009).

    Article  CAS  Google Scholar 

  4. Couper, K. N., Blount, D. G. & Riley, E. M. IL-10: the master regulator of immunity to infection. J. Immunol. 180, 5771–5777 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Spolski, R. & Leonard, W. J. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol. 26, 57–79 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Le Gros, G., Ben-Sasson, S. Z., Seder, R., Finkelman, F. D. & Paul, W. E. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J. Exp. Med. 172, 921–929 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Swain, S. L., Weinberg, A. D., English, M. & Huston, G. IL-4 directs the development of Th2-like helper effectors. J. Immunol. 145, 3796–3806 (1990).

    CAS  Google Scholar 

  8. Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, D. H., Cohn, L., Ray, P., Bottomly, K. & Ray, A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J. Biol. Chem. 272, 21597–21603 (1997). References 8 and 9 are the first two papers to describe GATA3 as the master regulator of T H 2 cells.

    Article  CAS  PubMed  Google Scholar 

  10. Kurata, H., Lee, H. J., O'Garra, A. & Arai, N. Ectopic expression of activated Stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells. Immunity 11, 677–688 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Zhu, J., Guo, L., Watson, C. J., Hu-Li, J. & Paul, W. E. Stat6 is necessary and sufficient for IL-4's role in Th2 differentiation and cell expansion. J. Immunol. 166, 7276–7281 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Yamane, H., Zhu, J. & Paul, W. E. Independent roles for IL-2 and GATA-3 in stimulating naive CD4+ T cells to generate a Th2-inducing cytokine environment. J. Exp. Med. 202, 793–804 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amsen, D. et al. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27, 89–99 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, Q. et al. T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-γ. Nature Immunol. 10, 992–999 (2009).

    Article  CAS  Google Scholar 

  15. Cote-Sierra, J. et al. Interleukin 2 plays a central role in Th2 differentiation. Proc. Natl Acad. Sci. USA 101, 3880–3885 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu, J., Cote-Sierra, J., Guo, L. & Paul, W. E. Stat5 activation plays a critical role in Th2 differentiation. Immunity 19, 739–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, J. et al. Conditional deletion of Gata3 shows its essential function in TH1–TH2 responses. Nature Immunol. 5, 1157–1165 (2004). References 12, 15, 16 and 17 have established the importance of both GATA3 expression and STAT5 activation during both T H 2 cell differentiation and lineage commitment.

    Article  CAS  Google Scholar 

  18. Eisenbarth, S. C. et al. Lipopolysaccharide-enhanced, Toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med. 196, 1645–1651 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nature Med. 15, 410–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Trompette, A. et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457, 585–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Sokol, C. L., Barton, G. M., Farr, A. G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nature Immunol. 9, 310–318 (2008).

    Article  CAS  Google Scholar 

  22. Kouzaki, H., O'Grady, S. M., Lawrence, C. B. & Kita, H. Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J. Immunol. 183, 1427–1434 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Steinfelder, S. et al. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J. Exp. Med. 206, 1681–1690 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Everts, B. et al. Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses. J. Exp. Med. 206, 1673–1680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schramm, G. et al. Cutting edge: IPSE/α-1, a glycoprotein from Schistosoma mansoni eggs, induces IgE-dependent, antigen-independent IL-4 production by murine basophils in vivo. J. Immunol. 178, 6023–6027 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Okano, M., Satoskar, A. R., Nishizaki, K. & Harn, D. A. Jr. Lacto-N-fucopentaose III found on Schistosoma mansoni egg antigens functions as adjuvant for proteins by inducing Th2-type response. J. Immunol. 167, 442–450 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Zaph, C. et al. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nature Immunol. 3, 673–680 (2002).

    Article  CAS  Google Scholar 

  29. Yoshimoto, T. et al. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide–MHC class II complexes to CD4+ T cells. Nature Immunol. 10, 706–712 (2009).

    Article  CAS  Google Scholar 

  30. Sokol, C. L. et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nature Immunol. 10, 713–720 (2009).

    Article  CAS  Google Scholar 

  31. Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lambrecht, B. N., Salomon, B., Klatzmann, D. & Pauwels, R. A. Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice. J. Immunol. 160, 4090–4097 (1998).

    CAS  PubMed  Google Scholar 

  33. Lambrecht, B. N. et al. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J. Clin. Invest. 106, 551–559 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, D., Biragyn, A., Hoover, D. M., Lubkowski, J. & Oppenheim, J. J. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. 22, 181–215 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. Yang, D. et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2–MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J. Exp. Med. 205, 79–90 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perrigoue, J. G. et al. MHC class II-dependent basophil-CD4+ T cell interactions promote TH2 cytokine-dependent immunity. Nature Immunol. 10, 697–705 (2009).

    Article  CAS  Google Scholar 

  37. Else, K. J. & Grencis, R. K. Antibody-independent effector mechanisms in resistance to the intestinal nematode parasite Trichuris muris. Infect. Immun. 64, 2950–2954 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, S. et al. Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. J. Immunol. 184, 1143–1147. References 29, 30, 36 and 38 report that basophils are T H 2 cell-inducing APCs in some but not all in vivo T H 2-associated models.

    Article  CAS  Google Scholar 

  39. Lambrecht, B. N. & Hammad, H. Taking our breath away: dendritic cells in the pathogenesis of asthma. Nature Rev. Immunol. 3, 994–1003 (2003).

    Article  CAS  Google Scholar 

  40. Kapsenberg, M. L. Dendritic-cell control of pathogen-driven T-cell polarization. Nature Rev. Immunol. 3, 984–993 (2003).

    Article  CAS  Google Scholar 

  41. Agrawal, S. et al. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J. Immunol. 171, 4984–4989 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Balic, A., Harcus, Y., Holland, M. J. & Maizels, R. M. Selective maturation of dendritic cells by Nippostrongylus brasiliensis-secreted proteins drives Th2 immune responses. Eur. J. Immunol. 34, 3047–3059 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Kane, C. M. et al. Helminth antigens modulate TLR-initiated dendritic cell activation. J. Immunol. 173, 7454–7461 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Ito, T. et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 202, 1213–1223 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. MacDonald, A. S. & Maizels, R. M. Alarming dendritic cells for Th2 induction. J. Exp. Med. 205, 13–17 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Steinman, R. M. Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nature Med. 13, 1155–1159 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Else, K. J., Finkelman, F. D., Maliszewski, C. R. & Grencis, R. K. Cytokine-mediated regulation of chronic intestinal helminth infection. J. Exp. Med. 179, 347–351 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Cohn, L., Homer, R. J., Marinov, A., Rankin, J. & Bottomly, K. Induction of airway mucus production by T helper 2 (Th2) cells: a critical role for interleukin 4 in cell recruitment but not mucus production. J. Exp. Med. 186, 1737–1747 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cohn, L., Tepper, J. S. & Bottomly, K. IL-4-independent induction of airway hyperresponsiveness by Th2, but not Th1, cells. J. Immunol. 161, 3813–3816 (1998).

    CAS  PubMed  Google Scholar 

  51. Pai, S. Y., Truitt, M. L. & Ho, I. C. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc. Natl Acad. Sci. USA 101, 1993–1998 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu, J. et al. Downregulation of Gfi-1 expression by TGF-β is important for differentiation of Th17 and CD103+ inducible regulatory T cells. J. Exp. Med. 206, 329–341 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yoshimoto, T. & Paul, W. E. CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J. Exp. Med. 179, 1285–1295 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Brown, D. R. et al. Beta 2-microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J. Exp. Med. 184, 1295–1304 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Akbari, O. et al. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nature Med. 9, 582–588 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Akbari, O. et al. CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N. Engl. J. Med. 354, 1117–1129 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Seder, R. A. et al. Mouse splenic and bone marrow cell populations that express high-affinity Fcɛ receptors and produce interleukin 4 are highly enriched in basophils. Proc. Natl Acad. Sci. USA 88, 2835–2839 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Min, B. et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J. Exp. Med. 200, 507–517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. MacGlashan, D. Jr et al. Secretion of IL-4 from human basophils. The relationship between IL-4 mRNA and protein in resting and stimulated basophils. J. Immunol. 152, 3006–3016 (1994).

    CAS  PubMed  Google Scholar 

  60. Noben-Trauth, N., Hu-Li, J. & Paul, W. E. Conventional, naive CD4+ T cells provide an initial source of IL-4 during Th2 differentiation. J. Immunol. 165, 3620–3625 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Noben-Trauth, N., Hu-Li, J. & Paul, W. E. IL-4 secreted from individual naive CD4+ T cells acts in an autocrine manner to induce Th2 differentiation. Eur. J. Immunol. 32, 1428–1433 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Jankovic, D. et al. Single cell analysis reveals that IL-4 receptor/Stat6 signalling is not required for the in vivo or in vitro development of CD4+ lymphocytes with a Th2 cytokine profile. J. Immunol. 164, 3047–3055 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Finkelman, F. D. et al. Stat6 regulation of in vivo IL-4 responses. J. Immunol. 164, 2303–2310 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Voehringer, D., Shinkai, K. & Locksley, R. M. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20, 267–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Constant, S., Pfeiffer, C., Woodard, A., Pasqualini, T. & Bottomly, K. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J. Exp. Med. 182, 1591–1596 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Tao, X., Constant, S., Jorritsma, P. & Bottomly, K. Strength of TCR signal determines the co-stimulatory requirements for Th1 and Th2 CD4+ T cell differentiation. J. Immunol. 159, 5956–5963 (1997).

    CAS  PubMed  Google Scholar 

  67. Tao, X., Grant, C., Constant, S. & Bottomly, K. Induction of IL-4-producing CD4+ T cells by antigenic peptides altered for TCR binding. J. Immunol. 158, 4237–4244 (1997).

    CAS  PubMed  Google Scholar 

  68. Zhou, B. et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nature Immunol. 6, 1047–1053 (2005). This report, together with reference 28, describes a possible role for TSLP in the initiation of allergic T H 2-type responses.

    Article  CAS  Google Scholar 

  69. Liu, Y. J. Thymic stromal lymphopoietin: master switch for allergic inflammation. J. Exp. Med. 203, 269–273 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kato, A., Favoreto, S. Jr, Avila, P. C. & Schleimer, R. P. TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J. Immunol. 179, 1080–1087 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Al-Shami, A. et al. A role for thymic stromal lymphopoietin in CD4+ T cell development. J. Exp. Med. 200, 159–168 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Isaksen, D. E. et al. Requirement for stat5 in thymic stromal lymphopoietin-mediated signal transduction. J. Immunol. 163, 5971–5977 (1999).

    CAS  PubMed  Google Scholar 

  73. Al-Shami, A., Spolski, R., Kelly, J., Keane-Myers, A. & Leonard, W. J. A role for TSLP in the development of inflammation in an asthma model. J. Exp. Med. 202, 829–839 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. He, R. et al. TSLP acts on infiltrating effector T cells to drive allergic skin inflammation. Proc. Natl Acad. Sci. USA 105, 11875–11880 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lu, N., Wang, Y. H., Arima, K., Hanabuchi, S. & Liu, Y. J. TSLP and IL-7 use two different mechanisms to regulate human CD4+ T cell homeostasis. J. Exp. Med. 206, 2111–2119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sallusto, F., Lenig, D., Mackay, C. R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187, 875–883 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187, 129–134 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Massacand, J. C. et al. Helminth products bypass the need for TSLP in Th2 immune responses by directly modulating dendritic cell function. Proc. Natl Acad. Sci. USA 106, 13968–13973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Taylor, B. C. et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J. Exp. Med. 206, 655–667 (2009). References 78 and 79 report that TSLP is important for T H 2-type responses to T. muris but not other helminth infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Watanabe, N. et al. Human TSLP promotes CD40 ligand-induced IL-12 production by myeloid dendritic cells but maintains their Th2 priming potential. Blood 105, 4749–4751 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Allakhverdi, Z. et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J. Exp. Med. 204, 253–258 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fort, M. M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Fallon, P. G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006). References 82–84 describe IL-25-responsive NBNT cells that can produce T H 2-associated cytokines, especially IL-5 and IL-13. These cells may be crucial during many T H 2-type responses in vivo . However, whether all these cells are the same population requires further study.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Owyang, A. M. et al. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J. Exp. Med. 203, 843–849 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Angkasekwinai, P. et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204, 1509–1517 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Goswami, S. et al. Divergent functions for airway epithelial matrix metalloproteinase 7 and retinoic acid in experimental asthma. Nature Immunol. 10, 496–503 (2009).

    Article  CAS  Google Scholar 

  88. Wang, Y. H. et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J. Exp. Med. 204, 1837–1847 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005). This paper reports that IL-33 is an important T H 2-inducing cytokine and one of its receptor subunit is ST2, which is selectively expressed by T H 2 cells but not other T H cells as reported in references 90 and 91.

    Article  CAS  PubMed  Google Scholar 

  90. Xu, D. et al. Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J. Exp. Med. 187, 787–794 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lohning, M. et al. T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc. Natl Acad. Sci. USA 95, 6930–6935 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Townsend, M. J., Fallon, P. G., Matthews, D. J., Jolin, H. E. & McKenzie, A. N. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. J. Exp. Med. 191, 1069–1076 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hoshino, K. et al. The absence of interleukin 1 receptor-related T1/ST2 does not affect T helper cell type 2 development and its effector function. J. Exp. Med. 190, 1541–1548 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Humphreys, N. E., Xu, D., Hepworth, M. R., Liew, F. Y. & Grencis, R. K. IL-33, a potent inducer of adaptive immunity to intestinal nematodes. J. Immunol. 180, 2443–2449 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Pecaric-Petkovic, T., Didichenko, S. A., Kaempfer, S., Spiegl, N. & Dahinden, C. A. Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33. Blood 113, 1526–1534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Suzukawa, M. et al. An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor. J. Immunol. 181, 5981–5989 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Allakhverdi, Z., Smith, D. E., Comeau, M. R. & Delespesse, G. Cutting edge: the ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J. Immunol. 179, 2051–2054 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Kurowska-Stolarska, M. et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J. Immunol. 183, 6469–6477 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Guo, L. et al. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. Proc. Natl Acad. Sci. USA 106, 13463–13468 (2009). This paper reports that IL-33 can induce IL-13 production by T H 2 cells in a TCR-independent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stumbles, P. A. et al. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Th1 immunity. J. Exp. Med. 188, 2019–2031 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hosken, N. A., Shibuya, K., Heath, A. W., Murphy, K. M. & O'Garra, A. The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-αβ-transgenic model. J. Exp. Med. 182, 1579–1584 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Constant, S. L. & Bottomly, K. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu. Rev. Immunol. 15, 297–322 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Sacks, D. & Noben-Trauth, N. The immunology of susceptibility and resistance to Leishmania major in mice. Nature Rev. Immunol. 2, 845–858 (2002).

    Article  CAS  Google Scholar 

  104. Okamoto, M. et al. Mina, an Il4 repressor, controls T helper type 2 bias. Nature Immunol. 10, 872–879 (2009).

    Article  CAS  Google Scholar 

  105. Hochrein, H. et al. Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J. Exp. Med. 192, 823–833 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Finkelman, F. D. et al. IL-4 is required to generate and sustain in vivo IgE responses. J. Immunol. 141, 2335–2341 (1988).

    CAS  PubMed  Google Scholar 

  108. Del Prete, G. et al. IL-4 is an essential factor for the IgE synthesis induced in vitro by human T cell clones and their supernatants. J. Immunol. 140, 4193–4198 (1988).

    CAS  PubMed  Google Scholar 

  109. Martinez, F. O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27, 451–483 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Moussion, C., Ortega, N. & Girard, J. P. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel 'alarmin'? PLoS ONE 3, e3331 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Prefontaine, D. et al. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. J. Immunol. 183, 5094–5103 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Wood, I. S., Wang, B. & Trayhurn, P. IL-33, a recently identified interleukin-1 gene family member, is expressed in human adipocytes. Biochem. Biophys. Res. Commun. 384, 105–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Rank, M. A. et al. IL-33-activated dendritic cells induce an atypical TH2-type response. J. Allergy Clin. Immunol. 123, 1047–1054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Espinassous, Q. et al. IL-33 enhances lipopolysaccharide-induced inflammatory cytokine production from mouse macrophages by regulating lipopolysaccharide receptor complex. J. Immunol. 183, 1446–1455 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature Mar 3 2010 (doi:10.1038/nature08900)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Saenz, S. A. et al. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses. Nature Mar 3 2010 (doi:10.1038/nature08901)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work is supported by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, and the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

William E. Paul's homepage

Glossary

Asthma

A chronic disease of the lung, characterized by airway hyperresponsiveness and inflammation. The most common form of the disease, allergicasthma, results from inappropriate immune responses to common allergens in genetically susceptible individuals. Allergic asthma is characterized by infiltration of the airway wall with mast cells, lymphocytes and eosinophils. CD4+ T cells producing TH2-type cytokines are thought to have a crucial role in orchestrating the recruitment and activation of these effector cells of the allergic response.

Airway hyperresponsiveness

Increased narrowing of the airways, initiated by exposure to a defined stimulus that usually has little or no effect on airway function in normal individuals. This is a defining physiological characteristic of asthma.

Non-B non-T cells

(NBNT cells). Cells that are different from basophils, eosinophils, mast cells and NKT cells and can produce IL-5 and IL-13 but little or no IL-4 in response to IL-25 or IL-33 stimulation. They may produce IL-4 in response to phorbol 12-myristate 13-acetate (PMA) plus ionomycin stimulation. These cells were described as MHC class IIhiCD11clowF4/80lowCD4CD8 or KIT+FcɛRI or LINKIT+SCA1+IL-7Ra+ST2+ in three different reports, and they may comprise three different cell types.

WNT

A signalling mediator named both for its mutant phenotype in Drosophila melanogaster (Wingless) and for its role as a preferential retrovirus integration site in murine leukaemia virus-induced leukaemias (Int-1). WNT signalling activates the T cell factor 1(TCF1) and lymphoid enhancer-binding factor 1 (LEF1) families of transcription factors by stabilizing their co-activator β-catenin and mobilizing it from the cytoplasm to the nucleus.

Cysteine proteases

Enzymes requiring a cysteine thiol in their catalytic pockets to cleave polypeptides by hydrolysis of the peptide bonds. Common cysteine proteases include papain and bromelain.

β2-microglobulin

2m). A single immunoglobulin-like domain that non-covalently associates with the main polypeptide chain of MHC class I molecules. In the absence of β2m, MHC class I molecules are unstable and are therefore found at low levels at the cell surface.

Altered peptide ligands

(APLs). Peptide analogues that are derived from the original antigenic peptide. They commonly have amino acid substitutions at TCR-contact residues. TCR engagement by these APLs usually leads to partial or incomplete T cell activation. Antagonistic APLs can specifically antagonize and inhibit T cell activation that is induced by the wild-type antigenic peptide.

Recombination-activating gene (Rag)-knockout mice

Rag1 and Rag2 are expressed by developing lymphocytes. Mice that are deficient in either RAG protein fail to produce B and T cells owing to a developmental block in the gene rearrangement that is required for receptor expression.

Alternatively activated macrophage

A macrophage stimulated by IL-4 or IL-13 that expresses arginase 1, the mannose receptor and IL-4Rα. There may be pathogen-associated molecular patterns expressed by helminths that can also drive the alternative activation of macrophages.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, W., Zhu, J. How are TH2-type immune responses initiated and amplified?. Nat Rev Immunol 10, 225–235 (2010). https://doi.org/10.1038/nri2735

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2735

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing